key: cord-0045062-gxblprv4 authors: Yousefi, Fatemeh; Shabaninejad, Zahra; Vakili, Sina; Derakhshan, Maryam; Movahedpour, Ahmad; Dabiri, Hamed; Ghasemi, Younes; Mahjoubin-Tehran, Maryam; Nikoozadeh, Azin; Savardashtaki, Amir; Mirzaei, Hamed; Hamblin, Michael R. title: TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus date: 2020-06-09 journal: Cell Commun Signal DOI: 10.1186/s12964-020-00555-4 sha: 87d6d2779247358e8c59ffe3446525d257223a3f doc_id: 45062 cord_uid: gxblprv4 Cardiac fibrosis describes the inappropriate proliferation of cardiac fibroblasts (CFs), leading to accumulation of extracellular matrix (ECM) proteins in the cardiac muscle, which is found in many pathophysiological heart conditions. A range of molecular components and cellular pathways, have been implicated in its pathogenesis. In this review, we focus on the TGF-β and WNT signaling pathways, and their mutual interaction, which have emerged as important factors involved in cardiac pathophysiology. The molecular and cellular processes involved in the initiation and progression of cardiac fibrosis are summarized. We focus on TGF-β and WNT signaling in cardiac fibrosis, ECM production, and myofibroblast transformation. Non-coding RNAs (ncRNAs) are one of the main players in the regulation of multiple pathways and cellular processes. MicroRNAs, long non-coding RNAs, and circular long non-coding RNAs can all interact with the TGF-β/WNT signaling axis to affect cardiac fibrosis. A better understanding of these processes may lead to new approaches for diagnosis and treatment of many cardiac conditions. Cardiac fibrosis and abnormal tissue remodeling are pathological findings in many cardiac disorders, such as myocardial infarction, hypertension, myocarditis, cardiac hypertrophy, and dilated cardiomyopathy. These conditions are associated with considerable morbidity and mortality [1] [2] [3] . The process of cardiac fibrosis is characterized by a disproportionate accumulation of extracellular matrix (ECM) components. The transformation of cardiac fibroblasts (CFs) to myofibroblasts is the key step in this process, and plays a critical role in the development of fibrosis [4] . When cardiomyocytes die over a period of several days following a sudden cardiac injury, activated myofibroblasts trigger the formation of a fibrotic scar in the affected cardiac muscle [5] . Experimental and clinical evidence has suggested that the transformation of CFs could be regulated by the transforming growth factor beta (TGF-β) and WNT (wingless int1) signaling pathways. Experimental models have shown increased expression of TGF-β and WNT proteins, as key pro-fibrotic factors in cardiac fibrosis [6] [7] [8] . Noncoding RNAs (ncRNAs) can be classified into several different types, including small microRNAs (miRNAs or miRs;~22 nucleotides), long noncoding RNAs (lncRNAs; > 200 nucleotides) and circular long noncoding RNAs (circRNAs; > 200 circular nucleotides) [9, 10] . All these ncRNAs have been implicated in the regulation of specific cellular signaling pathways, such as TGF-β and WNT, that act to regulate cytokine secretion and extracellular matrix synthesis [11] [12] [13] . A growing body of evidence points to cross-regulation between these two pro-fibrotic pathways mediated via ncRNAs, and its involvement in the pathophysiology of cardiac fibrosis. Understanding these mechanisms will be important to develop new therapeutic agents for treatment of cardiac fibrosis [14] [15] [16] [17] . In this review, we will first provide an overview of TGF-β and WNT signaling, and their regulation, followed by a description of their role in the pathogenesis of cardiac fibrosis. Next, we summarize some recent experimental evidence for the involvement of TGF-β and WNT signaling in vascular and cardiac remodeling during fibrosis. Finally, the role of ncRNAs, including miRNAs, lncRNAs, and circRNAs, in TGF-β and WNT signaling in the heart. This is a relatively new field that may provide new avenues for the prevention and treatment of cardiac fibrosis. A growing body of evidence indicates that members of the TGF-β family can play a major role in a wide range of processes related to cardiac pathophysiology, including cardiac repair, hypertrophy, fibrotic remodeling, fibroblast activation, and extracellular matrix deposition [18] [19] [20] [21] [22] [23] . The TGF-β family is comprised of 33 members, which are multifunctional cytokines interacting with TGF-β receptors to trigger signaling cascade responses in cells [24] . In mammals, the TGF-β isoforms (TGF-β1, β2, and β3) are encoded by three different genes, that are located on separate chromosomes [25] [26] [27] . Although in vitro studies have suggested that the three isoforms have similar properties, knockout experiments in mice have shown that each TGF-β isoform exerts distinct effects in tissue development and differentiation in vertebrates [28] [29] [30] [31] . TGF-β is initially secreted as a latent complex consisting of three proteins, including TGF-β, latency-associated protein (LAP) and latent TGF-βbinding proteins (LTBPs) so that it is inactive in its latent form. This complex is proteolytically cleaved and activated by an integrin-mediated process [32] [33] [34] . Upon binding to their receptor, TGF-βs can activate various processes which can be Smad-dependent (canonical response) or Smad-independent (noncanonical response). The Smad-dependent TGF-β signaling pathway is much better documented. Once activated the TGF-β can bind to heterodimeric receptors (consisting of TGF-β type I and TGF-β type II receptors) and initiate a signaling cascade mediated by the Smad family of transcription factors [35] [36] [37] . In the presence of the TGF-β ligand, TGF-β receptor I kinase promotes phosphorylation of the receptor-activated Smads (R-Smads, Smad2 and 3), which mediates the translocation of p-Smad into the nucleus via binding to the common mediator, Smad4 [37] . In the nucleus, the R-Smad/Smad4 complex associates with the transcriptional cofactor p300 and with Fast-1, a nuclear DNA binding protein belonging to the Fast family. This complex binds to DNA, leading to increased expression of the downstream effectors of the TGF-β signaling pathway [38, 39] . There are fundamental differences between the processes mediated by Smad2 and Smad3. Smad2 is required for normal development processes, whereas Smad3 is required for TGF-β-induced gene expression. Microarray analysis in adult Smad3 − / − and Smad3 + / + mice revealed that TGF-β did not induce any transcription in Smad3 − / − fibroblasts [40] . Intriguingly, in a recent report, Smad2 homozygous mice (Smad2 − / − ) were not viable during embryogenesis, suggesting that Smad2 is required for normal development [41] . Two inhibitory Smads (I-Smad), named Smad6 and Smad7, do not allow R-Smad phosphorylation, and prevent subsequent nuclear translocation of R-Smad/Smad4 heterocomplexes, because they compete for the normal binding of Smad2 and Smad3 to the TGF-β R1 [42] . After completion of the Smad transcriptional activity, coactivator p300 facilitates an interaction between Smad3 and the E3 ligase complex causing Smad3 ubiquitination, leading to its degradation by the ubiquitinproteasome pathway [43, 44] . In addition, TGF-β can also result in direct activation of a non-canonical response via three different pathways, namely the PI3K/Akt, RhoA-ROCK axis and MAPK cascades. In the PI3K/Akt pathway, activated TGF-β type I receptor stimulates a signaling cascade involving phosphatidylinositol-3-kinase (PI3K) and protein kinase B (also known as Akt). In this pathway, PI3K activation mediates phosphorylation and activation of Akt kinase, which in turn modulates several downstream effectors, such as the mammalian target of rapamycin (mTOR), glycogen synthase kinase-3β (GSK-3β) and many others [45, 46] . The second pathway involves Rho-associated protein kinases (ROCKs) which are coiled-coilcontaining protein kinases existing in two isoforms, ROCK1, and ROCK2 [47] . Experiments have confirmed the importance of ROCKs in regulation of various cellular functions, especially cardiac fibrogenesis [48, 49] . It has been demonstrated that inhibition of ROCK prevented cardiac fibrosis in response to transverse aorta constriction (TAC) and myocardial infarction (MI) [50] . In the third pathway, mitogen-activated protein kinases (MAPKs) transmit the signal from the cell membrane to the nucleus, and regulate gene expression through extracellular signal-regulated kinase 1 and 2 (Erk1/2 or p44/ 42), c-Jun N-terminal kinases (JNKs), and the p38 isoforms (α, β, γ, and δ) [51] . The Smad-independent activation of MAPKs was confirmed by a study that found that activation of MAPKs occurred in TGF-β treated cells, even in the presence of Smad4-deficient or dominant-negative Smads [52] . Several publications have indicated the importance of the WNT signaling cascade in normal development and the pathogenesis of many diseases [53] [54] [55] [56] . WNT ligands are highly conserved secreted glycoproteins, which are transcribed from 19 genes in mammals, and are subdivided into 12 conserved subfamilies [57] . A family of seven transmembrane receptors called Frizzled (Fz) act as receptors for WNT ligands [58] . WNT ligands engage the Fz receptors and the low-density-lipoprotein-receptor-related proteins (LRP)5 and LRP6 act as co-receptors resulting in the formation of a complex at the plasma membrane. Activated Fz receptors activate not only the β-catenin-dependent pathway, but also trigger a number of β-catenin-independent signaling cascades. In the WNT/β-catenin signaling pathway, the activated Fz/LRP complex activates the Dishevelled (DVL) protein, which interacts with a "destruction complex" comprised of axin, adenomatous polyposis coli (APC), glycogen synthase kinase 3 (GSK3), casein kinase 1 (CK1), plus the ubiquitin ligase, β-TrCP. This destruction complex normally causes the ubiquitination and consequent destruction of β-catenin [59] [60] [61] . When the destruction complex binds to DVL it is inhibited, and βcatenin escapes from ubiquitination and degradation [62, 63] . Eventually, the stabilized β-catenin translocates to the nucleus where it activates WNTresponsive genes, by binding to T-cell factor/lymphoid enhancer-binding factor-1 (TCF/Lef-1) transcription factors, and other co-factors, such as p300 and CREB binding protein (CBP) [56] . In the β-catenin-independent signaling pathway, WNT4, WNT5a or WNT11 ligands can stimulate the Fz receptor to trigger gene transcription, by activating the planar cell polarity pathway, and a calcium-dependent pathway. Signal transduction through the WNT/calcium cell polarity pathway typically consists of protein kinase C (PKC), calmodulin kinase II and calcineurin. Calcineurin is a Ca 2 +− sensitive enzyme activated by Ca 2+ release which results in elevated nuclear levels of the AP-1/c-Jun transcription factor [64, 65] . In the planar cell polarity pathway, certain MAPKs (JNK and ERK1/2 kinases) and the RhoA-ROCK axis act as important regulators to trigger signaling. In this pathway, WNT proteins activate Rho signaling and Jun N-terminal kinase (JNK) through DVL, leading to the modulation of cellular activity and polarity via ATF/CREB activation [66] . Endogenous WNT antagonists, such as the Dikkopf (DKK) and secreted frizzled-related protein (sFRP) families can regulate WNT signaling [67] [68] [69] . Many studies have emphasized the key role of the WNT signaling pathway in cardiac fibrosis, and it has been suggested that regulation of signaling pathways might be a useful pharmacological target for treatment of cardiac disease [70] [71] [72] . Recent studies have highlighted the extensive cross-talk between the TGF-β and WNT pathways, which could be responsible for the transcription of pro-fibrotic genes. These pathways could create a positive feedback loop or a negative feedback loop that impacts on the transcriptional activity of other signaling cascades. For instance, loss of the WNT co-receptor LRP5, in bleomycininduced lung fibrosis decreased the expression of TGF-β1, and attenuated the induction of fibrosis [73] . Consistently, over-expression of a constitutively active TGFβ receptor type I in a mouse model (Ad-TBRI act -induced fibrosis) enhanced the stability and nuclear accumulation of β-catenin in primary cultured fibroblasts. These results showed that TGF-β activated the canonical WNT pathway through a decrease in Dkk-1 via MAPKp38, and this could be a major molecular mechanism for the activation of the canonical WNT pathway [6] . In addition, it was reported that sirtuin 3 (SIRT3) can increase the enzymatic activity of GSK3, resulting in the blockage of TGF-β expression in tissue fibrosis. The SIRT3 deficiency induced GSK3β hyperacetylation resulting in reduced GSK3β activity and lower phosphorylation of Smad3, and β-catenin activation. These events lead to stabilization and activation of Smad3 and β-catenin transcription factors involved in the tissue fibrosis process [74] . In addition, upon TGF-β stimulation, the Axin, WNT scaffold protein, can promote Smad7 degradation by forming a complex with Smad7 and the E3 ubiquitin ligase Arkadia [75] . Another report revealed that Axin facilitated Smad3 binding to the type I receptor to promote the tail-phosphorylation of Smad3, which induced the transcription of profibrotic genes [76] . Furthermore, the microRNA, miR-29 inhibited the synthesis of ECM caused by TGFβ1, through inhibition of WNT3a/β-catenin signaling pathway in human orbital fibroblasts [77] . Yeast two-hybrid and GST-pull down assays showed a physical interaction between DVL-1 and Smad3. Stimulation of the TGFβ pathway leads to an increase in DVL-1, and Smad3 binding in vivo [78] . Cotreatment with both WNT-3a conditioned medium, and TGFβ led to enhancement of nuclear β-catenin, whereas TGFβ alone had no effect. Moreover, Smad3 over-expression enhanced the ability of WNT-3a to increase transcription, suggesting that Smad3 is required for the effects of TGF-β on gene transcription [79] . The ability of TGF-β to activate the canonical WNT signaling pathway, and the functional impact of this mechanism on fibrotic processes has been reported in many organs, as well as the heart [6, [80] [81] [82] . In summary, these data point to the important role of TGF-β signaling in the activation of the β-catenin-dependent pathway, and conversely, the role of the WNT/β-catenin signaling pathway to trigger TGF-β signaling. Taken together, it appears that mutual co-activation of these two pathways is required to trigger the actual fibrotic response. Cardiac fibrosis is characterized by the increased activity of cardiac fibroblasts, resulting in the accumulation of ECM proteins (e.g. collagen I and III), which produce increased myocardial stiffness, and thereby increase the risk of heart failure and sudden cardiac death [83] . Cardiac fibrosis commonly occurs in several types of cardiovascular disease, such as those caused by diabetes, ischemia, aging, and inherited cardiomyopathy, which cause considerable morbidity and mortality [1] [2] [3] . Healthy heart tissue consists of endothelial cells, vascular smooth muscle cells, fibroblasts, and myocytes [84] [85] [86] . The alteration of the collagen matrix results from dysregulation of the balance between pro-fibrotic and anti-fibrotic factors, including cytokines, chemokines, hormones, growth factors, and proteases. This dysregulation causes a swing in the balance, leading to excess synthesis or inhibition of degradation [87] . Fibroblasts are involved in collagen formation and degradation, and any derangement in this process leads to collagen expansion and myocardial fibrosis [88] . The key event in cardiac fibrosis is the transformation of cardiac fibroblasts (CFs) into myofibroblasts, which are involved in ECM production, and accelerating the fibrotic process following cardiac injury. After cardiac ischemia, cardiomyocytes gradually die over a period of several days starting after myocardial infarction, and then myofibroblasts replace the dead cells, and largely produce the fibrotic scar [5] . There are two main stages in myofibroblast transformation: in the first stage, small adhesion complexes and stress-fiber network formation occurs to develop proto-myofibroblasts from fibroblasts, and to facilitate the migration of these cells into the injured tissue. In the second stage, these proto-myofibroblasts convert to mature myofibroblasts which secrete alpha-smooth muscle actin (α-SMA) and cadherin-11 by approximately 20-30 h following cardiac injury [89] [90] [91] . Activated myofibroblasts deposit large amounts of ECM proteins in the infarcted area [92] . In cardiovascular disease, myocardial fibrosis can be divided into three stages: mild diffuse fibrosis, severe diffuse fibrosis, and segmental fibrosis. Finding an effective treatment for myocardial fibrosis is a major clinical challenge, which may dramatically improve the survival rate and the quality of life in patients. Cardiac magnetic resonance (CMR) imaging has been used to evaluate the extent of diffuse myocardial fibrosis, and for monitoring patients with cardiac fibrosis [93] [94] [95] . In one study by McCrohon and colleagues, myocardial fibrosis was assessed in patients suffering from dilated cardiomyopathy (DCM) using gadolinium-CMR demonstrating high sensitivity, specificity, and good spatial resolution. The results suggested that approximately one third of patients with DCM may have myocardial scarring or fibrosis [96] . Therefore, CMR imaging techniques may be used to delineate foci of fibrosis in patients with DCM. Myocardial fibrosis is associated with electrical dysfunction that leads to ventricular arrhythmias in tricuspid atresia patients [97] . Ventricular myofiber disorganization and interstitial fibrosis have been demonstrated in patients with tetralogy of Fallot [98] . A study revealed increased macroscopic fibrosis in the left ventricles (LV) of deceased patients with congenital aortic stenosis and coarctation [99] . Also, LV fibrosis has been detected in patients with idiopathic DCM who only had mild symptoms. The data suggested that collagen accumulation might be responsible for the impaired LV diastolic function found in these patients [100] . Various alterations in molecular pathways and cellular effectors have been shown to occur in various cardiac fibrotic conditions, and it is important to assign the relative contribution(s) of each pathway, and the therapeutic implications. Therefore, the effectiveness of antifibrotic strategies requires a better understanding of the mechanisms of cardiac fibrosis, which may depend on the underlying etiology, severity and extent of disease. Myofibroblasts expressing expressed α-SMA (smooth muscle actin) are mainly involved in the excessive synthesis and degradation of collagen in cardiac fibrosis [4, 101] . Following a cardiac injury, fibroblasts transdifferentiate into myofibroblasts, which are normally absent in the healthy heart. Myofibroblasts are in between a fibroblast and a smooth muscle cell in phenotype [102, 103] . Myofibroblasts mainly secrete ECM proteins, such as periostin, collagens I and III, and fibronectin, and also a number of cytokines which regulate the inflammatory response at the injury site [89] . In heart disease, fibrotic remodeling associated with cellular and molecular mechanisms, leads to disturbance of cardiac function in different ways. Myocardial fibroblasts are stimulated both mechanically and chemically to undergo differentiation into the myofibroblast phenotype [104] . The TGF-β and WNT signaling pathways are two key regulators of myofibroblast biology in cardiac fibrosis [56, [105] [106] [107] . High expression levels of TGF-β1 (a prototypical fibrogenic cytokine) has been reported during cardiac fibrosis both in humans and experimental models [108, 109] . The increase in TGF-β causes nuclear accumulation of Smad2/ 3 in myofibroblasts, and decreases the inhibitory Smad6 and Smad7, thereby inducing the activation of numerous pro-fibrotic genes [21, 110, 111] . The resistance of fibroblasts isolated from Smad3 −/− mouse embryos to TGF-β1 induction of ECM proteins, confirmed that Smad3 mediated TGF-β transactivation of these ECM promoters [40, 112] . In the injured heart, the Smad3 signaling cascade may be the first step in myofibroblast differentiation by promoting α-SMA transcription [113] . In α-SMA-positive myofibroblasts, TGFβ1 could upregulate matrix proteins (such as ED-A fibronectin) and increase the deposition of collagen sub-types (such as collagens I, III, and VI) by regulating the levels of plasminogen activator inhibitor (PAI)-1 and tissue inhibitor of metalloproteinases (TIMPs), and also by regulating the levels of other pro-fibrotic cytokines [114] [115] [116] . Collagen type VI plays a role in cardiac remodeling by increasing myofibroblast differentiation, whereas collagen types I and III stimulate the proliferation of CF via increasing ERK1/2 activity [117] . WNT/β-catenin signaling is enhanced in areas of scar formation, and in epicardial activation in mouse models [118] . Activation of the WNT/β-catenin pathway by TGF-β is well-documented. TGF-β increases Akt phosphorylation through PI3K activation, thus inactivating GSK3β (an enzyme involved in β-catenin degradation), which promotes cardiac fibrosis [119] . In recent years, a number of reports have indicated that the canonical WNT/β-catenin pathway, and Smad-dependent TGF-β signaling are involved in the stimulation of myofibroblast proliferation and differentiation, thus promoting fibrogenesis [120, 121] . WNT3a can promote migration in cultured fibroblasts, as well as the adoption of a myofibroblast-like phenotype, in part by up-regulation of TGF-β signaling through Smad2. WNT3a-induced α-SMA expression was reversed following knockdown of β-catenin, suggesting that fibrosis was dependent on canonical WNT signaling through βcatenin [14] . GSK-3β exerts a novel and central role in regulating myocardial fibrotic remodeling via modulation of canonical TGF-β1 signaling through direct interaction with Smad-3. Moreover, genetic and pharmacological approaches have demonstrated that inhibition of GSK-3β can induce the transformation of fibroblasts to myofibroblasts [122] . In cardiac fibroblasts, overexpression of FGF23 promoted fibroblast proliferation through activation of β-catenin signaling, leading to TGF-β up-regulation [15] . In primary cardiac fibroblasts, lack of endogenous sFRP-1 increased αSMA and collagen expression, and promoted differentiation of fibroblasts into myofibroblasts [71] . Over-expression of sFRP2 significantly reduced ventricular fibrosis, and improved cardiac function in vivo [123] . On the other hand, sFRP2 antibody therapy decreased apoptosis and fibrosis, and improved cardiac function in a hamster model of heart failure [124] . In agreement with this, mice lacking the sFRP2 gene that were subjected to myocardial infarction, exhibited a reduction in cardiac fibrosis [125] . These findings suggest that sFRPs have multiple modes of action in fibrotic processes. In a WNT1 Cre transgenic mouse model subjected to myocardial ischemia, WNT 1 expression occurred within 2 days following ischemia, with high expression levels found in both epicardial cells and cardiac fibroblasts. Experimental models using CF-specific loss of β-catenin, or exogenous over-expression of WNT1, have suggested that canonical WNT signaling can induce collagen gene expression during cardiac fibrosis. Chromatin immunoprecipitation (ChIP) assays with an anti-β-catenin antibody, showed that the β-catenin/LEF/TCF transcriptional complex directly bound to ECM genes in CFs [126] . In agreement with these studies, Dickkopf-3 (DKK3), a WNT signaling pathway inhibitor, attenuated cardiac fibrosis in cardiac hypertrophy induced by administration of angiotensin II (AngII), by promoting AngII degradation. DKK3 inhibited the phosphorylation of the metalloproteinase enzyme known as "a disintegrin and metalloproteinase 17" (ADAM17), which in turn increased angiotensin converting enzyme 2 expression, and subsequently increased AngII degradation. AngII degradation was triggered by the inhibition of GSK-3β and β-catenin, and the decreased translocation of βcatenin to the nucleus. On the other hand, DKK3 knockdown by siRNA achieved the opposite effects [127] . The blocking of the TGFβ and WNT pathways prevented the development of fibrosis in animal models, but whether these two signaling pathways contribute to chronic pathologic fibrosis in humans is still unknown. Figure 1 and Table 1 illustrate the WNT and TGFβ signaling pathways which have been associated with the pathogenesis of cardiac fibrosis. ncRNAs play important roles in many cellular processes. Based on nucleotide length, they are classified into: small miRNAs (22 nucleotides) and lncRNAs (> 200 nucleotides) [138, 139] . Circular RNAs (circRNAs) are a new type of ncRNAs that can regulate gene expression and protein production by acting as an miRNA sponge [140] [141] [142] . These three groups of ncRNAs can be detected in blood and other body fluids, such as urine and breast milk, and can act as powerful tools for detection and therapy of cardiac diseases, including cardiac fibrosis [4, 50, 143] . The function of ncRNAs during cardiac remodeling, involves them being secreted from some cells, and then being actively taken up by other target cells, thus contributing to cell-cell communications and paracrine signaling pathways [144] [145] [146] [147] [148] . The role of ncRNAs (especially miRNAs) has been shown in many studies [149] [150] [151] [152] . The down-regulation of miR-122 has been reported in endomyocardial biopsies from patients with severe aortic valve stenosis (AS), compared to control subjects. Experiments in human fibroblasts have shown that miR-122 might be involved in myocardial fibrosis [153] . In one recent study, miR-34a was suggested to be a positive regulator of fibrogenesis. miR-34a was dynamically up-regulated following myocardial infarction, and inhibition of miR-34a resulted in decreased severity of cardiac fibrosis in mice. Functionally, miR-34a over-expression increased the profibrogenic activity. miR-22 is also involved in regulation of cardiac fibrosis. miR-22 was significantly reduced following myocardial infarction, leading to increased collagen deposition, thereby promoting cardiac fibrosis. Some ECM proteins, including Col1a1 and Col3a1, were overexpressed after miR-22 knock-down in cultured CFs. Another study demonstrated that miR-29 levels were decreased under cardiac stress, thereby increasing collagen expression and promoting cardiac fibrosis [154] . Overexpression of several lncRNAs, including n379599, n379519, n384648, n380433, and n410105, increased the expression of Col8A1, Col3A1, and FBN1 and increased cardiac fibrosis by inducing phosphorylation of Smad2/3 and TGF-β signaling. Silencing of these lncRNAs induced the opposite effect [12] . The over-expression of miR-1954 showed a reduction in cardiac mass and blood pressure in mice. It also reduced expression of cardiac fibrotic genes, inflammatory genes, and hypertrophy marker genes. They found that miR-1954 played an important role in cardiac fibrosis by targeting THBS1, therefore it could be a promising strategy for the treatment of cardiac fibrosis [155] . CircRNAs are another type of single-stranded RNA molecules, which are involved in many normal physiological processes, as well as the pathogenesis of cardiovascular disease [156, 157] . For example, circHIPK3 affected the proliferation and migration of CFs, and the expression of genes such as COL1A1, COL3A1, α-SMA through "sponging up" miR-29b-3p. Silencing of cir-cHIPK3 showed opposite effects on CF proliferation, and the diastolic function was improved in vivo [158] . Microarray analysis of several circRNAs revealed a significant up-regulation of circRNA_010567 in a diabetic db/db mouse model compared to controls. Knockdown of circRNA_010567 reduced the synthesis of fibrotic proteins, such as Col I, Col III and α-SMA in CFs, which had been treated with Ang II [13] . ncRNAs could be attractive candidates as putative biomarkers for cardiac fibrosis in a variety of cardiovascular conditions, although their function needs to be fully investigated in future studies. The relationship between ncRNAs and TGFβ and/or WNT signaling has been demonstrated in studies, and could affect many pathogenic conditions. Colorectal cancer patients with high expression of certain lncRNAs had a shorter overall survival and a worse response to chemotherapy. It was found that these lncRNAs promoted CRC progression by activating Wnt/ β -catenin pathway through activator protein 2 α. Furthermore, lncRNA can induce multidrug resistance through activating Wnt/ β-catenin signaling by up-regulating MDR1/P-gp expression [159] . Wu et al. showed that down-regulation of lncRNA CCAT2 reduced the expression of TGF-β, Smad2 and α-SMA in breast cancer patients. CCAT2 promoted growth and metastasis of breast cancer by regulating the TGF-β signaling pathway [160] . Shan et al. found that over-expression of lncRNA Linc00675 inhibited the proliferation and migration of colorectal cancer cells. Furthermore, they found that the expression of miR-942 in clinical colorectal cancer tissues was higher than in normal tissue. More importantly, the inhibitory effect of Linc00675 was also attenuated by a miR-942 mimetic, suggesting that downregulation of miR-942 represented one of the mechanisms by which Linc00675 inhibited the proliferation and metastasis of colorectal cancer. They demonstrated the inhibition of Wnt/β-catenin signaling in the Linc00675/miR-942 regulated pathway in colorectal cancer cells [161] . Yoan et al. found that over-expression of lncRNA CTD903 inhibited invasion and migration of colorectal cancer cells by repressing Wnt/β-catenin signaling and predicts favorable prognosis [162] . LncTCF7 is a lncRNA which required for liver cancer stem cell self-renewal and tumor progression. lncTCF7 recruited the SWI/SNF complex to the promoter of TCF7 to regulate its S100A4 Decreased β-catenin and phosphorylated β-catenin LAD /mouse; CFs Pro [130] WNT3a and WNT5a Decreased glycogen synthase kinase 3β (GSK3β) Human CFs Pro [131] Qishen Granule (QSG) Inhibition of the TGF-β/Smad3 pathway and the phosphorylation of GSK-3β HF/Rat Anti [132] Xinfuli Granule (XG) Decreased Smad3, P-Smad3 and Smad2 protein MI/rat Anti [133] Human antigen R (HuR) Increased TGF-β1 TAC/HuR-deletion mouse Pro [134] Transient receptor potential ankyrin 1 (TRPA1) Decreased TGF-β, IL-4 and IL-10 TAC/mouse Pro [135] Small molecule inhibitor ICG-001 Decreases β-Catenin Ang II infusion/ Cfs Rat Anti [136] EphrinB2 (erythropoietin-producing hepatoma interactor B2) Increased TGF-β/Smad3 pathway and STAT3 Ang II MI/ Mouse Pro [137] expression, leading to activation of Wnt signaling. lncTCF7-mediated Wnt signaling primes liver cancer stem cell self-renewal and tumor propagation [163] . In addition to lncRNAs, microRNAs have important roles in TGFβ and/or WNT signaling. Yu et al. found that microRNA-21 induces stemness by down-regulating TGF-β receptor 2 (TGFβR2) in colon cancer cells [164] . Tan et al. studied human orbital fibroblasts to show that TGFβ1 treatment decreased miR-29 expression, which could inhibit TGFβ1. MiR-29 inhibited TGFβ1-induced proliferation and decreased colony formation of orbital fibroblast cells after TGFβ1 treatment. MiR-29 mediates TGFβ1-induced extracellular matrix synthesis through activation of Wnt/β-catenin pathway in human orbital fibroblasts [77] . In another study, salvianolic acid B (Sal B) treatment induced the inactivation of the Wnt/β-catenin pathway, with an increase in phosphorylated-β-catenin and Wnt inhibitory factor 1. It was found that miR-17-5p was reduced in vivo and in vitro after Sal B treatment. As confirmed by luciferase activity assays, WIF1 was a direct target of miR-17-5p. Importantly, the suppression of HSCs induced by Sal B was almost completely inhibited by miR-17-5p mimetics. Therefore, miR-17-5p activates Wnt/β-catenin pathway to result in HSC activation through inhibiting WIF1 expression [165] . Many studies have provided evidence for cross-talk between fibrosis development and miRNA deregulation, via the TGFβ and WNT signaling pathways (Fig. 2) . Some of these studies are summarized in this section (Tables 2, 3 and 4) . For example, researchers found that TGF-β1 and miR-21 expression were up-regulated in the border zone of mouse heart after myocardial infarction, whereas TGF-β receptor type III was down-regulated. TGFβRIII is a negative regulator of the TGF-β pathway. Overexpression of miR-21 attenuated TGFβRIII expression in cardiac fibroblasts, thereby potentially contributing to excessive ECM production via the TGF-β pathway [166] . However, using miR-21-knockout mice and knockdown of miR-21 expression, showed that cardiac fibrosis Fig. 2 The crosstalk between microRNAs and WNT/TGFβ signaling pathways in cardiac fibrosis. Schematic representation that shows microRNAs affect cardiac fibrosis progression by targeting WNT/TGFβ signaling pathway associated proteins could still develop under conditions of cardiac stress. These data suggested that miR-21 was not essential for pathological cardiac remodeling [167] . In animal models of myocardial infarction, miR-101 is usually repressed, and delivery of miR-101 by an adeno-associated virus led to amelioration of the infarcted heart through activation of the proto-oncogene c-fos and silencing of the TGFβ1 pathway [168] . miR-133a was down-regulated in a model of atrial fibrillation in dogs, induced by administration of nicotine. Over-expression of miR-133a decreased TGF-β1 and levels of TGF-β receptor type II, and also reduced the collagen content in cultured atrial fibroblasts [169] . AS mentioned above, miR-34a overexpression increased the pro-fibrogenic activity, whereas miR-34a inhibition reduced the activity of TGF-β1 by directly targeting Smad4 in CF cells [11] . Furthermore, it is suggested that direct down-regulation of TGFβ by miR-22 may have mediated the anti-fibrotic effect. miR-29 may also play a role in the regulation of cardiac fibrosis. In a mouse model of aortic aneurysm, inhibition of [190] miR-495 Down Suppress NOD1, NF-κB and TGFβ1/Smad signaling pathways High glucose/human CFs Anti [191] miR-154 Up Suppress GSK-3β/ Activate WNT signaling Human CFs Pro [192] miR-154 Up Suppress DKK2/ Activate WNT signaling Human CFs Pro [193] miR-199a Up Suppress secreted frizzled-related protein 5 (SFRP5) ISO, Rat CFs Pro [194] miR-503 Up Activate connective tissue growth factor (CTGF) and TGF-β AngII, TAC/mouse; CFs Pro [195] [197] Homeobox A11 antisense (HOXA11-AS) Up Activated TGFβ signaling pathway Mouse CFs Pro [198] Colorectal neoplasia differentially expressed (Crnde) Inhibited the binding of Smad3 to the α-SMA gene promoter via interacting with rSBEs DCM/Human, mouse/CFs Anti [199] miR-29 led to greater stability in the aortic walls, and prevented rupture by increasing the expression of several ECM genes, such as Col1A1, Col3A1, and elastin [170] . It is indicated that TGFβ could repress miR-29 expression under cardiac stress [154] . Suppression of miR-155 reduced infarct size, improved LV function, and attenuated collagen deposition in vivo. Knockout of miR-155 arrested the proliferation of CFs and their differentiation into myofibroblasts, through up-regulation of "tumor protein p53-inducible nuclear protein1" (TP53INP1) [171] . TP53INP1 is a pro-apoptotic protein that can interact with p53 and modulate p53 transcriptional activity [172] . A previous report showed that TGF-β could indirectly regulate TP53INP1 expression by affecting miR-155 levels in liver cancer cells [173] . miR-24 also plays a role in the regulation of myocardial infarctioninduced cardiac fibrosis, possibly through targeting furin [174] . Furin is a protease related to the TGF-β pathway, and has been reported to regulate production of collagen in fibrosis [175] . A different study revealed that upregulation of a LncRNA, also known as "myocardial infarction associated transcript" (MIAT), in myocardial infarction was accompanied by down-regulation of miR-24 and up-regulation of Furin and TGF-β1 [176] . One lncRNA, known as HOTAIR (HOX transcript antisense RNA) was associated with myocardial fibrosis via activation of the WNT signaling pathway through targeting the URI1 gene (unconventional prefoldin RPB5 interactor 1). HOTAIR over-expression elevated the expression of axin2, β-catenin and p-GSK-3β, and also promoted cell proliferation and migration in CFs. Results showed that the regulatory effects of HOTAIR over-expression on CF functions were the same as those found after URI1 over-expression, suggesting that HOTAIR may regulate CFs by targeting URI1 [12] . Seo et al. showed that miR-384-5p was a key mediator in the formation of a transactivation circuit between the TGF-β and WNT signaling pathways in cardiac fibrosis. This function might be related to the modulation of different receptors, such as Fzd1, Fzd2, TGFβR1, and LRP6. The expression of miR-384-5p was significantly decreased in CFs at 3 and 7 days after ischemia/reperfusion (I/R) injury, and 24 h after TGF-β treatment. Moreover, the over-expression of miR-384-5p significantly attenuated cardiac fibrosis and decreased the fibrotic area in the rat I/R injury model. These findings suggested that miR-384-5p might be able to control cardiac fibrosis [177] . A recent study reported that inhibition of miR-27a exhibited a cardio-protective effect by regulating the WNT and TGF-β pathways, through modulating the expression of the β-catenin, p-GSK-3β and α-SMA genes. According to this investigation, miR-27a levels were increased in the fibrotic heart tissue of rats with chronic heart failure (CHF), and the data suggested that miR-27a might be a target for treating cardiac fibrosis [17] . Furthermore, circRNA_010567 regulated TGF-β signaling and ECM synthesis via sponging up miR-141 [178] . Moreover, it has been reported that CircActa2 was involved in myocardial and endocardial fibrosis, through regulation of the expression and function of α-SMA, by acting as a decoy for miR-548f-5p. It was shown that TGF-β over-expression increased cir-cACTA2, thereby facilitating the formation of stress fibers and cell contraction [13] . The relentless progression of fibrosis is well known to be a pathological finding in many cardiac conditions. The mechanisms responsible for this process are rather complex, and involve multiple pathways. Therefore, a better understanding of the functional characteristics and molecular profiles of these fibrotic processes could provide solutions for the prevention and treatment of fibrotic lesions in the heart. Accumulating evidence points to the cross-talk between the TGF-β and WNT signaling pathways in the pathogenesis of cardiac fibrosis. Although the cell biology of the TGF-β and WNT pathways has been well-described in cellular development and in the pathophysiology of many diseases, the mechanisms of these pro-fibrotic pathways in cardiac pathologies is less well-understood. As discussed in this review, canonical WNT signaling and TGF-β signaling can combine together to regulate fibrotic processes in the heart, and is likely to play a key role in switching on the genetic machinery for the pro-fibrotic changes. ncRNAs have increasingly been recognized to play possible roles in strategies for combating CVDs, as described above. Recent studies in the ncRNA field that are described in this review, also indicate the important function of ncRNAs in the regulation of cell signaling pathways, CircACTA2 Up Regulated the expression and function of α-SMA, by acting as a decoy for miR-548f-5p. TGF-β over-expression increased circACTA2. Rat, mouse, and human VSMCs Pro [13] Yousefi et al. Cell Communication and Signaling (2020) 18:87 especially TGFB and WNT signaling. Information gathered from these experiments, and identification of the signaling pathways of the ncRNAs involved with cardiac fibrosis, may lead to a new target for treatment strategies for cardiac fibrosis. Additional research is needed to identify the exact details of the mechanism by which the ncRNA network affects cardiac fibrosis through TGFβ/ WNT signaling. Moreover, the possible clinical importance of these TGFβ/WNT related ncRNAs, such as the use of microRNAs as therapeutic tools, and circRNAs as diagnostic/prognostic biomarkers for cardiac fibrosis should be examined in additional animal and clinical trials. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy The pathogenesis of cardiac fibrosis Cardiac conduction system involvement in sudden death of obese young people Myofibroblastmediated mechanisms of pathological remodelling of the heart Molecular imaging of interstitial alterations in remodeling myocardium after myocardial infarction Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis Cardiac hypertrophy-induced changes in mRNA levels for TGF-beta 1, fibronectin, and collagen Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge Non-coding RNAs in human disease Therapeutic Potential of the miRNA-ATM Axis in the Management of Tumor Radioresistance MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4 HOTAIR promotes myocardial fibrosis through regulating URI1 expression via Wnt pathway A novel regulatory mechanism of smooth muscle α-actin expression by NRG-1/circACTA2/miR-548f-5p axis Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner FGF23 promotes myocardial fibrosis in mice through activation of β-catenin Crosstalk between TGF-β and WNT signalling pathways during cardiac fibrogenesis MicroRNA-27a mediates the Wnt/β-catenin pathway to affect the myocardial fibrosis in rats with chronic heart failure Elevation of expression of Smads 2, 3, and 4, decorin and TGF-βin the chronic phase of myocardial infarct scar healing Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction In situ localization of transforming growth factor β1 in porcine heart: enhanced expression after chronic coronary artery constriction The role of TGF-β signaling in myocardial infarction and cardiac remodeling Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats Expression of transforming growth factor-beta 1 in specific cells and tissues of adult and neonatal mice TGF-β and the TGF-β family: contextdependent roles in cell and tissue physiology Transforming growth factor-beta 3 Transforming growth factor β gene maps to human chromosome 19 long arm and to mouse chromosome 7 Chromosomal mapping of genes for transforming growth factors beta 2 and beta 3 in man and mouse: dispersion of TGF-beta gene family Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death Transforming growth factor-β3 is required for secondary palate fusion TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes Overexpression of TGF-β1 gene induces cell surface localized glucose-regulated protein 78-associated latency-associated peptide/TGF-β Ligation of protease-activated receptor 1 enhances α v β 6 integrin-dependent TGF-β activation and promotes acute lung injury Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1 TGF-β signaling from receptors to the nucleus Signal transduction by the TGF-β superfamily Transforming growth factor-β signaling through the Smad pathway: role in extracellular matrix gene expression and regulation FAST-2 is a mammalian winged-helix protein which mediates transforming growth factor β signals TGF-βinduced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein Hierarchical model of gene regulation by transforming growth factor β Smad2 role in mesoderm formation, left-right patterning and craniofacial development Identification of Smad7, a TGFβinducible antagonist of TGF-β signalling Ligand-dependent degradation of Smad3 by a ubiquitin ligase complex of ROC1 and associated proteins The 26S proteasome system in the signaling pathways of TGF-beta superfamily The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease Non-Smad pathways in TGF-β signaling Mammalian rho GTPases: new insights into their functions from in vivo studies Rho kinase-1 mediates cardiac fibrosis by regulating fibroblast precursor cell differentiation Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis Association between the miRNA signatures in plasma and bronchoalveolar fluid in respiratory pathologies Stress-activated MAP kinases in cardiac remodeling and heart failure: new insights from transgenic studies Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription Wnt signaling and human diseases: what are the therapeutic implications? WNT and β-catenin signalling: diseases and therapies The Wnt/frizzled pathway in cardiovascular development and disease: friend or foe? Wnt/β-catenin signaling and disease Unexpected complexity of the Wnt gene family in a sea anemone Alternative wnt signaling is initiated by distinct receptors A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism Casein kinase 1 γ couples Wnt receptor activation to cytoplasmic signal transduction Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes WNT signaling in adult cardiac hypertrophy and remodeling: lessons learned from cardiac development An updated overview on Wnt signaling pathways: a prelude for more Wnt signaling pathways meet rho GTPases Distler O. β-catenin is a central mediator of profibrotic Wnt signaling in systemic sclerosis Wnt/β-catenin signaling promotes renal interstitial fibrosis Secreted antagonists of the Wnt signalling pathway The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy Canonical Wnt/βcatenin signaling in epicardial fibrosis of failed pediatric heart allografts with diastolic dysfunction Wnt coreceptor Lrp5 is a driver of idiopathic pulmonary fibrosis SIRT3 blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3β Axin is a scaffold protein in TGF-β signaling that promotes degradation of Smad7 by Arkadia Axin facilitates Smad3 activation in the transforming growth factor β signaling pathway MicroRNA-29 mediates TGFβ1-induced extracellular matrix synthesis by targeting wnt/β-catenin pathway in human orbital fibroblasts Interaction between Smad 3 and Dishevelled in murine embryonic craniofacial mesenchymal cells Cross-talk between the TGFβ and Wnt signaling pathways in murine embryonic maxillary mesenchymal cells Activation of Wnt/β-catenin signalling is required for TGF-β/Smad2/3 signalling during myofibroblast proliferation LncRNA PlncRNA-1 regulates proliferation and differentiation of hair follicle stem cells through TGF-β1-mediated Wnt/β-catenin signal pathway Epithelial stem cells and implications for wound repair Action of SNAIL1 in cardiac myofibroblasts is important for cardiac fibrosis following hypoxic injury Cardiac fibroblasts: friend or foe? Structural and functional characterisation of cardiac fibroblasts Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution Searching for new mechanisms of myocardial fibrosis with diagnostic and/or therapeutic potential Myocardial fibrosis in congenital heart disease Myofibroblasts and mechano-regulation of connective tissue remodelling Myofibroblast development is characterized by specific cell-cell adherens junctions Formation and function of the myofibroblast during tissue repair Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling The impact of preexisting myocardial remodeling on ventricular function early after tetralogy of Fallot repair Fibrous matrix of ventricular myocardium in tricuspid atresia compared with normal heart: a quantitative analysis Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR working Group of the European Society of cardiology consensus statement Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance Myoarchitecture and connective tissue in hearts with tricuspid atresia Histopathology of the right ventricular outflow tract and its relationship to clinical outcomes and arrhythmias in patients with tetralogy of Fallot The distribution of fibrosis in the left ventricle in congenital aortic stenosis and coarctation of the aorta Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study The alpha-smooth muscle actin-positive cells in healing human myocardial scars Infarct scar: a dynamic tissue Fibroblasts and myofibroblasts: what are we talking about? Cardiac fibroblast to myofibroblast differentiation in vivo and in vitro: expression of focal adhesion components in neonatal and adult rat ventricular myofibroblasts TGF-β signaling and the fibrotic response Regulation of collagen synthesis by inhibitory Smad7 in cardiac myofibroblasts Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair Transforming growth factor-β function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats Mechanisms of TGF-β signaling from cell membrane to the nucleus Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling Identification of novel TGF-β/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction Potential therapeutic targets for cardiac fibrosis: TGFβ, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation TGF-β-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1 Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis Piperine attenuates pathological cardiac fibrosis via PPAR-γ/AKT pathways Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells DC: β-catenin in the alveolar epithelium protects from lung fibrosis after intratracheal bleomycin Cardiac fibroblast glycogen synthase kinase-3β regulates ventricular remodeling and dysfunction in ischemic heart Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction Secreted Frizzled-related protein 2 as a target in antifibrotic therapeutic intervention Secreted Frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction Loss of β-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice DKK3 overexpression attenuates cardiac hypertrophy and fibrosis in an angiotensin-perfused animal model by regulating the ADAM17/ACE2 and GSK-3β/β-catenin pathways Aldehyde dehydrogenase-2 protects against myocardial infarctionrelated cardiac fibrosis through modulation of the Wnt/β-catenin signaling pathway Wnt10b gain-of-function improves cardiac repair by arteriole formation and attenuation of fibrosis Downregulation of S100A4 Alleviates Cardiac Fibrosis via Wnt/β-Catenin Pathway in Mice WNT3a and WNT5a Transported by Exosomes Activate WNT Signaling Pathways in Human Cardiac Fibroblasts Qishen Granule Attenuates Cardiac Fibrosis by Regulating TGF-β/Smad3 and GSK-3β Pathway Xinfuli Granule improves post-myocardial infarction ventricular remodeling and myocardial fibrosis in rats by regulating TGF-β/Smads signaling pathway Human antigen R as a therapeutic target in pathological cardiac hypertrophy TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling Non-coding RNAs: multi-tasking molecules in the cell The Role of Long Noncoding RNAs in Gene Expression Regulation Insights into circular RNA biology Focus: Epigenetics: Emerging Functions of Circular RNAs The emerging landscape of circular RNA in life processes Ochiya T: microRNA as a new immuneregulatory agent in breast milk Myocardial cell-to-cell communication via microRNAs Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease Regulatory RNAs and paracrine networks in the heart Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs Exosomes and cardiac repair after myocardial infarction Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes Long non-coding RNA MALAT 1 regulates hyperglycaemia induced inflammatory process in the endothelial cells Chakrabarti S: miR133a regulates cardiomyocyte hypertrophy in diabetes Detailed characterization of microRNA changes in a canine heart failure model: Relationship to arrhythmogenic structural remodeling Diez J: microRNA-122 downregulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis Deficiency of Micro RNA miR-1954 Promotes Cardiac Remodeling and Fibrosis Circular RNAs in cardiovascular disease: an overview Emerging roles and context of circular RNAs Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α Long noncoding RNA CCAT2 promotes the breast cancer growth and metastasis by regulating TGF-beta signaling pathway Long non-coding RNA Linc00675 suppresses cell proliferation and metastasis in colorectal cancer via acting on miR-942 and Wnt/β-catenin signaling Overexpression of long non-coding RNA-CTD903 inhibits colorectal cancer invasion and migration by repressing Wnt/β-catenin signaling and predicts favorable prognosis The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling MicroRNA-21 induces stemness by downregulating transforming growth factor beta receptor 2 (TGFβR2) in colon cancer cells MicroRNA-17-5p-activated Wnt/β-catenin pathway contributes to the progression of liver fibrosis A novel reciprocal loop between microRNA-21 and TGFβRIII is involved in cardiac fibrosis Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines MicroRNA-29 in aortic dilation: implications for aneurysm formation MiR-155 knockout in fibroblasts improves cardiac remodeling by targeting tumor protein p53-inducible nuclear protein 1 Oxidative stressinduced p53 activity is enhanced by a redox-sensitive TP53INP1 SUMOylation TGF-β1 acts through miR-155 to down-regulate TP53INP1 in promoting epithelial-mesenchymal transition and cancer stem cell phenotypes Micro RNA-24 regulates cardiac fibrosis after myocardial infarction Elevated furin levels in human cystic fibrosis cells result in hypersusceptibility to exotoxin A-induced cytotoxicity MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium Multipoint targeting of TGF-β/Wnt transactivation circuit with microRNA 384-5p for cardiac fibrosis A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1 Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor β (TGFβ1)-dependent paracrine mechanism MicroRNA-101a inhibits cardiac fibrosis induced by hypoxia via targeting TGFβRI on cardiac fibroblasts MicroRNA miR145 regulates TGFBR2 expression and matrix synthesis in vascular smooth muscle cells A novel mechanism of Smads/miR-675/TGFβR1 axis modulating the proliferation and remodeling of mouse cardiac fibroblasts Modulation of miR-10a-mediated TGF-β1/Smads signaling affects atrial fibrillation-induced cardiac fibrosis and cardiac fibroblast proliferation The microRNA-15 family inhibits the TGFβ-pathway in the heart MicroRNA-9 inhibits high glucose-induced proliferation, differentiation and collagen accumulation of cardiac fibroblasts by down-regulation of TGFBR2 MicroRNA-223 regulates cardiac fibrosis after myocardial infarction by targeting RASA1 MicroRNA-323a-3p Promotes Pressure Overload-Induced Cardiac Fibrosis by Targeting TIMP3 Overexpression of microRNA-202-3p protects against myocardial ischemia-reperfusion injury through activation of TGF-β1/Smads signaling pathway by targeting TRPM6 Crucial role of miR-433 in regulating cardiac fibrosis Smad3 inactivation and MiR-29b upregulation mediate the effect of carvedilol on attenuating the acute myocardium infarctioninduced myocardial fibrosis in rat MicroRNA-495 inhibits the high glucoseinduced inflammation, differentiation and extracellular matrix accumulation of cardiac fibroblasts through downregulation of NOD1 MiR-154 promotes myocardial fibrosis through βcatenin signaling pathway MiR-154 directly suppresses DKK2 to activate Wnt signaling pathway and enhance activation of cardiac fibroblasts MicroRNA-199a regulates myocardial fibrosis in rats by targeting SFRP5 Micro RNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13 Long noncoding RNA (lncRNA) n379519 promotes cardiac fibrosis in post-infarct myocardium by targeting miR-30 Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR-29c in chronic hypoxia Long noncoding RNA homeobox A11 antisense promotes transforming growth factor β1-induced fibrogenesis in cardiac fibroblasts Long noncoding RNA Crnde attenuates cardiac fibrosis via Smad3-Crnde negative feedback in diabetic cardiomyopathy Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations Not applicable.Authors' contributions HM, AS and MRH contributed in conception, design, statistical analysis and drafting of the manuscript. FGH, ZS, SV, MD, AN, MMT, HD, AM, and YGH contributed in conception, data collection and manuscript drafting. HM and MMT contributed in revised version. The final version was confirmed by all authors for submission. The author(s) read and approved the final manuscript.Funding MRH was supported by US NIH Grants R01AI050875 and R21AI121700. The primary data for this study is available from the authors on direct request. This study was considered exempt by the KAUMS Institutional Review Board. Not applicable.