key: cord-0683997-5pthsfiy authors: Singh, Omprakash; Agarwal, Neha; Yadav, Anupama; Basu, Sumela; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod; Singru, Praful S. title: Concurrent changes in photoperiod-induced seasonal phenotypes and hypothalamic CART peptide-containing systems in night-migratory redheaded buntings date: 2020-11-03 journal: Brain Struct Funct DOI: 10.1007/s00429-020-02154-y sha: d88b54aaa9282d064bb3d9f10da5836b17ea25e4 doc_id: 683997 cord_uid: 5pthsfiy This study tested the hypothesis whether hypothalamic cocaine-and amphetamine-regulated transcript (CART)-containing systems were involved in photoperiod-induced responses associated with spring migration (hyperphagia and weight gain) and reproduction (gonadal maturation) in migratory songbirds. We specifically chose CART to examine neural mechanism(s) underlying photoperiod-induced responses, since it is a potent anorectic neuropeptide and involved in the regulation of changes in the body mass and reproduction in mammals. We first studied the distribution of CART-immunoreactivity in the hypothalamus of migratory redheaded buntings (Emberiza bruniceps). CART-immunoreactive neurons were found extensively distributed in the preoptic, lateral hypothalamic (LHN), anterior hypothalamic (AN), suprachiasmatic (SCN), paraventricular (PVN), dorsomedialis hypothalami (DMN), inferior hypothalamic (IH), and infundibular (IN) nuclei. Then, we correlated hypothalamic CART-immunoreactivity in buntings with photostimulated seasonal states, particularly winter non-migratory/non-breeding (NMB) state under short days, and spring premigratory/pre-breeding (PMB) and migratory/breeding (MB) states under long days. There were significantly increased CART-immunoreactive cells, and percent fluorescent area of CART-immunoreactivity was significantly increased in all mapped hypothalamic areas, except the SCN, PVN, AN, and DMN in photostimulated PMB and MB states, as compared to the non-stimulated NMB state. In particular, CART was richly expressed in the medial preoptic nucleus, LHN, IH and IN during MB state in which buntings showed reduced food intake and increased night-time activity. These results suggest that changes in the activity of the CART-containing system in different brain regions were associated with heightened energy needs of the photoperiod-induced seasonal responses during spring migration and reproduction in migratory songbirds. The latitudinal avian migrants exhibit distinct photoperiodinduced seasonal migratory and reproductive states. These states can be induced in captive birds by exposing them to appropriate artificial photoperiods. For instance, the exposure to short days (SDs) maintain the winter non-migratory/ non-breeding phenotype (NMB) state, whereas long days (LDs) induce spring/summer premigratory/ prebreeding (PMB) and migratory/ breeding (MB) phenotypes (Kumar et al. 2010) . Photostimulated MB phenotype is characterized by the hyperphagia (increased food intake), copious fat deposition, body mass gain and Zugunruhe (migratory nocturnal restlessness in caged birds (Gwinner and Czeschlik 1978; Bairlein 2002) , and gonadal maturation (Agatsuma and Ramenofsky 2006; Rani et al. 2006; Trivedi et al. 2014; Mishra et al. 2017) . Photostimulated change in the seasonal phenotype is accompanied with the altered energy homeostasis. Centrally, the changes involve neural pathways, which have not been clearly defined yet. However, in mammals, studies have identified the orexigenic [neuropeptide Y (NPY) and agouti-related protein (AgRP)] and anorexigenic [proopiomelanocortin (POMC) and cocaine-and amphetamineregulated transcript (CART)] peptides with a major role in the regulation of food intake and energy balance (Chronwall et al. 1985; Elmquist et al. 1998 ; Barsh and Schwartz 2002; Boswell and Dunn 2017) . While NPY and AgRP stimulate eating, POMC and CART are anorectic and believed to induce satiety in rodents (Tomaszuk et al. 1996; Kristensen et al. 1998; Lambert et al. 1998; Okumura et al. 2000; Loh et al. 2015) . Although, NPY expression has been shown to correspond to the photostimulation of MB state , it is unknown if CART as a check point of the regulatory peptide network is involved in the energy homeostasis with transition in photostimulated seasonal states. This is intriguing since CART peptide seems highly conserved both in the distribution and function in the brain (Lázár et al. 2004; Calle et al. 2006; Singru et al. 2007; Subhedar et al. 2011; Akash et al. 2014; Singh et al. 2016a) . The organization and functional significance of CART have been described in the brain of several non-mammalian vertebrates including teleosts [catfish, Clarias batrachus: (Singru et al. 2007 ); Clarias gariepinus: (Subhedar et al. 2011) , and zebrafish, Danio rerio (Akash et al. 2014) ], frogs [Rana esculenta: (Lázár et al. 2004) ; Xenopus laevis: (Calle et al. 2006) ], and birds [zebra finch, Taeniopygia guttata (Singh et al. 2016a; Gutierrez-Ibanez et al. 2016 ) and pigeon, Columba livia (Gutierrez-Ibanez et al. 2016) ]. In addition to energy balance, CART also plays a role in the reproductive regulation (True et al. 2013) . In rats, the CART-containing axons innervate GnRH neurons in the preoptic area (POA), and treatment with CART alters GnRH neuron firing (True et al. 2013) . As in other vertebrates, CART administered intra-cerebroventricularly inhibited food intake in birds (Tachibana et al. 2003; Honda et al. 2007 ). The hypothalamic CART mRNA expression was downregulated during fasting in chickens (Cai et al. 2015) and CART inhibits fasting-induced-enhanced hypothalamic NPY in zebra finches (Singh et al. 2016a) . Importantly, among the hypothalamic pathways involved in the regulation of energy balance, CART seems to be the only neuropeptide whose transcription pattern indicates its functional role in inducing or maintaining the photoperiod-induced changes in body mass (Mercer and Tups 2003) . We, therefore, envisaged that the photostimulated hyperphagia and subsequent weight gain, and gonadal development in latitudinal songbird migrants might be correlated with the activity of the hypothalamic CART-containing system. To investigate this, we found Palaearctic-Indian night-migratory male redheaded buntings (Emberiza bruniceps) as an experimental model, since it exhibits seasonal migration and reproduction phenotypes when exposed to programmed photoperiods in the laboratory environment (Rani et al. 2005) . Here, we first mapped out the hypothalamic distribution of CART and characterized different CART-containing neuronal populations. Then, we evaluated differences in the expression pattern of CARTcontaining systems in the hypothalamus of buntings between SD-induced NMB, and LD-induced PMB/ MB phenotypes. The prediction was that hypothalamic areas involved in photoneuroendocrine response would show CART immunoreactivity, and that CART would be expressed at higher levels in the mediobasal hypothalamus, the seasonal clock site ) of redheaded buntings exhibiting the photostimulated PMB and MB states, compared to the NMB controls. This study was conducted on male redheaded buntings (Emberiza bruniceps) at the Department of Zoology, University of Lucknow, Lucknow (27°N, 81°E), India, in accordance with guidelines of the Institutional Animal Ethics Committee (IAEC, approved protocol number LU/ ZOOL/IAEC/08/17/09). Bunting is an emberizid Palearctic-Indian night migrant, arriving in India (~ 25°N) in September/October and returning to its breeding grounds in west Asia (~ 40°N) in March/April (Ali and Dillon 1974) . It is photoperiodic and exhibits winter non-migratory/ non-breeding phenotype under short days (SD, 8L:16D) and migratory/breeding phenotype following exposure to long days (LD, ≥ 12 h light per day) (Rani et al. 2005) . The experiments were conducted on adult male birds (body mass = 23-26 g; testis volume = 0.78-1.05 mm 3 ) that were captured from overwintering flocks in late February 2017. Post-capture, birds were brought to our outdoor aviary (size = 3 × 2.5 × 2.5 m) and acclimatized for a week to captive conditions under the natural light-dark cycle and temperature. Acclimated birds were moved indoors and maintained in the aviary (size = 2.2 × 1.8 × 2.8 m) under SD at 20 ± 2 °C temperature until the beginning of the experiment. Under SD, buntings remain unstimulated and maintain their photosensitivity (Rani et al. 2005) . The birds were provided food (seeds of Setaria italica) and water ad libitum. Adult, male, Sprague-Dawley rats (n = 2, 250-270 g) were used for characterization of tyrosine hydroxylase (TH) antibodies (IAEC, NISER, Bhubaneswar approved protocol number NISER/SBS/IAEC/AH-167-119). Of total 20 birds, 5 were used for the neuroanatomical characterization of CART immunoreactivity in the hypothalamus. The remaining 15 birds were divided in three groups (group I, II and III) of 5 each and used for experimental evaluation of the role of CART in photoperiodic induction of the spring migration and reproduction phenotype. Birds were singly housed (one bird per cage) in activity cages (size = 60 × 35 × 45 cm) that were individually placed inside photoperiodic boxes (size = 75 × 50 × 70 cm) and lit by compact fluorescent bulbs (CFL). A schematic of the experimental design is shown in Fig. 1A . Initially, all birds were exposed to 8L:16D (L = 150 ± 5.0 lx; D = < 1 lx), as before and at this time, the birds lacked subcutaneous fat depots, and had normal body mass and small testes. After a week of non-stimulatory SD, group I birds (non-migratory/ non-breeding, NMB) were perfused in the middle of the day (4 h after light on), while group II and III birds were exposed to long days (LD, 13L:11D) by 5 h delaying the light end. After 7 days of LD, group II birds (considered equivalent to showing spring pre-migratory/pre-breeding phenotype, PMB; Rastogi et al. 2011 Rastogi et al. , 2013 Singh et al. 2015) were perfused during the middle of day, i.e., 6.5 h after light on. Group III birds were continued to be on LD until each individual had shown seven nights of nocturnal Zugunruhe (migratory restlessness as evidenced by intense nighttime activity and wing whirring). These birds [considered equivalent to showing spring migratory/breeding phenotype, MB (Rastogi et al. 2011 Singh et al. 2015) ] were also perfused during the middle of the day (6.5 h after lights on). We monitored continuously 24 h activity pattern, and recorded food intake, subjectively scored body fattening, and measured the body mass and testis size as indices of photoperiod-induced behavioral and physiological states. Each activity cage was equipped with two perches positioned at different heights and mounted with a passive infrared motion sensor (Haustier PIR-Melder Intellisense XJ 413 T with 12 m (40′) range; C & K Systems, Conrad Electronic, Germany). Each sensor continuously detected the movement of bird in its each cage and transferred it in 10 min bins to separate channels of the computerized data recording system, using software program from the Stanford Software Systems, Stanford, CA, USA. The activity record over experiment duration was graphed (called actogram) and generated as a double plot wherein successive days were plotted both sideways and underneath to give a better visual analysis (Malik et al. 2004; Rani et al. 2006) . We calculated hourly activity levels to show 24 h behavioral response of buntings in photoperiod-induced seasonal states. For this, we first averaged activity for every hour over 7 days for each individual and then mean (± SE) was calculated for each group. In addition, the total activity during the day (light period) and night (dark period) as well as during whole 24 h day was calculated to better illustrate differences in activity behaviour and make statistical comparison between photoperiod-induced seasonal states. The activity counts were first averaged for a specified period (24 h, 13 L or 11 D) over 7 days for each individual, and then the mean (± SE) was calculated for each group. Food intake was measured for each individual. The cage floor was covered with a paper with extended sides to collect the spillage. A measured quantity of food was provided in food cup and which was removed and weighed after 24 h. This was repeated for two consecutive days, and then averaged. The difference between the amount of food given and food collected (minus feces) gave the amount of food intake by a bird. From this, mean (± SE) food intake (g/bird/ day) for the group was calculated. For body mass, bird was weighed on a top-pan balance to an accuracy of 0.1 g. The subcutaneous body fat was subjectively scored in an index of 0-5 (0 = no subcutaneous fat, 1 = light fat deposits overlying the muscles and blood vessels are clearly visible, 2 = heavier fat deposits overlying muscles, with the visible blood vessel, 3 = fat deposits overlie entire region, 4 = area filled with whitish, bulging fat deposits, and 5 = copious fat deposits over furcula, scapula and abdominal area) (Malik et al. 2004; Budki et al. 2009 ). The size of testis was recorded as volume of the left testis measured with reference to an accurate scale on a graph sheet, after birds were perfused at the end of the experiment. Using formula 4/3πab 2 [a and b = half of the long (length) and short (width) axes, respectively], the testis volume was calculated as measure of change in the dimension of the testes. Buntings were anaesthetized using a mixture of ketamine and xylazine (ketamine: 40 mg/kg and xylazine: 10 mg/ kg body weight) and perfused transcardially with 100 ml phosphate-buffered saline (PBS; pH 7.4) and 80 ml of 4% formaldehyde in 0.1 M phosphate buffer. Brains were dissected out from each bird and post-fixed in 4% formaldehyde for 24 h. Similarly, the rats were anaesthetized and perfused and brain dissected out and post-fixed. For the cryoprotection, tissues were then immersed in 25% sucrose solution in PBS overnight at 4 ºC. The brains were rapidly frozen in dry ice, embedded in tissue mounting medium and 30 µm thick coronal sections through the rostro-caudal extent of the brain were cut on a cryostat (CM3050 S; Leica, Germany). The sections were collected in PBS to obtain four sets of free-floating sections. To study distribution and evaluate the role of CART immunoreactivity in the POA and hypothalamus, one set of brain sections from each bird in all groups were processed for the immunofluorescence as described by (Singh et al. 2016a ). The sections were rinsed in the PBS, immersed in 0.5% Triton X-100 in PBS for 30 min followed by 5% normal horse serum in PBS for 30 min. They were incubated in diluted rabbit polyclonal anti-CART antiserum (Table 1) for 24 h at 4 °C. Few sections containing suprachiasmatic nucleus (SCN) were incubated in rabbit polyclonal anti-vasoactive intestinal peptide antiserum (VIP, Table 1 ). After rinsing in PBS, the sections were incubated in AlexaFluor488conjugated goat anti-rabbit IgG (Invitrogen; dilution 1:500) for 4 h at the room temperature. They were washed in PBS followed by TRIS buffer, mounted on the glass slide and coverslipped with Vectashield mounting medium containing DAPI (Vector). The sections were observed under the Axio-Imager M2 fluorescence microscope (Carl Zeiss, Germany), and photomicrographs were captured with AxioCam camera attached to the microscope equipped with Zen2011 software (Carl Zeiss, Göttingen, Germany). The photomicrographs were adjusted for size, brightness and contrast using Adobe Photoshop CS4 and panels were prepared. To identify different POA and hypothalamic nuclei, sections were processed for cresyl-violet staining. The sections were mounted on the slides, stained with 1% cresyl violet and differentiated in acetic acid in ethanol. After dehydration in the ascending series of ethanol, the sections were immersed in xylene and coverslipped with DPX mounting medium. The schematics of coronal section containing the POA and hypothalamic regions of buntings were prepared using CorelDraw software, as in previous studies (Rastogi et al. 2011; Singh et al. 2013) . The terminology and identification of regions/nuclei in the POA and hypothalamus of redheaded bunting was adopted from previous studies (Kuenzel and van Tienhoven 1982; Meddle and Follett 1997; Cardot et al. 1999; Brandstätterr and Abraham 2003; Rastogi et al. 2013; Singh et al. 2016a ). We performed double immunofluorescence histochemistry to characterize the CART-immunoreactive neurons in the POA and hypothalamic nuclei of the redheaded bunting, using CART antiserum and antisera for each neurotransmitter/neuropeptide (Table 1 ). Both avian POA and hypothalamus have been shown containing TH (a marker enzyme of dopamine biosynthesis; Bottjer 1993; Kabelik et al. 2011), NPY and POMC (Boswell 2005; Boswell and Dunn 2017) , and mesotocin (Bons 1980; Chokchaloemwong et al. 2013; Hall et al. 2015) neurons; NPY fibers densely innervate DMN of the redheaded buntings . Specifically, hypothalamic sections containing the lateral hypothalamic nucleus (LHN), paraventricular nucleus (PVN), ventral supraoptic nucleus (SOv), nucleus dorsomedialis hypothalami (DMN), inferior hypothalamic nucleus (IH) and hypothalamic infundibular nucleus (IN), and median preoptic nucleus (PONm) were processed for Fig. 1 A Schematic showing experimental design. Birds acclimatized to short day (SD) [8L: 16D] photoperiodic conditions were divided into three groups (n = 5/group). The birds in group I were maintained under SD, whereas those in the groups II and III were exposed to long days (LD) [13L:11D]. Group I birds were sacrificed after 1-week exposure to SD and considered as non-migratory/nonbreeding (NMB). Group II birds were sacrificed after 1-week exposure to LD and considered as pre-migratory/pre-breeding (PMB). The birds in group III were continued LD exposure until each individual showed 7 cycles of nocturnal activity or Zugunruhe. These birds were considered as migratory/breeding (MB) and sacrificed. (B-D) Representative double-plotted actograms of a birds from each state viz (B) NMB, (C) PMB and (D) MB phases. Activity counts during (E) daytime, (F) nighttime, (G) total activity/day, and (H) per hour. The changes in (I) body mass, (J) fat score, (K) testis volume, and (L) food intake of birds during NMB, PMB and MB phases. *P < 0.05 compared to NMB and PMB in G, J, K and PMB in L; **P < 0.01 compared to NMB and PMB in F and NMB in L; ns, non-significant ◂ double immunofluorescence, as described earlier (Singh et al. 2016a, b) . The sections were prepared as described above in Sect. "Hypothalamic distribution and putative regulatory role of CART ", and incubated in a mixture of diluted (i) mouse monoclonal anti-TH antibodies and rabbit polyclonal anti-CART antiserum for PONm and LHN, (ii) mouse monoclonal anti-oxytocin antibodies and rabbit polyclonal anti-CART antiserum for PVN and SOv, (iii) sheep polyclonal anti-NPY and rabbit polyclonal anti-CART antisera for DMN, IH and IN, or (iv) sheep polyclonal anti-α-MSH and rabbit polyclonal anti-CART antisera for IH and IN. The sections were incubated in antisera mixture for 24 h at 4 °C, rinsed in PBS and re-incubated in a mixture of either AlexaFluor594-conjugated anti-mouse or anti-sheep IgG and AlexaFluor488-conjugated anti-rabbit IgG (Invitrogen, 1:500) for 4 h at the room temperature. PBS-rinsed sections were mounted on glass slides, and coverslipped with Vectashield mounting medium. The sections were observed under an AxioImager fluorescence microscope, analysed, and photomicrographs captured as described above in Sect. "Hypothalamic distribution and putative regulatory role of CART ". The details of the antisera used in the study are given in Table 1 . The specificity of rabbit polyclonal anti-CART antiserum used in the present study has been well established in the brain of other bird (Singh et al. 2016a ). In the western blot analysis, application of the anti-CART antiserum showed multiple bands of CART propeptide fragments in the brain of zebra finch (Singh et al. 2016a) . To determine the specificity of the anti-CART antiserum in the brain of redheaded bunting, hypothalamic sections containing PVN and IN were incubated in the rabbit polyclonal anti-CART antiserum preadsorbed with the synthetic CART peptide at 10 -5 M concentration followed by incubation in Alex-aFluor488-conjugated anti-rabbit IgG. The sections were rinsed in PBS, mounted on the glass slides, coverslipped with Vectashield mounting medium, and observed under fluorescence microscope. The anti-VIP antiserum has been raised against full length VIP (pig) conjugated with bovine thyroglobulin by a CDI linker. The specificity of the antiserum in the brain of Emberiza melanocephala (an allied migrant species) has been validated using different controls . The specificity of anti-VIP and NPY antisera in the brain of birds including black-headed bunting has already been established Surbhi et al. 2015) . To establish the specificity for redheaded bunting, while the hypothalamic sections were incubated for 24 h with anti-VIP, NPY, and α-MSH antisera preadsorbed with their respective control peptides at 10 -5 M concentration, the anti-oxytocin antibodies were preadsorbed with mesotocin peptide. In addition to the mouse monoclonal anti-oxytocin antibodies, sections were also incubated in rabbit polyclonal anti-oxytocin antiserum to compare the pattern of immunoreactivity in the PVN of birds. Similarly, the rabbit polyclonal anti-NPY antiserum was employed to compare the pattern of NPY immunoreactivity in the DMN with sheep anti-NPY antiserum. The antiserum we used for TH has been used for the localization of dopaminergic systems in the brain of birds (Kabelik et al. 2011; Sen et al. 2019) ; it labels distinct TH-immunoreactive neurons in the POA and LHN (Bottjer 1993; Kabelik et al. 2011) . Following incubation, the sections were processed for immunofluorescence using AlexaFluor488-conjugated secondary antibodies (anti-rabbit IgG for rabbit anti-VIP, NPY and oxytocin; anti-mouse IgG for mouse anti-TH antibodies; and anti-sheep IgG for sheep anti-α-MSH and NPY antisera). The sections were rinsed in PBS, mounted on glass slides, coverslipped with Vectashield mounting medium, observed under an AxioImager fluorescence microscope, and images captured as described above. For determining the specificity of the TH antibodies in the brain of redheaded bunting, hypothalamic sections were incubated in either mouse monoclonal anti-TH antibodies, sheep polyclonal anti-TH antiserum, or normal serum in place of the primary TH antiserum, and processed for immunofluorescence. The sections were incubated in the fluorescence conjugated secondary antibodies (AlexaFluor488conjugated anti-mouse or anti-sheep IgG) as described above. The sections were rinsed in PBS, mounted on glass slides and coverslipped with mounting medium. The sections were observed under a fluorescence microscope and photomicrographs captured as described above. In the midbrain of mammals, the mouse anti-TH antibody recognizes the dopaminergic neurons in the ventral tegmental area/substantia nigra (Gombash et al. 2014; Ho et al. 2015) . The rat midbrain sections containing the ventral tegmental area/substantia nigra were incubated in mouse anti-TH antiserum followed by Alexa-Fluor-594-conjugated anti-mouse IgG. To further establish the specificity of the mouse anti-TH antibodies in the brain of redheaded bunting, western blot analysis of the hypothalamic tissue was performed, as described previously (Singh et al. 2019 ). Birds were anaesthetised as described above. The brains removed, frozen on dry ice, and hypothalamic tissue block was cut. The tissue was homogenised in RIPA buffer [50 mM sodium phosphate buffer, pH 7.4, 500 mM sodium chloride, 1% Triton X-100, 0.05% sodium deoxycholate, 0.1% sodium dodecyl sulphate (SDS), 0.5 mM ethylenediaminetetraacetic acid, 0.5 mM ethylene glycol tetraacetic acid, 9.9% glycerol] containing phenylmethylsulphonyl fluoride (1 mM) in ethanol, and protease inhibitor cocktail (1% in sodium phosphate buffer, Sigma). After centrifugation, the supernatant obtained. The protein sample was then run on Tris/glycine SDS-polyacrylamide (10%) gel electrophoresis, using a mini-gel apparatus (Bio-Rad, Hercules, CA, USA) along with a PageRuler™ Plus prestained protein ladder (Cat. # 26,619, ThermoScientific). Using immunoblotting with mini-gel electrotransfer system (Bio-Rad), the proteins were transferred to the polyvinylidene difluoride membranes (Immobilon-P, Sigma) in the running buffer (25 mM Tris base, 190 mM glycine, 0.1% SDS, pH 8.3) for 1 h at 17 V. The membrane was rinsed in 5% bovine serum albumin (HIMEDIA, India) for 1 h and incubated overnight at room temperature in either the diluted mouse anti-TH antibodies (1:1500) or blocking solution with no primary antibody. Following rinsing in Tris-buffered saline Tween 20 buffer (pH 7.6), membrane incubated for 1 h at room temperature in goat anti-mouse horseradish peroxidase-conjugated antibodies (dilution 1:5000; Cell Signaling Technology, USA). The membrane was rinsed in buffer and the immunoreactive proteins detected using enhanced chemiluminescence (ECL, Amersham, UK) in FluorChem E system (ProteinSimple, CA, USA) and image captured. As previously described (Gutekunst et al. 2010; Singh et al. 2016a) , the number and density of CART-immunoreactive cells and fibers in the rostro-caudal series of sections through the POA and hypothalamic areas were analyzed using a qualitative scale (−, negative; + , occasional/isolated; + + , few; + + + , several; Table 2 ). Using computerized image analysis, the percent fluorescent area and number of CART-immunoreactive cells in the PONm, SCN, SOv, anterior hypothalamic nucleus (AN), LHN, PVN, DMN, IH, and IN were determined, as previously described (Singh et al. 2016a (Singh et al. ,2019 . Briefly, we selected five hypothalamic sections encompassing rostro-caudal extent of each nucleus on either side of the brain. Photomicrographs of these nuclei were captured using a CCD camera attached to the fluorescence microscope and the images were digitized. Using Image J software (National Institute of Health, USA), images were set at threshold which included the immunoreactivity and subtracting the background, and the region of interest selected using the drawing tool in the software. The percent fluorescent area of CART immunoreactivity in different hypothalamic nuclei was calculated by an automatic quantification. Hypothalamic sections from each individual bird from different groups were processed together to minimize the error during immunofluorescence staining. The microscope settings including the objective, exposure time, and fluorescence intensity remained the same during the entire analysis. The number of CART-immunoreactive cells in the hypothalamic nuclei in all three photoinduced seasonal states were counted and the cell numbers were corrected using Abercrombie's method (Abercrombie 1946) . Data from all birds in a group were pooled, averaged and the mean ± SEM was calculated. The analyses were performed double blind; each slide was coded and analyzed by a person blind to the experiment. The percentage of CART-immunoreactive neurons coexpressing (i) mesotocin in the PVN and SOv, and (ii) NPY or α-MSH in the IH and IN, in the hypothalamus of the bunting were analysed as described earlier by Singh et al. (2016a) . Five double-labelled sections containing the PVN, SOv, IH and IN from each bird were analyzed under a fluorescence microscope. The filter sets (green for CART and red for mesotocin, NPY or α-MSH) were switched, and the number of double-labeled neurons was counted on either side of the hypothalamus from each bird, and percentage was determined. The data obtained from sections from each animal were pooled and the mean ± SEM calculated. All statistical analyses were performed using GraphPad Prism software (GraphPad Software Inc, USA). Data were analyzed by One-way analysis of variance (one-way ANOVA) followed by Newman-Keuls multiple comparison test, if ANOVA indicated a significant difference. However, data on fat score were analyzed using the Kruskal-Wallis nonparametric test followed by Dunn's multiple comparison post-test. P < 0.05 was considered statistically significant. As expected of a diurnal species, buntings were active during the day in both SD-induced (group I) and LD-induced PMB (group II) states (Fig. 1B, C) . However, with the subsequent LD-induced photostimulation of MB state (migratory phenotype; group III, Fig. 1D ), birds developed an intense night-time activity, a feature in captive condition when a migrant is disallowed from migrating (called migratory nocturnal restlessness, Zugunruhe, comparable to that of the onset of migratory night flight in the wild). Thus, there was significantly higher night activity (NMB or PMB; F 2,12 = 10.21; P = 0.0026; one-way ANOVA; Fig. 1B -D, F), total 24 h activity (NMB or PMB; F 2,12 = 4.923; P = 0.0275; one-way ANOVA; Fig. 1B -D, G), and activity of bird per hour (NMB or PMB; F 2,12 = 5.113; P = 0.0085; one-way ANOVA; Fig. 1B -D, H) in MB as compared to the other seasonal states without affecting the total daytime activity ( Fig. 1B-E) . Apart from effects on diurnal activity behavior, we found a significant difference in food intake between photoinduced seasonal states (F 2,12 = 9.224; P = 0.0037; one-way ANOVA; Fig. 1L ). Compared to NMB, birds showed hyperphagia and consumed significantly more food in the PMB state (P < 0.01; Fig. 1L ). While the food intake of birds was significantly reduced in subsequent MB state, as compared to the PMB state (P < 0.05; Fig. 1L ), we found significant difference in the fat score (P = 0.0108; NMB vs. MB, P < 0.05; Fig. 1J ), but not in the body mass of birds between three seasonal states, NMB, PMB, and MB states (Fig. 1I) . On the other hand, LD birds showed testicular recrudescence, with the overall significant difference in testis size between three photoinduced seasonal states (F 2,12 = 4.248; P = 0.0403; Fig. 1K ; NMB vs. MB, TV = P < 0.05; Fig. 1K ). Figure 2 shows the specificity of rabbit polyclonal anti-CART and anti-VIP antisera, sheep polyclonal anti-NPY, and α-MSH antisera, and anti-oxytocin antibodies in the hypothalamus of redheaded buntings. The application of CART antiserum on the hypothalamic sections resulted in labeling of cells and fibers in the hypothalamic nuclei including PVN ( Fig. 2A) and IN (Fig. 2B) . CART immunoreactivity was absent in PVN (Fig. 2G) , IN (Fig. 2H) , POA and other hypothalamic regions when the brain sections were incubated in preadsorbed anti-CART antiserum. The application of anti-VIP, anti-NPY, and anti-α-MSH antisera, and anti-oxytocin antibodies on the hypothalamic sections of redheaded bunting, resulted in the cells/fibers labelling of different hypothalamic nuclei [VIP-immunorreactivity in SCNm (Fig. 2C) , NPY-immunoreactivity in IN (Fig. 2D) , α-MSH-immunoreactivity in IN (Fig. 2E) , oxytocin-immunorecativity in PVN (Fig. 2F) ]. The preadsorption of anti-VIP, α-MSH, and NPY antisera with respective control peptides, and of oxytocin antibodies with mesotocin peptide did not show any immunoreactivity in different hypothalamic regions, namely VIP-immunoreactivity in SCNm (Fig. 2I) , NPY-immunoreactivity in IN (Fig. 2J) , α-MSH-immunoreactivity in IN (Fig. 2K ) and mesotocin-immunoreactivity in PVN (Fig. 2L) ]. Application of mouse monoclonal anti-oxytocin antibodies or rabbit polyclonal anti-oxytocin antibodies showed comparable immunostaining pattern in the PVN of buntings. The rabbit and sheep anti-NPY antisera showed comparable pattern of immunoreactivity in the DMN, IN, and IH. The application of mouse monoclonal anti-TH antibodies resulted in the labelling of TH-immunoreactive neurons and fibers in the POA and LHN. In the midbrain of rat, the application of this antibody labelled the neurons and fibers in the ventral tegmental area and substantia nigra (Fig. 3A) , serving as positive control. The pattern of TH-immunoreactivity in the midbrain of rat was comparable to that previously described (Gombash et al. 2014; Ho et al. 2015) . Application of sheep polyclonal anti-TH antiserum or mouse anti-TH antibodies on the hypothalamic sections of redheaded bunting resulted in a comparable pattern of labelling of TH-immunoreactive cells/fibers (Fig. 3B) . Replacement of the anti-TH antibodies from immunofluorescence did not show any immunoreactivity signal in the hypothalamic regions (Fig. 3C) . Further, in the western blot analysis of the hypothalamic extract of redheaded bunting, while the application of mouse anti-TH antibodies detected a single TH-immunoreactive band of ~ 64 kDa, corresponding to the molecular weight of TH, thalamic sections with anti-CART antiserum preadsorbed with control peptide. VIP-immunoreactive cells/fibers are seen in the medial suprachiasmatic nucleus (SCNm, C). No VIP immunoreactivity is seen in the SCNm when the control peptide preadsorbed VIP antiserum was applied on the hypothalamic sections (I). In IN, application of anti-NPY antiserum labeled cells and fibers (D) but no immunoreactivity is seen following incubation of the hypothalamic sections with anti-NPY antiserum preadsorbed with control peptide (J). The α-MSH-immunoreactive neurons/fibers are seen in the IN (E). Complete loss of α-MSH-immunoreactivity is seen in the IN following application of the control peptide preadsorbed α-MSH antiserum on hypothalamic sections (K). Mesotocin-immunoreactive neurons/fibers are seen in the PVN (F) and this immunoreactivity is abolished when the hypothalamic sections were incubated in oxytocin antibodies preadsorbed with mesotocin peptide (L). IH, inferior hypothalamic nucleus; v ventricle. Scale bar = 25 µm replacement of the anti-TH antibodies with blocking solution did not show any signal (Fig. 3D) . Figure 4 represents the neuroanatomical organization of different nuclei in the POA and hypothalamus of the redheaded bunting, and the presence of CART-immunoreactive cells and fibers in these regions. Figures 5, 6 and Table 2 show CART-immunoreactive cells and fibers in the POA and other hypothalamic regions. We found distinct CART- . CART-immunoreactive fibers were also found in the external zone of the median eminence (Fig. 6H) . The application of anti-NPY, α-MSH, oxytocin, and TH antisera resulted in the labelling of cells/fibers in distinct hypothalamic nuclei of redheaded buntings. While both CART- (Fig. 7a, d, g, j) and TH- (Fig. 7b , e, h, k) immunoreactive neurons were found in the PONm (Fig. 7a-f ) and LHN ( Fig. 7g-l) , no colocalization observed. Intensely labelled both CART- (Fig. 8a , d, g, j) and mesotocin- (Fig. 8b , e, h, k) immunoreactive neurons were seen in the PVN (Fig. 8a-f ) and SOv (Fig. 8g-l) . Whereas only few PVN CART neurons co-expressed the mesotocin (Fig. 8c, f) , all SOv CART neurons were mesotocin-immunoreactive (Fig. 8i, l) . Similar to previously reported innervation of NPY fibers to DMN ), we found NPY-immunoreactivity in the DMN where CART cells reside (Fig. 9A-C) ; few CART-immunoreactive neurons of DMN were in close contact with NPY-immunoreactive fibers ( Fig. 9D-F, d-f ). Distinct CART- (Fig. 9G , J, M, P), NPY- (Fig. 9H, K) , and α-MSH (Fig. 9N , Q) immunoreactive cells and fibers were found in the IH ( Distinct CART-immunoreactive cells and fibers were observed in the PONa (Fig. 10) , SCNm, SCNv, AN, PVN, SOv, and DMN of all birds. No significant difference (P > 0.05) was observed in the percent fluorescent area of CART immunoreactivity or the CART-immunoreactive cell numbers between three photo-induced seasonal states (Table 3) . However, CART immunoreactivity was drastically altered in the PONm (Fig. 11) , LHN (Fig. 12) , IH ( Fig. 13D-F were similar between NMB and PMB states (P > 0.05). In the PONm, higher number of CART-immunoreactive cells were observed during PMB and MB states as compared to that in NMB state ( Fig. 11C -E, G; P < 0.001). The CARTimmunoreactive cells were significantly higher (P < 0.001) in the LHN (Fig. 12E , H, J), IH (Fig. 13F, L) , and IN (Fig. 13I, M) during MB than the other two states. Interestingly, the CART-immunoreactive elements in the PONm and IH showed different response, as compared to those in the LHN and IN. We found significantly more (P < 0.001) CART-immunoreactive cells in the PONm (Fig. 11D , G) and IH (Fig. 13E , L) under LD-induced PMB, as compared to the SD-induced NMB state. Compared to this, the number of CART-immunoreactive cells in the LHN and IN did not change with transition from SD-induced NMB to LDinduced PMB state. We show LD-induced development of migratory (e.g., hyperphagia, Zugunruhe) and reproductive (testicular recrudescence) phenotypes, consistent with previous results on photostimulated states in captive redheaded buntings (Rani et al. 2005; Sharma et al. 2018 ). However, present study importantly asked a specific question as to whether CART immunoreactivity, particularly in the hypothalamus, was altered with photostimulated seasonal response in migratory buntings. We addressed this by the measurement of CART immunoreactivity in different hypothalamic nuclei, and evaluation of its possible association with photostimulated seasonal phenotypes in buntings. As pre-requisite, we were confident that rabbit polyclonal anti-CART antiserum that we used specifically, localized the hypothalamic CART-containing system in buntings. This was based on several lines of evidence: (1) This antiserum has been used and validated for CART immunoreactivity in the brain of other birds, including zebra finches (Singh et al. 2016a ). (2) The Western blot analysis of the At20 cells transfected with wild-type proCART (Yanik et al. 2006 ) as well as the hypothalamic tissue of zebra finches (Singh et al. 2016a) showed two prominent CART-immunoreactive bands of approximately 8 and 5 kDa, with latter representing the biologically active CART (55-102) fragment of the CART. (3) Hypothalamic sections of buntings incubated with present CART antiserum pre-adsorbed with control CART peptide showed no immunofluorescence signal at the end of the procedure. Although the forms of CART expressed in the brain of redheaded bunting cannot be known from this study, we believe, based on results from another songbird (zebra finch; Singh et al. 2016a ) that the antiserum we used recognized a biologically active form of the CART in this bird species as well. In fact, very little is known of the structure and forms of CART peptide in birds. To CART genes (cCART1 and cCART2) have been characterized in chickens (Cai et al. 2015) . The cCART1 is predicted to give rise to bioactive cCART1 (42-89) and cCART1(49-89) peptides (Cai et al. 2015) . While cCART2 generate one biologically active cCART2(51-91) peptide fragment, cCART1 peptides show 96-98% sequence similarity with those in humans, mice and rats (Cai et al. 2015) . cCART1 mRNA is expressed in the hypothalamus of chickens and is down-regulated by fasting (Cai et al. 2015) . On the other hand, cCART2 (51-89) showed only 59% sequence similarly with chicken CART1(49-89) and human CART(49-89) and might not play a significant physiological role in chicken (Cai et al. 2015) . Hypothalamic CART-immunoreactivity of buntings was comparable to that found in other birds (Singh et al. 2016a; Gutierrez-Ibanez et al. 2016) . So, based on other bird study, we can speculate CART playing a significant physiological roles in redheaded buntings. For example, in ad libitum fed broiler chickens, hypothalamic CART mRNA levels were higher in males than the females (Caughey et al. 2018) . Similarly, both acute and chronic fasting enhanced AgRP/NPY, but not POMC/CART, mRNA levels in the mediobasal hypothalamus of Japanese quails and chicks (Boswell et al. 2002; Higgins et al. 2010; Phillips-Singh et al. 2003; Song et al. 2012; Higgins et al. 2010; Caughey et al. 2018) . Hence, our data showing the co-expression of CART and α-MSH peptides in the IN and IH neurons of redheaded buntings is a novel observation. The presence of NPY neurons and co-expression of CART and α-MSH peptides further substantiate the homology of IN with mammalian arcuate nucleus, in which they are suggested to play a role in the regulation of the energy balance. In the hypothalamus of bunting, while few PVN CART neurons were mesotocin, but all the SOv CART neurons co-expressed the mesotocin. This is similar to the presence of CART (Singh et al. 2016a; Gutierrez-Ibanez et al. 2016 ) and mesotocin (Bons 1980; Goodson et al. 2012; Hall et al. 2015) neurons found in the PVN and SOv of birds. These nuclei in mammals co-express the CART and oxytocin (Vrang et al. 1999; Elias et al. 2001) , and the administration of CART peptide induces cFos expression (Vrang et al. 2000) . The key question of this study was whether the hypothalamic CART-containing system showed correlation with the photostimulated seasonal response. We answered this by the measuring the CART immunoreactivity in important hypothalamic areas that have been suggested to be involved in the initiation and maintenance of the photoperiodic seasonal response in migratory song birds, including the hypothalamic POA, PVN, IN, DMH, LHN, tanycytes lining the third ventricle and median eminence that detect, transmit and integrate the environment cues (Stevenson and Kumar 2017) . The involvement of PVN, tanycytes lining of third ventricle, and median eminence, which are closely associated with the paraventricular organ that senses the photoperiod information via deep brain photoreceptors, in photoperiod-induced seasonal responses have been described in different species including migratory redheaded buntings (Majumdar et al. 2014 ) and reviewed several times (García-Fernández et al. 2015; Surbhi and Kumar 2015) . There is also the phase-inversion in the neuronal activity, as shown by c-Fos immunohistochemistry ). This suggested the involvement of MBH in the photo-neuroendocrine regulation of seasonal response in migratory birds . However, there is no direct evidence for receptors in the POA, IN, DMH and LHN, except that of the GnRH/ GnIH receptors, which are crucial for the initiation and maintenance of the photoperiodic gonadal seasonal response in birds. We, therefore, correlated hypothalamic discrete populations of CART neurons and widely distributed CART fibers with photoperiod-induced seasonal response in migratory redheaded buntings, as supported by the following observations. There was a marked increase in the percent fluorescent area of CART-immunoreactivity in the PONm, LHN, IH and IN of birds in photostimulated MB, compared to the non-stimulated NMB state, consistent with the suggested role of CART in feeding and energy homeostasis in birds and other vertebrates (Elias et al. 2001; Subhedar et al. 2011 Subhedar et al. , 2014 Akash et al. 2014; Lau and Herzog 2014; Singh et al. 2016a ). The IN neurons in the hypothalamus of both migratory (Singh et al. 2013) and resident (Singh et al. 2016a ) birds show NPY immunoreactivity, and CART regulates the NPY neurons (Singh et al. 2016a) . Increased NPY immunoreactivity in the IN was also found in photostimulated blackheaded buntings . In zebra finch IN, CART-immunoreactive fibers were found to innervate NPY-immunoreactive cells, NPY-and CART-immunoreactive showed energystatus-dependent changes, and the treatment with CART peptide inhibited fasting-induced increase in the NPY expression (Singh et al. 2016a) . This is overall consistent with the involvement of CART cells in the hypothalamic arcuate nucleus in the regulation of energy balance in rats (Vrang et al. 1999; Vrang 2006) . However, we would like caution that we have demonstrated only alternation in the activity of CART neurons by the measurement of the overall peptide content of cells, which does not distinguish whether the increase peptide level was because of the enhanced synthesis of the peptide or its decreased release from cell bodies, or both. Interestingly, we also found CART-immunoreactive in SCN of buntings, similar to that in pigeons (Gutierrez-Ibanez et al. 2016) but not zebra finches (Singh et al. 2016a; Gutierrez-Ibanez et al. 2016) . Taken together, the CART-immunoreactive in SCNm and SCNv, which constitute avian SCN (Yoshimura et al. 2001; Rastogi et al. 2013) , suggests the involvement of CART in the circadian clock-dependent phtotoperiodic responses in buntings. Perhaps, CART acts as neuromodulator of the circadian rhythm mediated photoperiodic induction by its direct effects, or by indirect effects on the daily rhythm in hypothalamic neurotransmitters that indeed show changes with photoperiod-induced transition in the seasonal states (Mishra et al. 2018 ). Similar to zebra finches (Singh et al. 2016a ), CART-immunoreactivity in PVN indicated its probable role in the regulation of energy balance, as suggested in mammals. The PVN CART neurons in mice are hypophysiotropic (Kádár et al. 2010) , and they co-express TRH in rats (Raptis et al. 2004) . CART inhibits TRHinduced prolactin secretion but not the TRH-induced TSH secretion (Raptis et al. 2004 ). We also found CART-immunoreactivity cells in SOv of redheaded buntings, similar to zebra finches (Singh et al. 2016a ) but unlike in pigeons (Gutierrez-Ibanez et al. 2016) . We speculate CART SOv neurons play a role in the neuroendocrine regulation and/ or modulation of hypothalamic nonapeptides in redheaded buntings, as in rats in which CART was found co-expressed with oxytocin-and vasopressin-containing neurons in the supraoptic nucleus of rat (Vrang et al. 1999 ; Elias et al. 2001) , with dense CART-immunoreactivity terminals in the neurohypophysis (Koylu et al. 1997) . Distinct CART-immunoreactive neurons were observed in the POA of redheaded bunting. Using Nissl staining and immunohistochemistry with specific neuronal markers, Brandstätter and Abraham (2003) showed that the POA of birds has three components including the anterior (PONa), medial (PONm), and periventricular (PPN) preoptic nuclei. We observed that the POA in buntings was organized into PONa, PONm, and PPN, and CART-immunoreactive cells seen in the PONa and PONm, not in PPN. Distinct CARTimmunoreactivity was also observed in the POA of zebra finches (Singh et al. 2016a ) and piegons (Gutierrez-Ibanez et al. 2016) . Both, the CART-immunoreactive cell number and percent fluorescent area in PONm, not PONa, showed distinct changes with photoperiod-induced seasonal states in redheaded buntings. Although it cannot be known from this study, we speculate interaction of CART with GnRH-I in PONm; GnRH-I-immunoreactivity in the POA has been shown correlated with the reproductive state in buntings (Surbhi et al. 2016) . This is consistent with reported interaction of GnRH neurons and CART axons in the POA of rats (True et al. 2013 ); retrograde neuronal tracing study in rats also support this (Rondini et al. 2004) . CART seem to have a potent stimulatory role in the regulation of POA GnRH neurons in mammals, as suggested by increased neuronal firing of GnRH neurons in the brain slices treated with CART peptide (True et al. 2013) . Furthermore, avian IN is homologous to the mammalian arcuate nucleus, and IN/IH-lesioned birds cease to show photostimulated gonadal recrudescence (Kuenzel 2000) , and IN is also involved in the regulation of energy balance in birds (Singh et al. 2016a; Boswell and Dunn 2017) . We, therefore, suggest that enhanced activity of IN CART neurons projecting to POA modulated photoperiodic seasonal response in redheaded buntings. Increased CART-immunoreactivity in IN/IH in MB state might also be involved in inhibiting the food intake either directly or via its action on NPY neurons. This is consistent with the finding from zebra finches that IN NPY neurons (contacted by CART fibers) responded to food deprivation and refeeding, and treatment CART peptide treatment suppressed food deprivation-induced increased NPY expression in IN (Singh et al. 2016a) . Likewise, we associate DMN/LHN CART-immunoreactive neurons with both daily and seasonal metabolic responses in redheaded buntings. For example, an increased c-Fos-immunoreactivity was observed in DMN in photostimulated migratory blackheaded buntings . In mammals, DMN also plays a role in circadian rhythms of wakefulness, feeding, locomotor activity and serum corticosteroid levels (Chou et al. 2003) . DMNlesioned rats showed hypophagia and loss in body mass (Bellinger and Bernardis 2002) , CART mRNA expression was observed in DMN, leptin administration induced c-Fos expression in DMN neurons (Elias et al. 2001 ) and DMN seemed to play a role in the regulation of food-entrainable circadian rhythms (Gooley et al. 2006) . We speculate that LHN CART neurons might have a role in the motivational response related to hyperphagia prior to the migration in redheaded buntings. This is based on the role of lateral hypothalamic area in controlling the feeding behaviour, and reward and reinforcement processes in mammals (Elmquist et al. 1999; Stuber and Wise 2016; Petrovich 2018) . In fact, the lateral hypothalamic area is a part of distributed feeding neuronal network that integrates different feeding drives and motivates eating (Coons et al. 1965; Petrovich 2018) . The arcuate nucleus and lateral hypothalamic area CART neurons exert differential effects on the energy homeostasis . Whereas anorexigenic but anabolic effects were observed following activation of arcuate nucleus CART neurons, the orexigenic but catabolic effects were seen after CART neuronal activation in the lateral hypothalamus Farzi et al. 2018) . In mice, the lateral hypothalamic CART regulates energy expenditure during dark phase when the animals are active, whereas the stimulation of the lateral hypothalamus in the presence of CART enhanced the physical activity . In redheaded buntings, the development of Zugunruhe was accompanied with increased LHN CART immunoreactivity, suggesting a role of CART in energy expenditure and appetite-associated motivation in photostimulated buntings. Although the number of CART neurons in LHN of redheaded buntings during NMB and PMB states was comparable, increased percent fluorescent area of CART-immunoreactivity was observed in LHN during PMB state. We suggest that there is an increased synthesis of CART peptide in the LHN neurons during PMB state. CART-immunoreactive system seems to be discretely organized in the POA and hypothalamus of redheaded buntings with CART cells distributed in crucial brain regions including AN, PVN, SOv, LHN, DMN, IH and IN. Demonstration of CART-immunoreactive cells in both subdivisions of SCN and several cells in IN, and co-expression of CART and α-MSH in the IH/IN seemed novel findings, not previously observed in other birds. Importantly, CART-immunoreactivity in the PONm, LHN, IH, and IN was altered with photoinduction of seasonal response under long days in redheaded buntings. The activation of the CART-immunoreactive system in PONm, LHN, IH, and IN in photostimulated states might be taken to suggest that there is an alteration in the activity of CART-containing systems with photoperiod-induced seasonal responses associated with migration and reproduction (e.g., food intake and energy balance, and gonadal growth and development) in migratory redheaded buntings. However, further studies are needed to show a cause-effect relationship of CART with photoperiodic seasonal responses in migratory birds. Estimation of nuclear population from microtome sections Migratory behaviour of captive white-crowned sparrows, Zonotrichia leucophrys gambelii, differs during autumn and spring migration Differential distribution and energy status-dependent regulation of the four CART neuropeptide genes in the zebrafish brain Handbook of the Birds of India and Pakistan How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds Genetic approaches to studying energy balance: perception and integration The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: Lessons learned from lesioning studies The topography of mesotocin and vasotocin systems in the brain of the domestic mallard and Japanese quail: immunocytochemical identification Regulation of energy balance in birds by the neuroendocrine hypothalamus Regulation of agouti-related protein and pro-opiomelanocortin gene expression in the avian arcuate nucleus Neurons expressing neuropeptide Y mRNA in the infundibular hypothalamus of Japanese quail are activated by fasting and co-express agouti-related protein mRNA The distribution of tyrosine hydroxylase immunoreactivity in the brains of male and female zebra finches Hypothalamic circadian organization in birds. I. Anatomy, functional morphology, and terminology of the suprachiasmatic region Food deprivation during photosensitive and photorefractory life-history stages affects the reproductive cycle in the migratory red-headed bunting, Emberiza bruniceps Characterization of the two CART genes (CART1 and CART2) in chickens (Gallus gallus) Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis Melanin-concentrating hormone-producing neurons in birds Sex differences in basal hypothalamic anorectic and orexigenic gene expression and the effect of quantitative and qualitative food restriction Mesotocin and maternal care of chicks in native Thai hens (Gallus domesticus) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms The anatomy of neuropeptide-Y-containing neurons in rat brain Lateral hypothalamus: learning of food-seeking response motivated by electrical stimulation Characterization of CART neurons in the rat and human hypothalamus Unraveling the central nervous system pathways underlying responses to leptin From lesions to leptin: hypothalamic control of food intake and body weight Arcuate nucleus and lateral hypothalamic CART neurons in the mouse brain exert opposing effects on energy expenditure The hypothalamic photoreceptors regulating seasonal reproduction in birds: a prime role for VA opsin Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways Evolving nonapeptide mechanisms of gregariousness and social diversity in birds The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms Immunohistochemical distribution of plexinA4 in the adult rat central nervous system Immunohistochemical localization of cocaine-and amphetamine-regulated transcript peptide (CARTp) in the brain of the pigeon (Columba livia) and zebra finch (Taeniopygia guttata) On the significance of spring migratory restlessness in caged birds A role for nonapeptides and dopamine in nest-building behaviour Transcriptional and pathway analysis in the hypothalamus of newly hatched chicks during fasting and delayed feeding Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain Central administration of insulin suppresses food intake in chicks Estrogenic regulation of dopaminergic neurons in the opportunistically breeding zebra finch Distribution of hypophysiotropic thyrotropin-releasing hormone (TRH)-synthesizing neurons in the hypothalamic paraventricular nucleus of the mouse Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland Hypothalamic CART is a new anorectic peptide regulated by leptin Central nervous system regulation of gonadal development in the avian male Nomenclature and location of avian hypothalamic nuclei and associated circumventricular organs Biological clocks and regulation of seasonal reproduction and migration in birds CART peptides in the central control of feeding and interactions with neuropeptide Y CART in the regulation of appetite and energy homeostasis CART neurons in the arcuate nucleus and lateral hypothalamic area exert differential controls on energy homeostasis Immunohistochemical localization of cocaine-and amphetamine-regulated transcript peptide in the central nervous system of the frog, Rana esculenta Regulation of energy homeostasis by the NPY system A photoperiodic molecular response in migratory redheaded bunting exposed to a single long day Wavelength dependency of lightinduced effects on photoperiodic clock in the migratory blackheaded bunting, Emberiza melanocephala Photoperiodically driven changes in Fos expression within the basal tuberal hypothalamus and median eminence of Japanese quail Neuropeptides and anticipatory changes in behaviour and physiology: seasonal body weight regulation in the siberian hamster Seasonal alterations in the daily rhythms in hypothalamic expression of genes involved in the photoperiodic transduction and neurosteroid-dependent processes in migratory blackheaded buntings Temporal expression of c-fos and genes coding for neuropeptides and enzymes of amino acid and amine neurotransmitter biosynthesis in retina, pineal and hypothalamus of a migratory songbird: evidence for circadian rhythmdependent seasonal responses Cocaineamphetamine-regulated transcript (CART) acts in the central nervous system to inhibit gastric acid secretion via brain corticotropinreleasing factor system Lateral hypothalamus as a motivation-cognition interface in the control of feeding behavior Fasting differentially regulates expression of agouti-related peptide, pro-opiomelanocortin, prepro-orexin, and vasoactive intestinal polypeptide mRNAs in the hypothalamus of Japanese quail Daily light regulates seasonal responses in the migratory male redheaded bunting, Emberiza bruniceps A circadian clock regulates migratory restlessness in the blackheaded bunting, Emberiza melanocephala Cocaine-and amphetamineregulated transcript co-contained in thyrotropin-releasing hormone (TRH) neurons of the hypothalamic paraventricular nucleus modulates TRH-induced prolactin secretion Phase inversion of neural activity in the olfactory and visual systems of a night-migratory bird during migration Neural correlates of migration: activation of hypothalamic clock(s) in and out of migratory state in the blackheaded bunting Emberiza melanocephala Hypothalamic cocaineand amphetamine-regulated transcript neurons project to areas expressing gonadotropin releasing hormone immunoreactivity and to the anteroventral periventricular nucleus in male and female rats The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain Difference in control between spring and autumn migration in birds: insight from seasonal changes in hypothalamic gene expression in captive buntings Neuropeptide Y mRNA and peptide in the night-migratory redheaded bunting brain Circadian timing in central and peripheral tissues in a migratory songbird: dependence on annual life-history states Cocaine-and amphetamineregulated transcript peptide (CART) in the brain of zebra finch, Taeniopygia guttata: Organization, interaction with neuropeptide Y, and response to changes in energy status Role of isotocin in the regulation of the hypophysiotropic dopamine neurones in the preoptic area of the catfish Clarias batrachus Thyrotropinreleasing hormone (TRH) in the brain and pituitary of the teleost, Clarias batrachus and its role in regulation of hypophysiotropic dopamine neurons Immunohistochemical localization of cocaine-and amphetamine-regulated transcript peptide in the brain of the catfish, Clarias batrachus (Linn.) Fasting alters protein expression of AMP-activated protein kinase in the hypothalamus of broiler chicks (Gallus gallus domesticus) Neural control of daily and seasonal timing of songbird migration Lateral hypothalamic circuits for feeding and reward Cocaine-and amphetamine-regulated transcript peptide (CART) in the telencephalon of the catfish, Clarias gariepinus: Distribution and response to fasting, 2-deoxy-d-glucose, glucose, insulin, and leptin treatments CART in the brain of vertebrates: circuits, functions and evolution Avian photoreceptors and their role in the regulation of daily and seasonal physiology Seasonal plasticity in the peptide neuronal systems: potential roles of gonadotrophin-releasing hormone, gonadotrophin-inhibiting hormone, neuropeptide Y and vasoactive intestinal peptide in the regulation of the reproductive axis in subtropical Indian weaver birds Changes in brain peptides associated with reproduction and energy homeostasis in photosensitive and photorefractory migratory redheaded buntings Central administration of cocaine-and amphetamine-regulated transcript inhibits food intake in chicks Neuropeptide Y, the hypothalamus and the regulation of energy homeostasis Annual life historydependent gene expression in the hypothalamus and liver of a migratory songbird: insights into the molecular regulation of seasonal metabolism Cocaine-and amphetamine-regulated transcript is a potent stimulator of GnRH and kisspeptin cells and may contribute to negative energy balanceinduced reproductive inhibition in females Anatomy of hypothalamic CART neurons Neurochemical characterization of hypothalamic cocaine-amphetamine-regulated transcript neurons Central administration of cocaine-amphetamine-regulated transcript activates hypothalamic neuroendocrine neurons in the rat The Leu34Phe Pro-CART mutation leads to cocaine-and amphetamine-regulated transcript (CART) deficiency: a possible cause for obesity in humans Identification of the suprachiasmatic nucleus in birds The study is supported by the grant from the