key: cord-0065283-e0tlx0sd authors: Garreto, Laís; Charneau, Sébastien; Mandacaru, Samuel Coelho; Nóbrega, Otávio T.; Motta, Flávia N.; de Araújo, Carla N.; Tonet, Audrey C.; Modesto, Flávia M. B.; Paula, Lilian M.; de Sousa, Marcelo Valle; Santana, Jaime M.; Acevedo, Ana Carolina; Bastos, Izabela M. D. title: Mapping Salivary Proteases in Sjögren’s Syndrome Patients Reveals Overexpression of Dipeptidyl Peptidase-4/CD26 date: 2021-06-17 journal: Front Immunol DOI: 10.3389/fimmu.2021.686480 sha: 2a3f89e593c3584fe226647bb2b0f452d238317e doc_id: 65283 cord_uid: e0tlx0sd Sjögren’s Syndrome (SS) is an autoimmune exocrinopathy characterized by the progressive damage of salivary and lacrimal glands associated with lymphocytic infiltration. Identifying new non-invasive biomarkers for SS diagnosis remains a challenge, and alterations in saliva composition reported in patients turn this fluid into a source of potential biomarkers. Among these, proteases are promising candidates since they are involved in several key physio-pathological processes. This study evaluated differentially expressed proteases in SS individuals’ saliva using synthetic fluorogenic substrates, zymography, ELISA, and proteomic approaches. Here we reported, for the first time, increased activity of the serine protease dipeptidyl peptidase-4/CD26 (DPP4/CD26) in pSS saliva, the expression level of which was corroborated by ELISA assay. Gelatin zymograms showed that metalloproteinase proteolytic band profiles differed significantly in intensity between control and SS groups. Focusing on matrix metalloproteinase-9 (MMP9) expression, an increased tendency in pSS saliva (p = 0.0527) was observed compared to the control group. Samples of control, pSS, and sSS were analyzed by mass spectrometry to reveal a general panorama of proteases in saliva. Forty-eight protein groups of proteases were identified, among which were the serine proteases cathepsin G (CTSG), neutrophil elastase (ELANE), myeloblastin (PRTN3), MMP9 and several protease inhibitors. This work paves the way for proteases to be explored in the future as biomarkers, emphasizing DPP4 by its association in several autoimmune and inflammatory diseases. Besides its proteolytic role, DPP4/CD26 acts as a cell surface receptor, signal transduction mediator, adhesion and costimulatory protein involved in T lymphocytes activation. Sjögren's Syndrome (SS) is a systemic autoimmune disease characterized by the destruction of exocrine glands, mainly salivary and lacrimal. With a prevalence of approximately 0.5% in the general population, SS is one of the most frequent autoimmune disorders in women (nine in 10 patients are women). It can be defined as primary SS (pSS) or associated/ secondary SS (sSS) if combined with another systemic autoimmune disease (1, 2) . SS's main symptom is dryness of oral mucosa and eyes due to decreased secretion of saliva and tears (3) . Oral manifestations include hyposalivation and an increased risk for cervical dental caries and dental erosion (4), oral candidiasis, angular cheilitis, and severe swallowing and speech difficulties (5) . Moreover, extra-glandular manifestations can occur in the cardiovascular, respiratory, and digestive systems (6) . Disease severity associated with B cell lymphoma development, organ-specific manifestations, and infections can lead to excess mortality (7) . SS glandular lesions are due to massive infiltration of inflammatory cells (including T and B lymphocytes, natural killer cells, dendritic cells, and macrophages) and the formation of ectopic germinal centers (8) (9) (10) (11) . So far, SS etiology involves poorly elucidated genetic factors. Human leukocyte antigen (HLA) class II genes, mainly HLA-DRB and HLA-DQA alleles, seem to produce genetic susceptibility to SS. They may favor autoantibody synthesis against the Ro/La system (anti-Ro/SSA and anti-La/SSB) (12) . These autoantibodies recognize different epitopes on the Ro/La proteins associated with small RNAs situated in the cytoplasmic and nuclear compartments (13) . Also, in SS, miRNA differential expression has been reported (14) . Recently, miR200b-5p expression in the minor salivary glands was related to the prediction of lymphomagenesis in SS patients (15) . The SS etiology may also encompass environmental factors such as viral infections (16) . The Human T Lymphotropic Virus Type 1 (HTLV-1) may trigger the disease, considering that antibodies for HTLV-1 were highly identified from pSS individuals' sera in endemic areas (17, 18) . SS diagnosis relies on subjective and objective criteria (19, 20) . These include clinical information collected from the patient's history, autoantibodies in the serum, especially anti-Ro/SSA and anti-La/SSB, imaging analysis, and histopathological analyses of minor salivary glands. Occasionally, there is no autoantibody detection, mainly in the disease's early stage (21) . Also, the autoantibodies might be identified in mothers who gave birth to infants with neonatal lupus (22) . Moreover, the autoantibodies are not exclusive to SS pathology. For instance they are also present in the serum of systemic lupus erythematosus patients (23) . Thus, despite autoantibody detection, a biopsy of minor salivary glands remains necessary (13) . Studies comparing salivary protein composition between healthy individuals and patients of pathological conditions have identified potential disease biomarkers (24) (25) (26) (27) (28) . Additionally, a diagnosis based on salivary samples is a noninvasive, low-cost method that can reduce anxiety and discomfort to the patient when submitted to biopsy. It also allows for more effective longitudinal monitoring (29) . Either for oral or systemic disorders, such as periodontitis, cancer, AIDS, and even SS, saliva has been considered a potential tool for diagnosis (30) (31) (32) (33) . Among potential saliva-derived biological markers, proteases are promising candidates since they are involved in several fundamental physiological processes, and their activity is tightly controlled through numerous redundant mechanisms (34) . Proteolysis regulates vital mechanisms, such as embryological development, immune response, blood clotting and whole-body metabolism (35) . Also, studies have related protease activities with autoimmune diseases. For instance metalloproteinase-9 (MMP9) is augmented in the sera of systemic lupus erythematosus patients (36) and dipeptidyl peptidase-4/CD26 (DPP4/CD26) in sera of type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease (37) . To date, few studies have associated SS and salivary proteases (38, 39) . The purpose of the present study was to analyze the proteolytic profile in stimulated whole saliva (SWS) protein samples from healthy individuals and patients with pSS or sSS using synthetic fluorogenic substrates, zymography, ELISA and mass spectrometry (MS). Here we propose that the protease DPP4/CD26 could be further explored as a potential biomarker in the saliva of SS patient diagnosis. Moreover, our proteomic analysis resulted in 208 identified protein groups. Among them, the serine proteases neutrophil elastase (ELANE), cathepsin G (CTSG) and myeloblastin (PRTN3) were found only in the saliva from SS patients. The present study was conducted following the principles of the Declaration of Helsinki. The Research Ethics Committee of the Faculty of Health Sciences, University of Brasilia, approved all procedures (CEP/FS, 073/11). All individuals provided written informed consent before participating in the study. A control-case study was performed with 40 adults matched by age, gender, and socioeconomic situation. The control group was composed of 20 healthy individuals. They had no history of dry eyes or mouth, no salivary gland disease, and they were not taking any drugs associated with xerostomia, such as anti-depressives, birth control pills, and hormonal replacement. The affected group was composed of 20 SS individuals, 10 primary-SS (pSS) and 10 secondary-SS (sSS). They were diagnosed following with the American-European Consensus (19) . The study was carried out with 38 women, one man in the SS group and one man in the control group. Exclusion criteria were all patients diagnosed with HIV, HCV, HVB, or HTLV-1 infections, diabetes, sarcoidosis, lymphoma, smokers, patients with a history of head and neck radiotherapy treatment, and patients using anticholinergic drugs. The manifestation of other systemic autoimmune diseases was registered. Clinical information about the appearance of oral mucosa (normal or dry), the clinical appearance of tongue (normal, dry, atrophic, atrophic with fissures or savory), the saliva aspect (normal, sticky or foamy) and the clinical presence of candidiasis (no signs, angular cheilitis or erythematous lesions) were collected (Supplementary Table 1 ). Patient samples of stimulated whole saliva (SWS) were obtained after a 2-h fast between 9 am and 11 am to reduce the influence of circadian rhythm, followed by chewing 1 g of flavorless chewing gum for 5 min (3). They did not receive any diet recommendations prior to fasting start. Patients were instructed to do not drink water and to do not perform oral hygiene until 2 h before saliva collection. During the SWS collection, they all received instructions to chew the unflavored chewing gum in both sides. Every 30 s, they let the saliva drain to the tube until the end of the 5 min. Salivary flow rate was also registered. During collection, the samples were kept on ice to prevent proteolysis. SWS samples were centrifuged at 4°C (2,600 × g, for 15 min) and stored at −80°C. In all proteolytic assays, SWS samples were used without any chemical processing or dilution. Total salivary protein measurement was performed by fluorometric assay (Invitrogen Qubit ® 2.0 Fluorometer) with the Invitrogen ™ Qubit ™ Protein Assay Kit. The proteolytic activity was assessed in saliva samples through fluorogenic substrates. Twelve substrates were tested in one individual from the control group, in triplicate: Gly-Pro-AMC, Phe-Arg-AMC, N-Gly-Gly-Arg-AMC, Pro-AMC, Arg-Arg-AMC, Ala-Ala-Phe-Ala-AMC, N-Suc-Ile-Leu-Cys-Ala-AMC, N-Suc-Gly-Pro-Leu-Gly-Pro-AMC, Gly-Arg-AMC, N-Suc-Leu-Thr-AMC, Arg-AMC, N-Suc-Leu-Leu-Val-Tyr-AMC. The enzymatic activity from saliva was measured by the releasing of 7-amino-4-methylcoumarin (AMC) from substrates (40) in a 96-well microplate in SpectraMax ® M5 ROM v3.0.22 Molecular Devices spectrofluorometer at 380 nm excitation and 460 nm emission for 15 min. The rate of fluorescence liberated was calculated per minute (FU/min). All enzymatic reactions were performed in activity buffer (HEPES 25 mM, pH 7.5) in the presence of 20 µM of the substrate. The substrate Gly-Pro-AMC was tested in all saliva samples. For proteolytic specific inhibition, protease inhibitors (Supplementary Table 2 ) were tested in an individual from the control group, by incubation for 15 min before adding the substrate. Gelatinase activity was analyzed by zymography. SWS (10 µl) was loaded on 8% SDS-PAGE gel copolymerized with 0.1% (w/v) gelatin. Gels were submitted to two washes within Tris-HCl 100 mM pH 7.5 and Triton 2.5% (v/v) for 30 min per wash followed by one wash with deionized water to remove Triton X-100. Next, they were incubated under 37°C overnight in Tris-HCl 100 mM pH 7.5 and stained within a fixing solution of Coomassie Blue R-250, for 1 h at room temperature (41) . Samples were also subjected to a 10% SDS-PAGE to visualize the electrophoretic profile, mirrored to every zymogram. We tested the specific inhibitors 1 mM AEBSF, 100 µM E-64, and 1 mM EDTA for specific proteolytic gelatinase inhibition. Since EDTA is a reversible inhibitor, the gel strip treated with EDTA had its final concentration maintained in washing and incubation at 37°C overnight (Supplementary Table 3 ). The activity was determined by densitometry, using ImageJ 1.51a software for each gelatinolytic band's mean intensity. To normalize the image, we used the most concentrated sample of an individual from the control as the standard, thus achieving a relative intensity. The DPP4/CD26 and the MMP9 concentrations were measured with the Human DPP4/CD26 DuoSet (DY1180) and Human MMP9 DuoSet (DY911-05) (R&D Systems, USA), respectively, according to the manufacturer's instructions, both along with DuoSet ELISA Ancillary Reagent Kit 2. Among the 40 individual samples, 500 ng SWS proteins from three control, three pSS, and three sSS were loaded on 8% SDS-PAGE (Supplementary Figure 1) . Gel slices were excised from each lane, reduced with 10 mM dithiothreitol (DTT) in 25 mM of ammonium bicarbonate buffer for 1 h at 56°C and alkylated by the addition of 55 mM iodoacetamide (IAA) in the same buffer for 45 min in the dark at 25°C. Samples were then washed with ACN and subsequently 25 mM of ammonium bicarbonate, lyophilized and dehydrated for trypsin digestion (12.5 ng/µl in buffer) for 18 h at 37°C. Peptides were extracted using a gradient of 0.1% TFA (v/v), 0.1% TFA (v/v) in 50% ACN (v/v) and 0.1% TFA (v/v) in 80% ACN (v/v). Samples were lyophilized and resuspended with 1% TFA (v/v), desalted on a pipette tip packed with a C18 membrane (Empore, Supelco) for mass spectrometry analysis. The in-gel protein digestion samples were resuspended in 0.1% (v/v) formic acid to proceed with the LC-MS/ MS analysis. Samples were processed according to Poulsen (42) with some modifications. Briefly, salivary proteins of the three control, three pSS, and three sSS samples were resuspended in 6 M guanidine hydrochloride (Gnd-HCl) in 25 mM ammonium bicarbonate (pH 8.4). Samples were warmed at 70°C for 5 min under agitation (1,000 RPM) using a Thermomixer (Eppendorf, Hamburg, Germany). Then, homogenates were centrifuged at 18,000 × g for 20 min, the debris discarded, and supernatants were collected for proteomics analysis. Next, the sample was quantified with Qubit ® 2.0 protein assay kit (Thermo Fisher Scientific, Maryland, USA). Aliquots of 150 µg (per condition/ replicate) of whole saliva proteins were reduced with 20 mM dithiothreitol (DTT) in 0.20 mM ammonium bicarbonate pH 8.5 for 1 h at 56°C. They were then alkylated with 50 mM iodoacetamide for 1 h in the dark at room temperature. Subsequently, samples were diluted in 20 mM ammonium bicarbonate pH8.0 to a final concentration of Gnd-HCl of 0.9 M. Enzymatic digestion was performed with modified trypsin (Promega, Madison, WI, USA) at a ratio of 1:50 (enzyme: substrate) at 37°C overnight, followed by acidification with 0.1% (v/v) TFA. After the proteolysis, peptide samples were submitted to desalting on C18-reverse phase micro-columns, using self-prepared StageTips and vacuum-dried (43) . After that, peptides were resuspended in 0.1% formic acid in the water and quantified by Qubit ® 2.0. For both in-gel and in-solution protein digestion samples, the experiments were performed on a Dionex Ultimate ™ 3000 RSLCnano system coupled online with an LTQ-Orbitrap Elite ™ mass spectrometer (Thermo Scientific; San Jose, USA). Each peptide sample was loaded by an autosampler into the trap column at a flow rate of 4 ml.min −1 in 98% buffer A (0.1% formic acid in water) and 3.6% buffer B (0.1% formic acid in acetonitrile 80%). The peptides were separated at a constant flow 230 nl/min in a 20 cm analytical column (75 um inner diameter) packed with 3 µm C18 beads (Reprosil Pur-AQ, Dr. Maisch, Germany) with a 50 min gradient ranging for in-gel protein digestion samples and a 190 min gradient ranging for in-solution protein digestion samples from 5 to 35% acetonitrile in 0.1% formic acid, directly into mass spectrometer under ESI ionization. Molecular mass spectra were acquired using Xcalibur 2.0 software (Thermo Fisher Scientific Inc., Waltham, MA, USA). Acquisition by the mass spectrometer was performed in datadependent acquisition (DDA) mode. The DDA cycle consisted of a full scan in FTMS comprising a 400-1,800 m/z range under a resolution of 120,000 full widths at half-maximum at m/z 400. The 15 most abundant ions with an intensity of at least 3,000 counts were selected and fragmented by high energy collision dissociation (HCD). The fragmentation was performed with a collision energy of 35%, automatic gain control (AGC) of 1 × 10 6 and acquired in an orbitrap analyzer with a 2 m/z isolation width and AGC 1 × 10 4 . Dynamic exclusion was set to 90 s. Ions with a charge state of +1 or undetermined were excluded. For both gel-based LC-MS/MS and gel-free LC-MS/MS, the raw files of each individual groups were searched with PEAKS Studio 7.0 (Bioinformatics Solutions Inc., Ontario, Canada) against the Homo sapiens database with 74,807 sequences downloaded from Uniprot on 01-27-2020. Retrieval parameter settings were as follows: Parent mass error tolerance 10 ppm; fragment mass error tolerance 0.5 Da; precursor mass search set as monoisotopic; enzyme as trypsin, number of proteins missed cleavages was set as two; cysteine alkylation was set as a fixed modification, variable modification as methionine oxidation. All the reported data were based on the 99% confidence interval for protein identification as determined by the false discovery rate (FDR) of 1% and at least one unique peptide for protein. The mass spectrometry and related data have been deposited to the ProteomeXchange Consortium (http://proteomecentral. proteomexchange.org) via the PRIDE partner repository (44) with the dataset identifiers PXD025434 and PXD025463, for gelfree and gel-based proteomic approaches, respectively. SignalP v.5.0 Server (http://www.cbs.dtu.dk/services/SignalP/) was used to predict proteins secreted by classical pathway. The parameter 'eukaryotes' was set to predict the secretion pathways. The Uniprot web server was required for conversions of gene list (45) . Protein−protein interaction (PPI) was established by STRING (46) using UniProt Accession codes. The generated interaction networks were uploaded in Cytoscape 3.8.1 for graphical representation (47) . Enrichment analysis was performed where gene ontology was over-represented. The Ensembl gene ID was used to feed g:Profiler (48). GraphPad Prism for Mac (version 7.0e.198) or Statistical Package for Social Sciences (SPSS) for Windows (version 13.0) was used for all analyses, considering a p-value <0.05 as significant. The normal distribution of continuous variables was determined using D'Agostino & Pearson omnibus, Shapiro-Wilk, and Kolmogorov-Smirnov tests. For comparisons of numerical data between two groups, either Student's t-test (e.g., age, protein concentration and immune enzymatic assays for Human DPP4/CD26) or Mann-Whitney test (e.g., enzymatic activities and its intensity, and immune enzymatic assays for Human MMP9) were performed. Chisquare test was applied to compare the frequencies of categorical variables (e.g., gender) in groups. Additionally, to compare protein concentration between groups, Student's t-test and Levene test were used. We identified trends in the condition's clinical stages and on immune enzymatic assays through Spearman's correlation coefficient. Finally, a one-way ANOVA test and Bartlett's test were performed to compare the dosage of DPP4 in subgroups, and a Kruskal-Wallis test to compare the dosage of MMP-9 in subgroups. To adjust salivary protein concentration for mass spectrometry and evaluate proteolytic activity in standardized concentration, total protein concentration (ng/µl) was measured in both groups. Saliva from SS individuals had lower protein concentrations when compared to the control group (Supplementary Figure 2) . Twelve fluorogenic substrates were tested on saliva from a control group individual for preliminary classification to characterize SS saliva's proteolytic activity. Among them, Gly-Pro-AMC, Phe-Arg-AMC, N-Gly-Gly-Arg-AMC, and Pro-AMC had increased hydrolysis by proteases present in saliva ( Figure 1A) . The most expressive activity was observed with Gly-Pro-AMC, a highly specific substrate of DPP4. Considering the low volume of saliva samples collected due to SS patients' hyposalivation, the low detection activity of Pro-AMC, and that several proteases can cleave Phe-Arg-AMC and N-Gly-Gly-Arg-AMC, only Gly-Pro-AMC was chosen to proceed within this study. Different classical protease inhibitors or sitagliptin, a highly selective inhibitor of DPP4, were incubated with SWS before proceeding to hydrolysis of Gly-Pro-AMC to confirm the specificity of DPP4 enzymatic activity in our assays. An expressive SWS proteolytic inhibition toward Gly-Pro-AMC was observed in the presence of AEBSF, a specific and irreversible serine protease inhibitor, while the other classical inhibitors did not affect the activity on Gly-Pro-AMC. However, sitagliptin completely abolished this activity in SWS ( Figure 1B) . Subsequently, all forty SWS samples were tested using the DPP4 fluorogenic substrate. A significant (p < 0.05) increased proteolytic activity on Gly-Pro-AMC was observed in SS saliva, either pSS or sSS, in comparison to the control ones ( Figures 1C, D) . Besides detecting the DPP4 activity, an ELISA was performed to quantify soluble DPP4 in SWS samples. With a threshold detection of 0.02 ng/ml, an overexpression of DPP4 was reported in SS saliva (p < 0.05) ( Figure 1E) , specifically in pSS ( Figure 1F ). This result corroborates enzymatic assays and its inhibition shown in Figures 1B, D. A preliminary gelatin zymogram was performed to define the saliva volume to be used in this study. Ten microliter of saliva showed well defined gelatinolytic bands and was chosen to perform zymography in all forty saliva samples (Supplementary Figure 3) . Mirrored zymography to a 10% SDS-PAGE silverstained loaded with 500 ng was performed. Hence, proteolytic activity was measured over total protein concentration. We found the same ratio of proteolytic activity intensity when loading the gel by volume of saliva (Supplementary Figure 4) . We analyzed all forty saliva samples on zymography, following the same distribution exemplified in Figure 2A . Thereby, SWS samples revealed a distinct pattern between groups, both in molecular weight (kDa) and gelatinolytic activity intensities. The molecular weight and intensity of bands were then cataloged and evaluated. We initially identified 10 bands and analyzed their frequency statistically. No differences were found between groups (p > 0.05), according to the Mann-Whitney test (Supplementary Figure 5) . Regarding the intensity of bands, there was a significant difference (p < 0.05) in the intensity of gelatinolytic activity of >220 and 50 kDa bands, according to the Mann-Whitney test (Figure 2A) . The >220 kDa band exhibits an increase in intensity among SS individuals. Meanwhile, the 50 kDa band shows a reduction of intensity among SS individuals. Thereby, these proteolytic bands presented significant differences regarding clinical condition, pSS and sSS ( Figure 2B ). Although we used individuals' age for correlation analyses, this variable was not relevant (no significant results) for these tests. Gender could not be analyzed, as there was only one male per group. We analyzed proteolytic inhibition using the following specific inhibitors: AEBSF for serine proteases; E-64 for cysteine proteases; and EDTA, for metalloproteases, to determine the protease class involved in zymography bands from SWS. Our results show that AEBSF and E-64 could not inhibit gelatinolytic activities since the proteolytic profile exhibits similarity with the positive control (+C). However, EDTA inhibited most proteolytic bands, except the 40 kDa band (Figure 3) . Among the metalloproteases with gelatinolytic activity, MMP9 has been implicated in molecular mechanisms of several auto-immune syndromes (49) . To assess the MMP9 expression profile in SWS, an ELISA was performed. With a threshold detection of 0.02 ng/ml, the ELISA result reported a tendency for significance (p = 0.0531), according to the Mann-Whitney test ( Figure 4A) , and there was a tendency for significance (p = 0.0527) in control with pSS samples ( Figure 4B) , according to the Kruskal-Wallis test. This evidence corroborated enzymatic assays and their inhibition since MMP9 is a gelatinase, and there was higher expression (p < 0.05) in SS samples for >220 kDa proteolytic band. Correlation Between DPP4 and MMP9 Although we did not observe an essential interdependence between MMP9 and DPP4 concentrations for SS patients in the global analysis. When the test cut-off value was set at >1 ng/ml, the results demonstrated that MMP9 and DPP4 directly correlated in approximately 40% of SWS samples from pSS patients, who presented higher levels of both proteases ( Figure 5 ). SS patients were grouped according to the drugs they were taking to control the disease (Supplementary Table 3 ). Anti-inflammatory and immunosuppressive drugs showed no influence on the concentrations of MMP9 and DPP4/CD26 ( Figure 5) . We found no significant data in either DPP4 or MMP9 average values when compared with the medicament used. To pathway showed that 100% of these PGs were predicted to be secreted (Supplementary Table 4 ). Protease PGs neutrophil elastase (ELANE), cathepsin G (CTSG), trypsin (PRSSs), and myeloblastin (PRTN3), which are all serine proteases, were identified only in SS samples. Likewise, protein-glutamine gamma-glutamyltransferase E (TGM3) that contains a cysteine protease domain from the C111.003 family (MEROPS), was found only in both SS groups. Remarkably, MMP9, complement factor B (CFB), azurocidin (AZU1) and kallikrein-13 (KLK13) were detected exclusively in sSS. No exclusive protease was identified in control or pSS samples ( Figure 6A) . Nevertheless, DPP4/CD26 was not reported among the three groups by proteomic analysis. Additionally, we found several cysteine proteases inhibitors of cystatins family (CST1, CST2, CST3, CST4, CST5, CSTA, CSTB, CTSG), serine/cysteine protease serpins (SERPINB1 and SERPINA1), the broad-spectrum endopeptidase-binding alpha-2 macroglobulin (A2M), the serine protease phosphatidylethanolaminebinding protein (PEBP1), calpain inhibitor calpastatin unit 1 (CAST) and the tissue inhibitor of metallopeptidases-1 (TIMP-1). PPI network was generated using STRING database followed by MCL cluster in order to associate protein of related functions ( Figure 6C) . The left network clustered the serine proteases ELANE, CTSG, and PRTN3 that seem to be involved with innate immune response (50) . The middle network clustered proteases related to ECM remodeling (MMP9 and KLK13), inflammation (MMP9 and PRSS1 (Trypsin-1)) and complement pathway (CFB). Interestingly, these proteases were identified exclusively in SS, reinforcing their involvement in SS pathogenesis. Finally, the right network grouped the cysteine proteases inhibitors of cystatins family, which are known to be present in human saliva (51) . We also performed an enrichment analysis where gene ontology is over-represented. The Ensembl gene IDs were used to feed g:Profiler (48) , and the most expressive results are listed in Figure 6D , with their respective p values. Pie chart colors inside Figure 6C highlight which proteases and inhibitor proteases are classified into the enrichment analysis terms. Sjögren's syndrome is an autoimmune exocrinopathy that affects primarily women, with first symptoms appearing in ages ranging from the fourth to sixth decades of life (7) . Hence, most of the present study participants were women (38 out of 40 individuals), which accurately represents the world population affected by SS (52) . Here we report for the first time that DPP4/CD26 is upregulated in SS patient saliva. DPP4 or T-cell activation antigen CD26 (EC 3.4.14.5) is an exopeptidase of the prolyloligopeptidase family, which belongs to the class of serine proteases (53) and cleaves proline or alanine amino acids from the N-terminal side of peptides (54) . It is a widely distributed multifunctional integral membrane protein, but can also be cleaved releasing its soluble extracellular domain in body fluids (e.g. plasma and serum) (55) . DPP4/CD26's most notable function is in glucose homeostasis through regulation of the incretin hormones (56) . Besides its proteolytic role, DPP4/CD26 acts as a cell surface receptor, signal transduction mediator, adhesion and costimulatory protein (57) . Regarding the former, DPP4/CD26 contributes to T lymphocyte activation and antigen-presenting cell-T-cell interaction (58) (59) (60) , having a significant role in many autoimmune and inflammatory diseases (37) . The overexpressed DPP4/CD26 in pSS saliva may play a role in the development of the disease since cytokines and chemokines are the main substrates for the enzyme (61) . Post-translational modification of those molecules by proteases is an essential regulatory tool to enhance or dampen the inflammatory response. In human mucosal-associated invariant T (MAIT) cells, DPP4/CD26 expression levels are high (62) . These cells are expanded in the salivary glands of SS patients and may be deleterious via IL-17 production (63), which has pathogenic roles in many autoimmune diseases (64) . DPP4/CD26 knockout in mice with lung transplantation resulted in a significant reduction of IL-17 and IL-21, Th17 cytokines (65) . Thus, it is feasible that in MAIT cells from SS patients, IL-17 might be processed by DPP4/CD26. On the other hand, saliva from sSS patients present the same level of DPP4/CD26 activity when compared to healthy controls. DPP4/CD26 levels are decreased in serum of patients diagnosed with the commonly systemic autoimmune diseases, such as rheumatoid arthritis and systemic lupus erythematosus, which occur along with sSS (66) . Worth of note, most of the analyses regarding DPP4/CD26 activity available in the literature were carried out based on experiments using patient serum. In this sense, our investigation reinforces saliva as an attractive biofluid and an alternative to serum/blood as a supply of material for the prognosis, diagnosis and treatment of oral diseases (67) . Although mass spectrometry analysis could not identify DPP4 in any SWS, ELISA and proteolytic assays testify its upregulation in SS samples. Thus, a possible explanation for the absence of detection of DPP4/CD26 could be the lower concentration of endogenous proteases compared to constitutive proteins (68) . Since DPP4/CD26 is an integral membrane protein, it could be lost during sample processing for LC-MS/ MS analysis. Moreover, DPP4/CD26 is considerably glycosylated, what turns it difficult to digest by trypsin for mass spectrometry analysis (69, 70) . Among serine proteases revealed by mass spectrometry, neutrophil elastase (ELANE), cathepsin G (CTSG), and myeloblastin (PRTN3) were found only in SS saliva samples compared to control ones. These proteases belong to the chymotrypsin superfamily and are enriched within the azurophilic granules from polymorphonuclear neutrophils (PMN). When activated, PMN releases the neutrophil extracellular traps (NETs) containing these protease as long as myeloperoxidase, also found in MS/LS results for SS individuals (71) . These complexes have been reported in autoimmune diseases, such as rheumatoid arthritis (72) . ELANE is one of the most damaging enzymes in the body and a great release can cause local tissue injury (73) . CTSG activates metalloproteases and cleaves extracellular matrix proteins, contributing to neutrophil migration (74) , stimulates the production of cytokines and chemokines (75, 76) , and seems to be important in regulating the balance between tissue protection and damage during inflammation (77) . PRTN3 is involved in granulocyte differentiation (78) , and once augmented, it can negatively affect the resolution of inflammation that causes immune system deregulation (79) . It was also shown to be involved in cell death induction after caspase 3 activation in a mouse model and cell culture (80) . These three serine proteases increased expressions were also reported in chronic obstructive pulmonary disease (COPD) patients (81) , which is common in pSS patients, even in those who have never been smokers (82) . According to MEROPS, peptide sequence Gly-Pro is not a substrate hydrolyzed by ELANE, CTSG or PRTN3. Nevertheless, ELANE is related to the digestion of extracellular matrix components by PMN, such as Pro-Gly-Phe-Gly-Gly-Pro-Asn-Cys (laminin subunit gamma-2) and Leu-Gly-Pro-Val-Thr-Pro-Glu-Ile (matrix metalloproteinase-2), which plays a role in inflammation and remodeling tissue by secretion of proinflammatory factors (83) . Besides, it has been suggested ELANE might be part of the posttranslational processing of an MMP2 (84) . Also, elastase produced by defense cells could perform proteolytic destruction of cartilage in rheumatoid arthritis, a disease prevalent in sSS (85) . Gelatinases degrade extracellular matrix components such as collagen, fibronectin and laminin and nonmatrix substrates, such as serpins, tissue factor pathway inhibitor and insulin-like growth factor binding proteins (86) . We noticed that most of the activity bands in gelatin zymograms were inhibited by the metalloprotease inhibitor EDTA, from approximately 90 kDa bands whose molecular weight were similar to the active form 86 kDa MMP9 (87) . The MMP9 was identified by LC-MS/MS only in sSS saliva. MMPs are expressed in many circumstances and when there is an imbalance between the expression of these enzymes and their inhibitors, there may be a pathological process in which inflammatory response and tissue remodeling, and migration cell growth are observed. Besides MMP9, KLK13 may also cleave extracellular matrix proteins, influencing tissue remodeling (88) . This functional association is reflected in the PPI network since these proteases were grouped in the same cluster ( Figure 6C ; middle cluster). During the inflammatory process of SS, MMP1, MMP2, MMP3, and MMP9 are released (89) . Also, high MMP9 expression and activity have been detected in the saliva, tear and the labial salivary glands of SS patients (47, 90, 91) . The former was correlated with structural and functional glandular impairment in severe, active pSS patients (92) . In the context of a previous report in pSS (93) , high plasma MMP9 was indicative of definite pSS, although in the same study MMP9 polymorphism could not be used for pSS risk assessment. Additionally, metalloproteinase inhibitors have been found endogenously in SS saliva samples, such as TIMP-1 thus leaving it clear that the activity of MMP9 had been modulated (94) . A positive correlation was noticed between DPP4/CD26 and MMP9 dosage in 40% pSS saliva samples, a connection that has already been reported in prostate cancer. In that case, results indicated DPP4 initiates signal transduction and consequently regulates the MMP9 expression (95) . Also, since no correlation between the use of medicines and the proteases dosage was reported, it may be useful information for future analysis as biomarkers. The Analysis in g:Profiler revealed some relevant results. The neutrophil degranulation in innate immune response reaffirms the possibility of NETs involvement. The mass spectrometry analysis reported MMP9 and serine proteases involved in innate immune response in SS samples only (ELANE, CTSG, and PRTN3) (50) . A strong association between these three enzymes was also evidenced in our PPI network ( Figure 6C ; left cluster). Additionally, leukocyte degranulation may refer to lymphocytic infiltration in SS individuals' glandular tissue (96) . The data presented in this study highlight the usefulness of proteases in the saliva from SS patients as biomarkers. We propose here that DPP4/CD26 activity and concentration in human saliva could be explored as a potential salivary biomarker in diagnosing SS, mainly pSS. Moreover, through proteomic analysis, ELANE, CTSG, and PRTN3 measurements, which were found only in the saliva from SS patients, could significantly improve the ability to distinguish SS patients from healthy subjects. New insights into these protease biological roles in the pathogenesis of SS are necessary to design therapeutic approaches based on protease inhibition. The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ebi.ac. uk/pride/archive/, PXD025434 https://www.ebi.ac.uk/pride/ archive/, PXD025463. The studies involving human participants were reviewed and approved by the Ethics Committee of the University of Brasilia, CEP/FS, 073/11. The patients/participants provided their written informed consent to participate in this study. LG LG and SM received scholarships from CNPq and CAPES. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. The Geoepidemiology of Sjögren's Syndrome Sjögren's Syndrome Oral Manifestations and Their Treatment in Sjogren's Syndrome Oral Manifestations of Sjögren's Syndrome Proteases in Sjögren Patient's Saliva Oral Dryness in Sjögren's Syndrome Patients. Not Just a Question of Water Systemic Activity and Mortality in Primary Sjögren Syndrome: Predicting Survival Using the EULAR-SS Disease Activity Index (ESSDAI) in 1045 Patients Mechanisms and New Strategies for Primary Sjögren's Syndrome B Cells in the Pathogenesis of Primary Sjögren Syndrome Biomarkers for Sjögren's Syndrome Crucial Players in Sjögren's Syndrome Specific Hla-Dqa and Hla-Drb1 Alleles Confer Susceptibility to Sjögren's Syndrome and Autoantibody Production Annales de medecine interne The Contribution of Epigenetics in Sjögren's Syndrome Predictive Markers of Lymphomagenesis in Sjögren's Syndrome: From Clinical Data to Molecular Stratification Epidemiology of Sjögren's Syndrome-From an Oral Perspective Prevalence of Serum and Salivary Antibodies to HTLV-1 in Sjögren's Syndrome HTLV-I Associated Sjögren's Syndrome is Aetiologically Distinct From Anti-Centromere Antibodies Positive Sjögren's Syndrome Classification Criteria for Sjögren's Syndrome: A Revised Version of the European Criteria Proposed by the American-European Consensus Group American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren's Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts Making the Diagnosis of Sjögren's Syndrome in Patients With Dry Eye Prognostic Value of Sjögren's Syndrome Autoantibodies Associations Between Classification Criteria Items in Systemic Lupus Erythematosus Potential Biomarkers of Human Salivary Function: A Modified Proteomic Approach Proteomics Analysis of Cells in Whole Saliva From Oral Cancer Patients Via Value-Added Three-Dimensional Peptide Fractionation and Tandem Mass Spectrometry s-IgA and Cytokine Levels in Whole Saliva of Sjögren's Syndrome Patients Before and After Oral Pilocarpine Hydrochloride Administration: A Pilot Study Proteomic Identification of Salivary Biomarkers of Type-2 Diabetes Proteomic Study of Salivary Peptides and Proteins in Patients With Sjögren's Syndrome Before and After Pilocarpine Treatment Saliva: An Emerging Biofluid for Early Detection of Diseases Noninvasive metabolic profiling for painless diagnosis of human diseases and disorders Saliva: Diagnostics and Therapeutic Perspectives Saliva and Oral Health Role of Saliva and Salivary Diagnostics in the Advancement of Oral Health Targeting Proteases: Successes, Failures and Future Prospects Updated Biological Roles for Matrix Metalloproteinases and New "Intracellular Activity of Matrix Metalloproteinase-9 is Elevated in Sera of Patients With Systemic Lupus Erythematosus CD26 in Autoimmune Diseases: The Other Side of "Moonlight Protein Identification of Potential Saliva and Tear Biomarkers in Primary Sjögren's Syndrome, Utilising the Extraction of Extracellular Vesicles and Proteomics Analysis Differential Effects of Specific Cathepsin S Inhibition in Biocompartments From Patients With Primary Sjögren Syndrome A Trypanosoma Cruzi-Secreted 80 kDa Proteinase With Specificity for Human Collagen Types I and IV The Crude Skin Secretion of the Pepper Frog Leptodactylus Labyrinthicus is Rich in Metallo and Serine Peptidases Using Guanidine-Hydrochloride for Fast and Efficient Protein Digestion and Single-Step Affinity-Purification Mass Spectrometry Protocol for Micro-Purification, Enrichment, Pre-Fractionation and Storage of Peptides for Proteomics Using Stagetips The PRIDE Database and Related Tools and Resources in 2019: Improving Support for Quantification Data UniProt: A Worldwide Hub of Protein Knowledge String v11: Protein-Protein Association Networks With Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets Matrix Metalloproteinase (MMP)-9 Type IV Collagenase/Gelatinase Implicated in the Pathogenesis of Sjögren's Syndrome Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists Biochemistry and Molecular Biology of Gelatinase B or Matrix Metalloproteinase-9 Molecular Biology of Human Salivary Cysteine Proteinase Inhibitors Clinical Manifestations and Early Diagnosis of Sjögren Syndrome Enzyme Catalysis: The Serine Proteases Families and Clans of Serine Peptidases Molecular Characterization of Dipeptidyl Peptidase Activity in Serum: Soluble CD26/dipeptidyl Peptidase IV is Responsible for the Release of X-Pro Dipeptides Increased Hepatic Expression of Dipeptidyl Peptidase-4 in Non-Alcoholic Fatty Liver Disease and its Association With Insulin Resistance and Glucose Metabolism Cut to the Chase: A Review of CD26/dipeptidyl Peptidase-4's (DPP4) Entanglement in the Immune System Expression of Ecto-Adenosine Deaminase and CD26 in Human T Cells Triggered by the TCR-CD3 Complex. Possible Role of Adenosine Deaminase as Costimulatory Molecule CD26 is Expressed on a Restricted Subpopulation of Dendritic Cells In Vivo Enrichment for a CD26hi SIRP-Subset in Lymph Dendritic Cells From the Upper Aero-Digestive Tract CD26/ Dipeptidylpeptidase IV-chemokine Interactions: Double-Edged Regulation of Inflammation and Tumor Biology High Expression of CD26 Accurately Identifies Human Bacteria-Reactive MR1-restricted MAIT Cells Il-17 Polarization of MAIT Cells is Derived From the Activation of Two Different Pathways TH17 Cells in Autoimmunity and Immunodeficiency: Protective or Pathogenic? Front Immunol CD26 Costimulatory Blockade Improves Lung Allograft Rejection and is Associated With Enhanced interleukin-10 Expression Characterization of Human Serum Dipeptidyl Peptidase IV (CD26) and Analysis of its Autoantibodies in Patients With Rheumatoid Arthritis and Other Autoimmune Diseases The Scientific Exploration of Saliva in the Post-Proteomic Era: From Database Back to Basic Function Mass Spectrometry-Based Proteomics Turns Quantitative O-Glycan Analysis of Natural Human Neutrophil Gelatinase B Using a Combination of Normal phase-HPLC and Online Tandem Mass Spectrometry: Implications for the Domain Organization of the Enzyme Neutrophils in the Innate Immune Response Nets are a Source of Citrullinated Autoantigens and Stimulate Inflammatory Responses in Rheumatoid Arthritis Proteins Associated With Neutrophil Degranulation are Upregulated in Nasopharyngeal Swabs From SARS-CoV-2 Patients Cathepsin G Increases MMP Expression in Normal Human Fibroblasts Through Fibronectin Fragmentation, and Induces the Conversion of proMMP-1 to Active MMP-1 Neutrophil-Derived Serine Proteases Modulate Innate Immune Responses Neutrophils in the Activation and Regulation of Innate and Adaptive Immunity Proteinase 3 and Cathepsin G: Physicochemical Properties, Activity and Physiopathological Functions Proteinase 3 and Neutrophil Elastase Enhance Inflammation in Mice by Inactivating Antiinflammatory Progranulin Interaction of Proteinase 3 With its Associated Partners: Implications in the Pathogenesis of Wegener's Granulomatosis Proteinase 3-Dependent Caspase-3 Cleavage Modulates Neutrophil Death and Inflammation Novel Cell Death Program Leads to Neutrophil Extracellular Traps Chronic Obstructive Pulmonary Disease is Common in Never-Smoking Patients With Primary Sjögren Syndrome The Database of Proteolytic Enzymes, Their Substrates and Inhibitors Neutrophil Elastase Processing of Gelatinase A is Mediated by Extracellular Matrix Action of Collagenase and Elastase From Human Polymorphonuclear Leukocytes on Human Articular Cartilage Proteases in Sjögren Patient's Saliva Frontiers in Immunology | www Matrix Metalloproteinases: A Tail of a Frog That Became a Prince Quantification of Matrix Metalloproteinases in Tissue Samples Human Kallikrein 13 Involvement in Extracellular Matrix Degradation The Significance of Matrix Metalloproteinases in Oral Diseases A Novel and Simple Immunocapture Assay for Determination of Activities in Biological Fluids: Saliva From Patients With Sjögren's Syndrome Contain Increased Latent and Active Gelatinase-B Levels Pro-and Anti-Inflammatory Forms of Interleukin-1 in the Tear Fluid and Conjunctiva of Patients With Dry-Eye Disease Differential Expression of Matrix Metalloproteinases in Labial Salivary Glands of Patients With Primary Sjögren's Syndrome: Mechanisms of Exocrine Parenchyma Destruction Plasma Levels in Primary Sjogren's Syndrome Salivary Diagnostics-Point-of-Care Diagnostics of MMP-8 in Dentistry and Medicine Interaction of Plasminogen With Dipeptidyl Peptidase IV Initiates a Signal Transduction Mechanism Which Regulates Expression of Matrix Metalloproteinase-9 by Prostate Cancer Cells Aromatase-Deficient Mice Spontaneously Develop a Lymphoproliferative Autoimmune Disease Resembling Sjögren's Syndrome We are grateful to Wagner Fontes and Jaques M. F. de Souza for technical assistance (mass spectrometer platform in the Laboratory of Protein Chemistry and Biochemistry, in University of Brasilia, Brasilia, Brazil) and equally, to Professor Connie McManus (Institute of Biological Sciences, University of Brasilia) for manuscript editing assistance. The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2021. Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.Copyright © 2021 Garreto, Charneau, Mandacaru, Nobrega, Motta, de Araujo, Tonet, Modesto, Paula, de Sousa, Santana, Acevedo and Bastos. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.