key: cord-0035808-dkw2sugl authors: Singh, Indu; Swami, Rajan; Khan, Wahid; Sistla, Ramakrishna title: Delivery Systems for Lymphatic Targeting date: 2013-10-08 journal: Focal Controlled Drug Delivery DOI: 10.1007/978-1-4614-9434-8_20 sha: 826b7b287f85ed0dbd31625ea0e10a51bcaf733a doc_id: 35808 cord_uid: dkw2sugl The lymphatic system has a critical role in the immune system’s recognition and response to disease, and it is an additional circulatory system throughout the entire body. Most solid cancers primarily spread from the main site via the tumour’s surrounding lymphatics before haematological dissemination. Targeting drugs to lymphatic system is quite complicated because of its intricate physiology. Therefore, it tends to be an important target for developing novel therapeutics. Currently, nanocarriers have encouraged the lymphatic targeting, but still there are challenges of locating drugs and bioactives to specific sites, maintaining desired action and crossing all the physiological barriers. Lymphatic therapy using drug-encapsulated colloidal carriers especially liposomes and solid lipid nanoparticles emerges as a new technology to provide better penetration into the lymphatics where residual disease exists. Optimising the proper procedure, selecting the proper delivery route and target area and making use of surface engineering tool, better carrier for lymphotropic system can be achieved. Thus, new methods of delivering drugs and other carriers to lymph nodes are currently under investigation. The lymphatic system was fi rst recognised by Gaspare Aselli in 1627, and the anatomy of the lymphatic system was almost completely characterised by the early nineteenth century. However, knowledge of the blood circulation continued to grow rapidly in the last century [ 1 ] . Two different theories are proposed which are in favour of origin of the lymphatic vessels. Firstly, centrifugal theory of embryologic origin of the lymphatics was described in the early twentieth century by Sabin and later by Lewis, postulating that lymphatic endothelial cells (LECs) are derived from the venous endothelium. Later the centripetal theory of lymphatic development was proposed by Huntington and McClure in 1910 which describes the development of the lymphatic system beginning with lymphangioblasts, mesenchymal progenitor cells, arising independently of veins. The venous connection to the lymphatic system then happens later in development [ 2 ] . The lymphatic vessels in the embryo are originated at mid-gestation and are developed after the cardiovascular system is fully established and functional [ 3 ] . A dual origin of lymphatic vessels from embryonic veins and mesenchymal lymphangioblasts is also proposed [ 4 ] . Recent studies provide strong support of the venous origin of lymphatic vessels [ 5 -8 ] . The recent discovery of various molecular markers has allowed for more in-depth research of the lymphatic system and its role in health and disease. The lymphatic system has recently been elucidated as playing an active role in cancer metastasis. The knowledge of the active processes involved in lymphatic metastasis provides novel treatment targets for various malignancies. The lymphatic system consists of the lymphatic vessels, lymph nodes, spleen, thymus, Peyer's patches and tonsils, which play important roles in immune surveillance and response. The lymphatic system serves as the body's second vascular system in vertebrates and functions co-dependently with the cardiovascular system [ 9 , 10 ] . The lymphatic system comprises a single irreversible, open-ended transit network without a principal driving force [ 9 ] . It consists of fi ve main types of conduits including the capillaries, collecting vessels, lymph nodes, trunks and ducts. The lymphatic system originates in the dermis with initial lymphatic vessels and blind-ended lymphatic capillaries that are nearly equivalent in size to but less abundant than regular capillaries [ 9 , 11 ] . Lymphatic capillaries consist of a single layer of thin-walled, non-fenestrated lymphatic endothelial cells (LECs), alike to blood capillaries. The LECs, on the contrary to blood vessels, have poorly developed basement membrane and lack tight junctions and adherent junctions too. These very porous capillaries act as gateway for large particles, cells and interstitial fl uid. Particles as large as 100 nm in diameter can extravasate into the interstitial space, get phagocytosed by macrophages and are ultimately passed on to lymph nodes [ 11 -14 ] . Lymphatic capillary endothelial cells are affi xed to the extracellular matrix by elastic anchoring fi laments, which check vessel collapse under high interstitial pressure. These initial lymphatics, under a positive pressure gradient, distend and create an opening between loosely anchored endothelial cells letting for the entry of lymph, a protein-rich exudate from the blood capillaries [ 12 , 15 , 16 ] . In initial lymphatic vessels, overlying endothelial cell-cell contacts prevent fl uid refl ux back into the interstitial space [ 17 , 18 ] . After the collection of lymph by the lymphatic capillaries, it is transported through a system of converging lymphatic vessels of progressively larger size, is fi ltered through lymph nodes where bacteria and particulate matter are removed and fi nally goes back to the blood circulation. Lymph is received from the initial capillary lymphatic by deeper collecting vessels that contain valves to maintain unidirectional fl ow of lymph. These collecting vessels have basement membranes and are surrounded by smooth muscle cells with intrinsic contractile activity that in combination with contraction of surrounding skeletal muscles and arterial pulsations propels the lymph to lymph nodes [ 19 -21 ] . The collecting lymphatic vessels unite into lymphatic trunks, and the lymph is fi nally returned to the venous circulation via the thoracic duct into the left subclavian vein [ 22 , 23 ] . The fl ow of lymph toward the circulatory system is supported by increases in interstitial pressure as well as contractions of the lymphatic vessels themselves. Roughly 25 l of lymphatic fl uid enters the cardiovascular system each day [ 11 ] . The key functions of the lymphatic system are maintenance of normal tissue fl uid balance, absorption of lipids and fat-soluble vitamins from the intestine and magnetism and transport of immune cells. Lymphatics transport the antigen-presenting cells as well as antigens from the interstitium of peripheral tissues to the draining lymph nodes where they initiate immune responses via B-and T-cells in the lymph nodes [ 9 , 12 , 24 , 25 ] . Tissue fl uid balance is maintained by restoring interstitial fl uid to the cardiovascular system [ 9 ] . Although capillaries have very low permeability to proteins, these molecules as well as other macromolecules and bacteria accumulate in the interstitium. Due to the accumulation of these large molecules in the interstitium, signifi cant tissue oedema would result. The lymphatic system offers the mechanism by which these large molecules re-enter the blood circulation [ 26 ]. The lymphatic system is the site of many diseases such as metastitial tuberculosis (TB), cancer and fi lariasis [ 27 ] . Due to the peculiar nature and anatomy of the lymphatic system, localisation of drugs in the lymphatics has been particularly diffi cult to achieve. The lymphatic system has an active role in cancer metastasis. Although many cancers may be treated with surgical resection, microscopic disease may remain and lead to locoregional recurrence. Conventional systemic chemotherapy cannot prove effective for delivering drugs to the lymphatic system without dose-limiting toxicities [ 28 ]. Lymphatic system functions in the clearance of particulate matter from the interstitium following presentation to lymph nodes have created interest in developing microparticulate systems to target regional lymph nodes. Molecule's composition is important in determining uptake into the lymphatics and retention within the lymph nodes. Colloidal materials, for example, liposomes, activated carbon particles, emulsions, lipids and polymeric particulates, are highly taken up by the lymphatics; that's why nowadays these substances are emerging as potential carriers for lymphatic drug targeting [ 29 ] . The vast majority of drugs following oral administration are absorbed directly into portal blood, but a number of lipophilic molecules may get access to the systemic circulation via the lymphatic pathway [ 30 , 31 ] . Intestinal lymphatic transport of lipophilic molecules is signifi cant and presents benefi ts in a number of situations: The lymphatic system also acts as the primary systemic transport pathway for B-and T-lymphocytes as well as the main route of metastatic spread of a number of solid tumours [ 36 , 37 ] . Therefore, lymphatic absorption of the immunomodulatory and anticancer compounds may be more effective [ 38 , 39 ] . The presence of wide amounts of HIV-susceptible immune cells in the lymphoid organs makes antiretroviral drug targeting to these sites of tremendous interest in HIV therapy. This strategy comprises once again targeting nanosystems to immune cell populations, particularly macrophages. Also evidence further suggests that lymph and lymphoid tissue, and in particular gut-associated lymphoid tissue, play a major role in the development of HIV and antivirals which target acquired immunodefi ciency syndrome (AIDS) may therefore be more effective when absorbed via the intestinal lymphatics [ 40 , 41 ] Targeting drugs to lymphatic system is a tough and challenging task, and it totally depends upon the intricate physiology of the lymphatic system. Targeting facilitates direct contact of drug with the specifi c site, decreasing the dose of the drugs and minimising the side effects caused by them. Currently, nanocarriers have encouraged the lymphatic targeting, but still there are challenges of locating drugs and bioactives to specifi c sites, maintaining desired action and crossing all the physiological barriers. These hurdles could be overcome by the use of modifi ed nanosystems achieved by the surface engineering phenomena. From the growing awareness of the importance of lymph nodes in cancer prognosis, their signifi cance for vaccine immune stimulation and the comprehension that the lymph nodes harbour HIV as well as other infectious diseases stems the development of new methods of lymph node drug delivery [ 47 -50 ] . New methods of delivering drugs and other carriers to lymph nodes are currently under investigation. Lymph node dissemination is the primary cause of the spread of majority of solid cancers [ 51 ] . In regard to cancer metastasis, the status of the lymph node is a major determinant of the patient's diagnosis. The most important factor that determines the appropriate care of the patient is correct lymph node staging [ 52 ] . But patient survivals have been shown to improve by the therapeutic interventions that treat metastatic cancer in lymph nodes with either surgery or local radiation therapy [ 53 ] . Viraemia is an early indication of primary infection with HIV followed by a specifi c HIV immune response and a dramatic decline of virus in the plasma [ 54 ] . Long after the HIV virus can be found in the blood, HIV can be found in high levels in mononuclear cells located in lymph nodes. Viral replication in these lymph nodes has been reported to be about 10-to 100-fold higher than in the peripheral blood mononuclear cells [ 55 ] . Standard oral or intravenous drug delivery to these lymph node mononuclear cells is diffi cult [ 56 ] . Even if highly active antiretroviral therapy (HAART) can reduce plasma viral loads in HIV-infected patients by 90 %, active virus can still be isolated from lymph nodes even after 30 months of HAART therapy. Lymph nodes are the key element of the life cycle of several parasite organisms, including fi laria. Lymphatic vessels and lymph nodes of infected patients can carry adult worms. This adult fi laria obstructs the lymphatic drainage that results into swelling of extremities that are distal to the infected lymph node. These very symptoms of swollen limbs in patients with fi larial disease have been termed elephantiasis. The eradication of adult worms in lymph nodes is not frequently possible, and commonly a much extended course of medical therapy is required for it to be successful [ 57 ] . New methods of curing anthrax have become a burning interest following the recent outburst of anthrax infections and deaths in the USA as a result of terrorism. In anthrax infection, endospores from Bacillus anthracis that gain access into the body are phagocytosed by macrophages and carried to regional lymph nodes where the endospores germinate inside the macrophages and become vegetative bacteria [ 58 ] . According to one literature, computed tomography of the chest was performed on eight patients infected with inhalational anthrax. Mediastinal lymphadenopathy was found in seven of the eight patients [ 59 ] . In another case report of a patient, the anthrax bacillus was shown to be rapidly sterilised within the blood stream after initiation of antibiotic therapy. However, viable anthrax bacteria were still present in postmortem mediastinal lymph node specimens [ 60 ] . Treatment and control of these diseases are hard to accomplish because of the limited access of drugs to mediastinal nodes using common pathways of drug delivery. Also, the anatomical location of mediastinal nodes represents a diffi cult target for external beam irradiation. Newer methods to target antituberculosis drugs to these lymph nodes could possibly decrease the amount of time of drug therapy. TB requires lengthy treatment minimum of approximately 6 months probably because of its diffi culty in delivering drugs into the tubercular lesions. The TB infection is caused by mycobacteria that invade and grow chiefl y in phagocytic cells. Lymph node TB is the most common form of extrapulmonary TB rating approximately as 38.3 %. This is frequently found to spread from the lungs to lymph nodes. In one study, total TB lymph node involvement was found as 71 % of the intrathoracic lymph nodes, 26 % of the cervical lymph nodes and 3 % of the axillary lymph nodes [ 61 ] . Targeted delivery of drugs can be achieved utilising carriers with a specifi ed affi nity to the target tissue. There are two approaches for the targeting, i.e. passive and active. In passive targeting, most of the carriers accumulate to the target site during continuous systemic circulation to deliver the drug substance, the behaviour of which depends highly upon the physicochemical characteristics of the carriers. Whereas much effort has been concentrated on active targeting, this involves delivering drugs more actively to the target site. Passive targeting involves the transport of carriers through leaky tumour vasculature into the tumour interstitium and cells by convection or passive diffusion. Further, nanocarriers and drug then accumulate at the target site by the enhanced permeation and retention (EPR) effect [ 62 ] . The EPR effect is most prominent mainly in cancer targeting. Moreover, the EPR effect is pertinent for about all fast-growing solid tumours [ 63 ] . The EPR effect will be most positive if nanocarriers can escape immune surveillance and circulate for a long period. Very high local concentrations of drug-loaded nanocarriers can be attained at the target site, for example, about 10-to 50-fold higher than in normal tissue within 1-2 days [ 64 ] . However, there exist some limitations for passively targeting the tumour; fi rst is the degree of tumour vascularisation and angiogenesis which is important for passive targeting of nanocarriers [ 65 ] . And, second, due to the poor lymphatic drainage in tumours, the interstitial fl uid pressure increases which correlates nanocarrier size relationship with the EPR effect: larger and long-circulating nanocarriers (100 nm) are more retained in the tumour, whereas smaller molecules easily diffuse [ 66 ] . Active targeting is based upon the attachment of targeting ligands on the surface of the nanocarrier for appropriate receptor binding that are expressed at the target site. The ligand particularly binds to a receptor overexpressed in particular diseased cells or tumour vasculature and not expressed by normal cells. In addition, targeted receptors should be present uniformly on all targeted cells. Targeting ligands are either monoclonal antibodies (mAbs) and antibody fragments or non-antibody ligands (peptidic or not). These can also be termed as ligand-targeted therapeutics [ 67 , 68 ] . Targeting approaches for lymphatic targeting are shown in Fig. 20 .1 . Current research is focussed on two types of carriers, namely, colloidal carriers and polymeric carriers. Targeting strategies for lymphatics are shown in Fig. 20 Much effort has been concentrated to achieve lymphatic targeting of drugs using colloidal carriers. The physicochemical nature of the colloid itself has been shown to be of particular relevance, with the main considerations being size of colloid and hydrophobicity. The major purpose of lymphatic targeting is to provide an effective anticancer chemotherapy to prevent the metastasis of cancer cells by accumulating the drug in the regional lymph node. Emulsions are probably well-known particulate carriers with comparative histories of research and have been widely used as a carrier for lymph targeting. Hashida et al. demonstrated that injection of water-in-oil (W/O) or oil-in-water (O/W) emulsions favoured lymphatic transport of mitomycin C via the intraperitoneal and intramuscular routes and uptake into the regional lymphatics was reported in the order of O/W > W/O > aqueous solution. The nanoparticle-in-oil emulsion system, containing anti-fi larial drug in gelatin nanoparticles, was studied for enhancing lymphatic targeting [ 69 ] . Pirarubicin and Lipiodol emulsion formulation was developed for treating gastric cancer and metastatic lymph nodes [ 70 , 71 ] . After endoscopic injection of the pirarubicin-Lipiodol emulsion, the drug retained over 7 days at the injection site and in the regional lymph node. Hauss et al. in their study have explored the lymphotropic potential of emulsions and self-emulsifying drug delivery systems (SEDDS). They investigated the effects of a range of lipid-based formulations on the bioavailability and lymphatic transport of ontazolast following oral administration to conscious rats and found that all the lipid formulations increased the bioavailability of ontazolast comparative to the control suspension, the SEDDS promoted more rapid absorption and maximum lymphatic transport is found with the emulsion [ 72 , 73 ] . Lymphatic delivery of drug-encapsulated liposomal formulations has been investigated extensively in the past decade. Liposomes possess ideal features for delivering therapeutic agents to the lymph nodes which are based on their size, which prevents their direct absorption into the blood; the large amount of drugs and other therapeutic agents that liposomes can carry; and their biocompatibility. The utility of liposomes as a carrier for lymphatic delivery was fi rst investigated by Segal et al. in 1975 [ 74 ] . Orally administered drug-incorporated liposomes enter the systemic circulation via the portal vein and intestinal lymphatics. Drugs entering the intestinal lymphatic through the intestinal lumen avoid liver and fi rst-pass metabolism as they fi rst migrate to lymphatic vessels and draining lymph nodes before entering systemic circulation. Lymphatic uptake of carriers via the intestinal route increases bioavailability of a number of drugs. For oral delivery of drug-encapsulated liposomal formulations, intestinal absorbability and stability are the primary formulation concerns. Ling et al. evaluated oral delivery of a poorly bioavailable hydrophilic drug, cefotaxime, in three different forms: liposomal formulation, aqueous-free drug and a physical mixture of the drug and empty liposomes [ 75 ] . The liposomal formulation of the drug turned out to exhibit a 2.7-fold increase in its oral bioavailability compared to the aqueous dosage and a 2.3-fold increase for the physical mixture. They also accounted that the liposomal formulation leads to a signifi cant enhancement of the lymphatic localisation of the drug relative to the other two formulations. As a result, liposome systems emerged as useful carriers for poorly bioavailable hydrophilic drugs, promoting their lymphatic transport in the intestinal lymph as well as their systemic bioavailability. Conventional liposomal formulations contain anticancer drugs incorporated in them for intravenous infusion in treating various types of cancers. Doxil, a chemotherapeutic formulation of PEGylated liposomes of doxorubicin, is widely used as fi rst-line therapy of AIDS-related Kaposi's sarcoma, breast cancer, ovarian cancer and other solid tumours [ 76 -80 ] . Liposomal delivery of anticancer drug actinomycin D via intratesticular injection has shown greater concentration of the drug in the local lymph nodes. Furthermore, a study by Hirnle et al. found liposomes as a better carrier for intralymphatically delivered drugs contrasted with bleomycin emulsions [ 81 ] . Systemic liposomal chemotherapy is preferred mainly because of its reduced side effects compared to the standard therapy and improved inhibition of the anticancer drugs from enzymatic digestion in the systemic circulation. Effective chemotherapy by pulmonary route could overcome various lacunas associated with systemic chemotherapy like serious non-targeted toxicities, poor drug penetration into the lymphatic vessels and surrounding lymph node and fi rst-pass clearance concentrating drugs in the lungs and draining lymphatics in the case of oral delivery. Latimer et al. developed liposomes of paclitaxel and a vitamin E analogue α-tocopheryloxy acetic acid (α-TEA) in an aerosol formulation for treating murine mammary tumours and metastases [ 82 ] . Similarly, Lawson et al. performed a comparative study for the anti-proliferative effi cacy of a 9-nitro-camptothecin (9-NC)-encapsulated dilauroylphosphatidylcholine liposomal delivery, α-TEA and a combination therapy of 9-NC and α-TEA, in a metastatic murine mammary tumour model. Liposome-encapsulated individual as well as combination treatment was delivered via an aerosol for curing metastases of lungs and of the surrounding lymph node. The animals treated with the combination therapy were found to have less proliferative cells compared to the animals treated with 9-NC alone when immunostained with Ki-67. The in vivo anticancer effi cacy studies demonstrated that the combination treatment greatly hindered the tumour progression compared to each treatment alone, leading to the prolonged survival rate [ 83 ] . High levels of drugs could be targeted to lymph nodes containing TB using liposomal antituberculosis drug therapy [ 84 ] . Deep lung lymphatic drainage could also be visualised using 99mTc radioactive marker-incorporated liposomes. In addition, Botelho et al. delivered aerosolised nanoradioliposomal formulation to wild boars and observed their deep lung lymphatic network and surrounding lymph nodes [ 85 ] . Also, this technique has offered new information of the complicated structure of lymphatic network and has emerged as a new and non-invasive molecular imaging technique for the diagnosis of early dissemination of lung cancers as compared to the conventional computed tomography. Solid lipid nanoparticles (SLN) could be a good formulation strategy for incorporating drugs with poor oral bioavailability due to low solubility in GI tract or pre-systemic hepatic metabolism (fi rst-pass effect) permitting transportation into the systemic circulation through the intestinal lymphatics. Bargoni et al. have performed various studies on absorption and distribution of SLN after duodenal administration [ 86 -89 ] . In one study, 131 I-17-iodoheptadecanoic acid-labelled drug-free SLN were delivered into the duodenal lumen of fed rats, and transmission electron microscopy and photon correlation spectroscopy results of the lymph and blood samples verifi ed the transmucosal transport of SLN [ 86 ] . In a later study of tobramycin-loaded SLN after duodenal administration, the improvement of drug absorption and bioavailability was ascribed mostly to the favoured transmucosal transport of SLN to the lymph compared to the blood [ 88 ] . The same group conducted a study using idarubicin-loaded SLN, administered via the duodenal route rather than intravenous route, and observed enhancement in drug bioavailability [ 89 ] . Reddy et al. prepared etoposide-loaded tripalmitin (ETPL) SLN radiolabelled with 99mTc and administered the ETPL nanoparticles subcutaneously, intraperitoneally and intravenously, to mice bearing Dalton's lymphoma tumours, and 24 h after subcutaneous administration, gamma scintigraphy and the radioactivity measurements showed that the ETPL SLN revealed a clearly higher degree of tumour uptake given via subcutaneous route (8-and 59-fold higher than that of the intraperitoneal and intravenous routes, respectively) and reduced accumulation in reticuloendothelial system organs [ 90 ] . Targeting therapies are of great potential in small cell lung cancer considering intrathoracic lymph node metastasis occurring in approximately 70 % of the limited stage patients and to nearly 80 % of the extensive stage patients [ 91 ] . Considering the case of non-small cell lung cancer, extensive rate of metastasis of lymphatics is seen in greater than 80 % of stage IV patients [ 92 ] . Videira et al. compared the biodistribution of inhaled 99mTc-d,l -hexamethylpropyleneamine oxime (HMPAO)radiolabelled SLN with that of the free tracer administered through the same route, and gamma scintigraphic results specifi ed that the radiolabelled SLN were primarily cleared from lungs via the lymphatics [ 93 , 94 ] . Nanocapsules tend to be the most promising approach for lymphatic targeting because of their possibility of attaining distinct qualities with an easy manufacturing process. Nanocapsules coated with hydrophobic polymers could be easily captured by lymphatic cells in the body, when administered, because the hydrophobic particle is generally recognised as a foreign substance. The lymphatic targeting ability of poly(isobutylcyanoacrylate) nanocapsules encapsulating 12-(9-anthroxy) stearic acid upon intramuscular administration was evaluated and compared with three conventional colloidal carriers [ 69 ] . In vivo study in rats proved that poly(isobutylcyanoacrylate) nanocapsules retained in the right iliac regional lymph nodes in comparison with other colloidal carriers following intramuscular administration. For effective targeted and sustained delivery of drugs to lymph, several polymeric particles have been designed and studied. The polymers are categorised in two types based on their origin either natural polymers like dextran, alginate, chitosan, gelatin, pullulan and hyaluronan or synthetic polymers like PLGA, PLA and PMMA. Dextran a natural polysaccharide has been used as a carrier for a range of drug molecules due to its outstanding biocompatibility. Bhatnagar et al. synthesised cyclosporine A-loaded dextran acetate particles labelled with 99mTc. These particles gradually distributed cyclosporine A all through the lymph nodes following subcutaneous injection into the footpad of rats [ 95 ] . Dextran (average molecular weights of 10, 70 and 500 kDa)-conjugated lymphotropic delivery system of mitomycin C has been studied and it was reported that after intramuscular injection in mice, this mitomycin C-dextran conjugates retained for a longer period in regional lymph nodes for nearly 48 h while the free mitomycin was quickly cleared. Hyaluronan, also called as hyaluronic acid, is a natural biocompatible polymer that follows lymphatic drainage from the interstitial spaces. Cai et al. demonstrated a novel intralymphatic drug delivery method synthesising a cisplatin-hyaluronic acid conjugate for breast cancer treatment. Following subcutaneous injection into the upper mammary fat pad of female rats, most of the carrier localised in the regional nodal tissue compared to the standard cisplatin formulation [ 96 ] . Poly(lactide-co-glycolide) as synthetic polymer that is used to prepare biodegradable nanospheres has been accounted to deliver drugs and diagnostic agents to the lymphatic system. Similarly, nanospheres coated with block copolymers of poloxamers and poloxamines with radiolabelled 111 In-oxine are used to trace the nanoparticles in vivo. Upon s.c. injection, the regional lymph node showed a maximum uptake of 17 % of the administered dose [ 97 ] . Dunne et al. synthesised a conjugate of block copolymer cis-diamminedichloroplatinum(II) (CDDP) and poly(ethylene oxide)-block-poly(lysine) (PEO-b-PLys) for treating lymph node metastasis. One animal treatment with 10 wt.% CDDP-polymer resulted into limited tumour growth in the draining lymph nodes and prevention of systemic metastasis [ 98 ] . Johnston and coworkers designed a biodegradable intrapleural (ipl) implant of paclitaxel consisting gelatin sponge impregnated with poly(lactide-co-glycolide) (PLGA-PTX) for targeting thoracic lymphatics. In rat model, this system exhibited lymphatic targeting capability and showed sustained drug release properties [ 99 ] . Kumanohoso et al. designed a new drug delivery system for bleomycin by loading it into a small cylinder of biodegradable polylactic acid to target lesions. This system showed signifi cantly higher antitumour effect compared to bleomycin solution and no treatment [ 100 ] . To treat lesions, a new biodegradable colloidal particulatebased nanocarrier system was designed to target thoracic lymphatics and lymph nodes. Various nano-and microparticles of charcoal, polystyrene and poly(lactideco-glycolide) were studied for the lymphatic distribution after intrapleural implantation in rats, and after 3 h of intrapleural injection, the lymphatic uptake was observed [ 101 ] . Kobayashi et al. utilised dendrimer-based contrast agents for dynamic magnetic resonance lymphangiography [ 102 ] . Gadolinium (Gd)-containing dendrimers of different sizes and molecular structures (PAMAM-G8, PAMAM-G4 and DAB-G5) (PAMAM, polyamidoamine; DAB, diaminobutyl) are used as contrast agents. Size and molecular structure play a great role in distribution and pharmacokinetics of dendrimers. For example, PAMAM-G8 when injected intravenously had a comparatively long life in the circulatory system with minimum leakage out of the vessels, whereas PAMAM-G4 cleared rapidly from the systemic circulation due to rapid renal clearance but had immediate survival in lymphatic circulation. The smaller-sized DAB-G5 showed greater accumulation and retention in lymph nodes useful for lymph node imaging using MR-LG. Gadomer-17 and Gd-DTPAdimeglumine (Magnevist) were evaluated as controls. Imaging experiments revealed that all of the reagents are able to visualise the deep lymphatic system except Gd-DTPA-dimeglumine. To visualise the lymphatic vessels and lymph nodes, PAMAM-G8 and DAB-G5 were used, respectively. While PAMAM-G4 provided good contrast of both the nodes and connecting vessels, Gadomer-17 was able to visualise lymph nodes, but not as clear as Gd-based dendrimers. Kobayashi also delivered various Gd-PAMAM (PAMAM-G2, PAMAM-G4, PAMAM-G6, PAMAM-G8) and DAB-G5 dendrimers to the sentinel lymph nodes and evaluated its visualisation with other nodes. The G6 dendrimer provided excellent opacifi cation of sentinel lymph nodes and was able to be absorbed and retained in the lymphatic system [ 103 ] . Using a combination of MRI and fl uorescence with PAMAM-G6-Gd-Cy, the sentinel nodes were more clearly observed signifying the potential of the dendrimers as platform for dual imaging. Kobayashi et al. further overcame the sensitivity limitation and depth limitations of each individual method by the simultaneous use of two modalities (radionuclide and optical imaging). Making use of PAMAM-G6 dendrimers conjugated with near-infrared (NIR) dyes and an 111 In radionuclide probe, multimodal nanoprobes were developed for radionuclide and multicolour optical lymphatic imaging [ 104 , 105 ] . Later Kobayashi also proposed the use of quantum dots for labelling cancer cells and dendrimer-based optical agents for visualising lymphatic drainage and identifying sentinel lymph nodes [ 106 ] . Polylysine dendrimers have been best used for targeting the lymphatic system and lymph nodes. Carbon nanotubes (CNT) possess various mechanochemical properties like high surface area, mechanical strength and thermal and chemical stability which cause them to be versatile carriers for drugs, proteins, radiologicals and peptides to target tumour tissues. Hydrophilic multiwalled carbon nanotubes (MWNTs) coated with magnetic nanoparticles (MN-MWNTs) have emerged as an effective delivery system for lymphatic targeting following subcutaneous injection of these particles into the left footpad of Sprague Dawley rats; the left popliteal lymph nodes were dyed black. MN-MWNTs were favourably absorbed by lymphatic vessels following their transfer into lymph nodes and no uptake was seen in chief internal organs such as the liver, spleen, kidney, heart and lungs. Gemcitabine loaded in these particles was evaluated for its lymphatic delivery effi ciency and MN-MWNTs-gemcitabine displayed the maximum concentration of gemcitabine in the lymph nodes [ 107 ] . McDevitt et al. synthesised tumour-targeting water-soluble CNT constructs by covalent attachment of monoclonal antibodies like rituximab and lintuzumab using 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a metal ion chelator while the fl uorescent probe was fl uorescein. CNT-([ 111 In] DOTA) (rituximab) explicitly targeted a disseminated human lymphoma in vivo trials compared to the controls CNT-([ 111 In] DOTA) (lintuzumab) and [ 111 In]rituximab [ 108 ] . Tsuchida and coworkers evaluated the drug delivery effi ciency of water-dispersed carbon nanohorns in a non-small cell lung cancer model. Polyethylene glycol (PEG)-doxorubicin conjugate bound oxidised single-wall carbon nanohorns (oxSWNHs) injected intratumourally into mice bearing human non-small cell lung cancer (NCI-H460) caused a signifi cant retardation of tumour growth. Histological analyses showed (probably by means of interstitial lymphatic fl uid transport), migration of oxSWNHs to the axillary lymph node occurred which is a major site of breast cancer metastasis near the tumour [ 109 ] . Shimada et al. described a silica particle-based lymphatic drug delivery system of bleomycin and compared its therapeutic effi cacy to that of free bleomycin solution in a transplanted tumour model in animals. Silica particle-adsorbed bleomycin showed considerable inhibitory effect on tumour growth and lymph node metastasis compared to free bleomycin solution [ 110 ] . Activated carbon particles of aclarubicin are used for adsorption and sustained release into lymph nodes. Upon subcutaneous administration into the fore foot-pads of rats these particles showed signifi cantly elevated distribution of aclarubicin to the auxiliary lymph nodes compared to aqueous solution of the drug [ 111 ] . Activated carbon particles of aclacinomycin A, adriamycin, mitomycin C and pepleomycin have also been used by another group for adsorption. Higher level of drug concentration was maintained in the new dosage form than in the solution form [ 112 ] . Antibody-drug conjugates enhance the cytotoxic activity of anticancer drugs by conjugating them with antibodies. Antibodies conjugated with cytostatic drugs such as calicheamicin have been used for the treatment of various lymphomas, including non-Hodgkin B-cell lymphoma (NHL), follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) [ 113 -116 ] . CD20 B-cell marker is expressed on the surface membrane of pre-B-lymphocytes and mature B-lymphocytes. The anti-CD20 mAb rituximab (Rituxan) is now the most potential antibody for the treatment of non-Hodgkin B-cell lymphomas (B-NHL) [ 117 ] . Rituximab-conjugated calicheamicin elevated the antitumour activity of rituximab against human B-cell lymphoma (BCL) xenografts in preclinical models [ 118 ] . CD22 is a B-lymphoid lineage-specifi c differentiation antigen expressed on the surface of both normal and malignant B-cells. Hence, the CD22-specifi c antibody could be effective in delivering chemotherapeutic drugs to malignant B-cells. Also, CD22 (Siglec-2) antibodies targeting to CD22 are suited for a Trojan horse strategy. Thus, antibody-conjugated therapeutic agents bind to the Siglec and are carried effi ciently into the cell [ 119 ] . A lot of interest has been seen in clinical progress of the conjugated anti-CD22 antibodies, especially inotuzumab ozogamicin (CMC-544) [ 120 ] . CD30 is expressed in the malignant Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma (HL) and anaplastic large-cell lymphoma. Younes and Bartlett reported an ongoing phase I dose-escalation trial in relapsed and refractory HL patients with Seattle Genetics (SGN-35) , a novel anti-CD30-antibody-monomethylauristatin E conjugate. SGN-35 was stable in the blood and released the conjugate only upon internalisation into CD30-expressing tumour cells [ 121 ] . Huang et al. constructed (anti-HER2/ neu -IgG3-IFN α ), another antibody-drug conjugate, and examined its effect on a murine B-cell lymphoma, 38C13, expressing human HER2/ neu , and this signifi cantly inhibited 38C13/HER2 tumour growth in vivo [ 122 ] . Hybrid systems use combination of two or more delivery forms for effective targeting. Khatri et al. prepared and investigated the in vivo effi cacy of plasmid DNA-loaded chitosan nanoparticles for nasal mucosal immunisation against hepatitis B. Chitosan-DNA nanoparticles prepared by the coacervation process adhered to the nasal or gastrointestinal epithelia and are easily transported to the nasal-associated lymphoid tissue (NALT) and Peyer's patches of the gut-associated lymphoid tissue (GALT) both as IgA inductive site [ 123 ] , in which chitosan-DNA might be taken in by M cell, and transported across the mucosal boundary and thereby transfect immune cells within NALT or GALT [ 124 ] . A work demonstrates targeting of three peptides containing sequences that bind to cell markers expressed in the tumour vasculature (p24-NRP-1 and p39-Flt-1) [ 125 , 126 ] and tumour lymphatics (p47-LyP-1) [ 127 ] and were tested for their ability to target 3(nitrilotriacetic acid)-ditetradecylamine (NTA3-DTDA) containing liposomes to subcutaneous B16-F1 tumours. Signifi cantly, a potential antitumour effect was seen after administration of doxorubicin-loaded PEG750 liposomes engrafted with p24-NRP-1. Hybrid liposomes composed of l -α-dimyristoylphosphatidylcholine and polyoxyethylene (25) dodecyl ether prepared by sonication showed remarkable reduction of tumour volume in model mice of acute lymphatic leukaemia (ALL) treated intravenously with HL-25 without drugs after the subcutaneous inoculation of human ALL (MOLT-4) cells was verifi ed in vivo. Prolonged survival (>400 %) was noted in model mice of ALL after the treatment with HL-25 without drugs [ 128 ] . In a report, LyP-1 peptide-conjugated PEGylated liposomes loaded with fl uorescein or doxorubicin were prepared for targeting and treating lymphatic metastatic tumours. The in vitro cellular uptake and in vivo near-infrared fl uorescence imaging results confi rmed that LyP-1-modifi ed liposome increased uptake by tumour cells and metastatic lymph nodes. In another study, in vitro cellular uptake of PEG-PLGA nanoparticle (LyP-1-NPs) was about four times that of PEG-PLGA nanoparticles without LyP-1 (NPs). In vivo study, about eight times lymph node uptake of LyP-1-NPs was seen in metastasis than that of NPs, indicated LyP-1-NP as a promising carrier for targetspecifi c drug delivery to lymphatic metastatic tumours [ 129 ] . Currently, surgery, radiation therapy and chemotherapy are the principal methods for cancer treatment. Gene therapies may act synergistically or additively with them. For example, another case demonstrated that replacement of the p53 (protein 53) gene in p53-defi cient cancer cell lines enhanced the sensitivity of these cells to Ad-p53 (adenovirus-expressed protein 53) and cisplatin (CDDP) and resulted into greater tumour cell death [ 130 ] . Later, Son and Huang [ 131 ] stated that treatment of CDDP-resistant tumour cells with CDDP increased the sensitivity of these cells to transduction by DNA-carrying liposomes. Also, Chen et al. [ 132 ] described that to improve tumour killing, herpes simplex virus thymidine kinase (HSV-TK) and interleukin (IL) expression can be combined. On the whole, greater therapeutic effect can be achieved by effectively combining conventional cancer treatments and gene therapy together. Mainly colloidal carriers have emerged as potential targeting agents to lymphatic system. Physicochemical properties affect the effi ciency of colloid uptake into the lymphatic system [ 28 ]. These properties include size, number of particles, surface charge, molecular weight and colloid lipophilicity. Physicochemical properties are altered by adsorption of group of hydrophilic polymers like poloxamers and poloxamines to the particle surface. These properties modifi ed the biodistribution of particles in vivo, particularly the avoidance of the reticuloendothelial system (RES) upon intravenous administration [ 133 , 134 ] . In one study, it was opined that opsonisation may cause alteration of the particle surface in vivo [ 135 ] . Size could be important factor in defi ning the behaviour of particulates after subcutaneous injection. Small particles with diameter less than a few nanometres generally exchanged through the blood capillaries, whereas larger particles of diameters up to a few tens of nanometres absorbed into the lymph capillaries. But particles over a size of few hundred nanometres remain trapped in the interstitial space for a long time [ 136 ] . Christy et al. have shown a relationship between colloid size and ease of injection site drainage using model polystyrene nanospheres after subcutaneous administration to the rat [ 137 ] . Results showed distribution of polystyrene nanospheres in the size range 30-260 nm 24 h after administration and 74-99 % of the recovered dose retained at the administration site, and as particle diameter increased, drainage became slower. It has been proposed earlier that the optimum colloid size range for lymphoscintigraphic agents is l0-50 nm [ 138 ] . Size has less importance when colloids are administered intraperitoneally (i.p.) within the nanometre size range, as drainage is only from a cavity into the initial lymphatics; hence, no diffusion is required through the interstitial space [ 28 ]. The size limit of the open junctions of the initial lymphatic wall is the only barrier to uptake from the peritoneal cavity into the lymphatics [ 139 ] . More number of particles at the injection site decreases their rate of drainage, owing to increased obstruction of their diffusion through the interstitial space [ 139 , 140 ] . Scientists at Nottingham University investigated this effect using polystyrene nanospheres of 60 nm. Following administration to the rat, the concentration range of nanospheres was approximately 0.05-3.0 mg/ml. Lower lymphatic uptake was seen on increasing the concentration of nanospheres in the injection volume due to slower drainage from the injection site. Injecting oily vehicles intramuscularly to the rat, the effect of injection volume has been studied. Increasing volume of sesame oil accelerated oil transport into the lymphatic system. Upon s.c. administration, volumes of aqueous polystyrene particle suspensions have been investigated in the range 50-150 μl [ 39 ]. Surface charge studies have been done utilising liposome as colloidal carrier. The surface charge of liposomes affected their lymphatic uptake from s.c. and i.p. injection sites. Negatively charged liposomes showed faster drainage than that for positive liposomes after i.p. administration [ 141 ] . Patel et al. also indicated that liposome localisation in the lymph nodes followed a particular order negative > positive > neutral [ 142 ] . Macromolecule having high molecular weight has a decreased ability for exchange across blood capillaries and lymphatic drainage becomes the route of drainage from the injection site which shows a linear relationship between the molecular weight of macromolecules and the proportion of the dose absorbed by the lymphatics. For a compound to be absorbed by the lymphatics, the molecular weight should range between 1,000 and 16,000 [ 141 , 143 ] . The effect of molecular weight becomes negligible when targeting carriers to the lymphatic system as the molecular weight of a colloidal carrier is generally less than 1,000 Da. The most important determinant of the phagocytic response and so lymphatic uptake is the lipophilicity of a colloid [ 144 ] . Opsonins generally unite with lipophilic rather than hydrophilic surfaces; hence, the hydrophilic particles show reduced phagocytosis [ 145 ] . Hydrophobic polystyrene nanospheres adsorbed with hydrophilic block copolymers showed drastic reduction in phagocytosis prior to i.v. administration [ 146 ] . In the case of polystyrene nanospheres of 60-nm diameter, PEO chains of the poloxamers and poloxamines adsorbed onto the surface of the particle described the relationship between interstitial injection site drainage and lymph node uptake in rat [ 144 ] . Uncoated nanospheres of this diameter showed reduced drainage from the injection site with 70 % of the administered dose remaining after 24 h. The adsorption of block copolymers can enhance the drainage from the injection site such that levels remaining at the injection site may be as little as 16 % after 24 h, with very hydrophilic polymers such as poloxamine 908. Uptake of nanospheres into the regional lymph nodes may also be improved by the adsorption of block copolymers with intermediate lengths of polyoxyethylene, such as poloxamine 904. This polymer may sequester up to 40 % of the given dose by the lymph nodes after 24 h [ 147 ] . Surface modifi cation could prove as an effective strategy for potential targeting to lymphatic system. The infl uence can be quoted in following ways. Coating of a carrier with hydrophilic and sterically stabilised PEG layer can successfully enhance lymphatic absorption, reducing specifi c interaction of particle with the interstitial surrounding, and inhibit the formation of too large particle structure [ 49 ] . Surface modifi cation of liposomes with PEG also does not have a significant effect on lymph node uptake. Small liposomes coated with PEG showed greatest clearance from the s.c. injection site with small 86-nm PEG-coated liposomes having <40 % remaining at the injection site at 24 h. Larger neutral and negatively charged liposomes had a clearance >60 % remaining at the initial s.c. injection site. However, this smaller amount of large liposomes that were cleared from the injection site was compensated by better retention in the lymph node [ 148 ] . Oussoren et al. reported that the amount of liposomes cleared from the injection site was somewhat greater with the PEG-coated liposomes [ 149 ] . This improved clearance did not result in improved lymph node retention because the fraction of PEG liposomes retained by the lymph node is decreased. Phillips et al. also studied the slightly improved clearance of PEG-coated liposomes from the s.c. injection site [ 148 ] . Porter and coworkers demonstrated that PEGylation of poly-l -lysine dendrimers resulted into better absorption from s.c. injection sites and stated that the extent of lymphatic transport may be improved by increasing the size of the PEGylated dendrimer complex. They estimated the lymphatic uptake and lymph node retention properties of several generation four dendrimers coated with PEG or 4-benzene sulphonate after subcutaneous administration in rats. For this surface modifi cation study, three types of PEGs with molecular weights of 200, 570 or 2,000 Da were taken. PEG200-derived dendrimers showed rapid and complete absorption into the blood when injected subcutaneously, and only 3 % of the total given dose was found in the pooled thoracic lymph over 30 h, whereas PEG570-and PEG2000derived dendrimers showed lesser absorption, and a higher amount was recovered in lymphatics (29 %) over 30 h. However, the benzene sulphonate-capped dendrimer was not well absorbed either in the blood or in lymph following subcutaneous injection [ 150 ] . Carriers capped with nonspecifi c human antibodies as ligands showed greater lymphatic uptake and lymph node retention compared to uncoated one at the s.c. site. Liposomes coated with the antibody, IgG, have been shown to increase lymph node localisation of liposomes to 4.5 % of the injected dose at 1 h, but this level decreased to 3 % by 24 h [ 151 ] . In a study, the liposomes containing positively charged lipids had approximately 2-3 times the lymph node localisation (up to 3.6 % of the injected dose) than liposomes containing neutral or negatively charged lipids (1.2 % of the injected dose) [ 149 ] . Attachment of mannose to the surface of a liposome increased lymph node uptake by threefold compared to control liposomes [ 152 ] . Another study demonstrated HBsAg entrapped dried liposomes with their surfaces modifi ed with galactose. Pharmacokinetic study in rats showed that galactosylated liposomes delivered higher amounts of HBsAg to the regional lymph nodes than other ungalactosylated formulations [ 153 ] . Lectin is another ligand that can be attached to the carriers for improved targeting to intestinal lymphatics. Bovine serum albumin containing acid phosphatase model protein and polystyrene microspheres conjugated with mouse M-cell-specifi c Ulex europaeus lectin. Ex vivo results showed that there was favoured binding of the lectin-conjugated microspheres to the follicle-associated epithelium. Final results indicated that coupling of ligands such as lectin specifi c to cells of the follicleassociated epithelium can improve the targeting of encapsulated candidate antigens for delivery to the Peyer's patches of the intestine for better oral delivery [ 154 ] . To improve carrier retention in lymph nodes, a new method of increasing lymphatic uptake of subcutaneously injected liposome utilises the high-affi nity ligands biotin and avidin. Biotin is a naturally occurring cofactor and avidin is a protein derived from eggs. Avidin and biotin are having extremely high affi nity for each other. For instance, upon injection, the avidin and the biotin liposomes move into the lymphatic vessels. Biotin liposomes that migrate through the lymphatic vessels meet the avidin resulting in an aggregate that becomes trapped in the lymph nodes [ 155 , 156 ] . The biotin liposome/avidin system has promising potential as therapeutic agent for delivery to lymph nodes. It can be applied not only to s.c. targeting of lymph nodes but also to intracavitary lymph node targeting [ 50 ] . Different ligands with their application in lymphatic targeting are represented in Table 20 .1 . The lymphatics have the potential to play a major role in anticancer treatment as lymphatic spread is recognised to precede haematological spread in many cancers including melanoma, breast, colon, lung and prostate cancers. Currently, the focus is on the development of drug carriers that can localise chemotherapy to the lymphatic system, thus improving the treatment of localised disease while minimising the exposure of healthy organs to cytotoxic drugs. The delivery of novel carriers to lymph nodes for therapeutic purposes has much promise. Giving importance to the lymphatic route in metastasis, this delivery system may have great potential for targeted delivery of various therapeutic agents to tumours and their metastatic lymph nodes. Various delivery systems have been discussed here but colloidal carriers, especially, liposomes have been the carrier of choice to date. The purpose of this review is to provide an improved and effective lymphotropic system with a satisfactory quality for clinical use and to establish a preparation method applicable for industrial production. Surface-engineered lymphotropic systems may prove as an effective carrier for anti-HIV, anticancer and oral vaccine delivery in near future. 3. Delivery of antigens to gut-associated lymphoid tissue (GALT) Intestinal delivery [ 154 ] 4. Microparticles Active targeting of peripheral lymph nodes Doppler ultrasonography contrast agent [ 159 ] 5. Lymph Vaccine delivery [ 148 -150 ] 6. 13. Block copolymer of poloxamine and poloxamer Nanospheres Regional lymph nodes - [ 144 ] 14. Lyp-1 Nanoparticles, liposomes Targeted to lymphatic vessels and also in tumour cells within hypoxic area Antitumour [ 129 ] 15. Liposomes Targeting to lymph node Mediastinal lymph node targeting [ 155 ] 16. Liposome Targeting to lymph node Increased lymph node retention [ 145 , 151 ] 25 The physiology of the lymphatic system The anatomy and development of the jugular lymph sacs in the domestic cat (Felis domestica) On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig Dual origin of avian lymphatics Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype Prox1 function is required for the development of the murine lymphatic system Live imaging of lymphatic development in the zebrafi sh Developmental and pathological lymphangiogenesis: from models to human disease Tumor lymphangiogenesis and melanoma metastasis Cardiovascular physiology New insights into the molecular control of the lymphatic vascular system and its role in disease Advanced colloid-based systems for effi cient delivery of drugs and diagnostic agents to the lymphatic tissues The structure of lymphatic capillaries in lymph formation Specifi c adhesion molecules bind anchoring fi laments and endothelial cells in human skin initial lymphatics Focal adhesion molecules expression and fi brillin deposition by lymphatic and blood vessel endothelial cells in culture The second valve system in lymphatics Evidence for a second valve system in lymphatics: endothelial microvalves Ultrastructural studies on the lymphatic anchoring fi laments New horizons for imaging lymphatic function Lymphatic smooth muscle: the motor unit of lymph drainage The fi ne structure and functioning of tissue channels and lymphatics Clinically oriented anatomy Lymphangiogenesis in development and human disease acyclic nucleoside phosphonate analogs delivered in pH-sensitive liposomes Liposomes for drug targeting in the lymphatic system Liposomes to target the lymphatics by subcutaneous administration Novel method of greatly enhanced delivery of liposomes to lymph nodes Current concepts in lymph node imaging Old friends, new ways: revisiting extended lymphadenectomy and neoadjuvant chemotherapy to improve outcomes Targeted delivery of indinavir to HIV-1 primary reservoirs with immunoliposomes Studies on lymphoid tissue from HIVinfected individuals: implications for the design of therapeutic strategies Lymphoid tissue targeting of anti-HIV drugs using liposomes A randomized clinical trial comparing single-and multi-dose combination therapy with diethylcarbamazine and albendazole for treatment of bancroftian fi lariasis Infección bacteriana por ántrax Bioterrorism-related inhalational anthrax: the fi rst 10 cases reported in the United States Fatal inhalational anthrax in a 94-year-old Connecticut woman Extrapulmonary tuberculosis: clinical and epidemiologic spectrum of 636 cases Nanoparticles for drug delivery in cancer treatment Polymeric drugs for effi cient tumor-targeted drug delivery based on EPR-effect Exploiting the enhanced permeability and retention effect for tumor targeting Drug targeting and tumor heterogeneity Does a targeting ligand infl uence nanoparticle tumor localization or uptake? High affi nity restricts the localization and tumor penetration of single-chain fv antibody molecules VCAM-1 directed immunoliposomes selectively target tumor vasculature in vivo Lymphatic targeting with nanoparticulate system A lymphotropic colloidal carrier system for diethylcarbamazine: preparation and performance evaluation Evaluation of endoscopic pirarubicin-Lipiodol emulsion injection therapy for gastric cancer Targeted lymphatic transport and modifi ed systemic distribution of CI-976, a lipophilic lipid-regulator drug, via a formulation approach Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q 10: formulation development and bioavailability assessment Liposomes as vehicles for the local release of drugs Enhanced oral bioavailability and intestinal lymphatic transport of a hydrophilic drug using liposomes Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure Reduced cardiotoxicity and comparable effi cacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for fi rst-line treatment of metastatic breast cancer Doxil offers hope to KS sufferers Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer Patent blue V encapsulation in liposomes: potential applicability to endolympatic therapy and preoperative chromolymphography Aerosol delivery of liposomal formulated paclitaxel and vitamin E analog reduces murine mammary tumor burden and metastases Novel vitamin E analogue and 9-nitro-camptothecin administered as liposome aerosols decrease syngeneic mouse mammary tumor burden and inhibit metastasis Use of liposome preparation to treat mycobacterial infections Nanoradioliposomes molecularly modulated to study the lung deep lymphatic drainage Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats Duodenal administration of solid lipid nanoparticles loaded with different percentages of tobramycin Transmucosal transport of tobramycin incorporated in SLN after duodenal administration to rats. Part I-a pharmacokinetic study Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats Infl uence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice Metastatic patterns in small-cell lung cancer: correlation of autopsy fi ndings with clinical parameters in 537 patients Metastatic pattern in non-resectable non-small cell lung cancer Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles Infl ammation imaging using Tc-99m dextran Intralymphatic chemotherapy using a hyaluronan-cisplatin conjugate Lymph node localisation of biodegradable nanospheres surface modifi ed with poloxamer and poloxamine block co-polymers Block copolymer carrier systems for translymphatic chemotherapy of lymph node metastases Translymphatic chemotherapy by intrapleural placement of gelatin sponge containing biodegradable Paclitaxel colloids controls lymphatic metastasis in lung cancer Enhancement of therapeutic effi cacy of bleomycin by incorporation into biodegradable poly-d, l-lactic acid Targeting colloidal particulates to thoracic lymph nodes Comparison of dendrimer-based macromolecular contrast agents for dynamic micro-magnetic resonance lymphangiography Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging Multimodal nanoprobes for radionuclide and fi ve-color near-infrared optical lymphatic imaging A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fl uorescence imaging to localize the sentinel lymph node in mice Multicolor imaging of lymphatic function with two nanomaterials: quantum dot-labeled cancer cells and dendrimerbased optical agents Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes Waterdispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy Enhanced effi cacy of Bleomycin adsorbed on silica particles against lymph node metastasis derived from a transplanted tumor Selective distribution of aclarubicin to regional lymph nodes with a new dosage form: aclarubicin adsorbed on activated carbon particles Carbon dye as an adjunct to isosulfan blue dye for sentinel lymph node dissection Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin's lymphoma: results of a phase I study Therapeutic potential of CD22-specifi c antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies Preclinical anti-tumor activity of antibody-targeted chemotherapy with CMC-544 (inotuzumab ozogamicin), a CD22-specifi c immunoconjugate of calicheamicin, compared with non-targeted combination chemotherapy with CVP or CHOP Rituximab (Rituxan®/MabThera®): the fi rst decade CD20-specifi c antibody-targeted chemotherapy of non-Hodgkin's B-cell lymphoma using calicheamicin-conjugated rituximab Siglecs as targets for therapy in immune-cell-mediated disease Clinical activity of the immunoconjugate CMC-544 in B-cell malignancies: preliminary report of the expanded maximum tolerated dose (MTD) cohort of a phase 1 study Objective responses in a phase I dose-escalation study of SGN-35, a novel antibody-drug conjugate (ADC) targeting CD30, in patients with relapsed or refractory Hodgkin lymphoma Targeted delivery of interferonalpha via fusion to anti-CD20 results in potent antitumor activity against B-cell lymphoma Chitosan for mucosal vaccination Polysaccharide colloidal particles as delivery systems for macromolecules Suppression of tumor growth and metastasis by a VEGFR-1 antagonizing peptide identifi ed from a phage display library Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1 A tumor-homing peptide with a targeting specifi city related to lymphatic vessels Chemotherapy with hybrid liposomes for acute lymphatic leukemia leading to apoptosis in vivo LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors Successful treatment of primary and disseminated human lung cancers by systemic delivery of tumor suppressor genes using an improved liposome vector Exposure of human ovarian carcinoma to cisplatin transiently sensitizes the tumor cells for liposome-mediated gene transfer Combination gene therapy for liver metastasis of colon carcinoma in vivo Polymeric microspheres as drug carriers The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a blockcopolymerpoloxamine 908 Fate of liposomes in vivo: a brief introductory review The characterisation of radio colloids used for administration to the lymphatic system Effect of size on the lymphatic uptake of a model colloid system Radiolabeled colloids and macromolecules in the lymphatic system Electron microscopic studies on the peritoneal resorption of intraperitoneally injected latex particles via the diaphragmatic lymphatics Lymphatic transport of liposomeencapsulated drugs following intraperitoneal administration-effect of lipid composition Assessment of the potential uses of liposomes for lymphoscintigraphy and lymphatic drug delivery failure of 99-technetium marker to represent intact liposomes in lymph nodes Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macrophages of the regional lymph nodes Serum opsonins and liposomes: their interaction and opsonophagocytosis Physicochemical principles of pharmacy Targeting of colloids to lymph nodes: infl uence of lymphatic physiology and colloidal characteristics Evaluation of [(99m) Tc] liposomes as lymphoscintigraphic agents: comparison with [(99m) Tc] sulfur colloid and [(99m) Tc] human serum albumin Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: III. Infl uence of surface modifi cation with poly(ethyleneglycol) PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats Lymph node localization of non-specifi c antibody-coated liposomes Modifi ed in vivo behavior of liposomes containing synthetic glycolipids Enhanced lymph node delivery and immunogenicity of hepatitis B surface antigen entrapped in galactosylated liposomes Targeted delivery of antigens to the gut-associated lymphoid tissues: 2. Ex vivo evaluation of lectinlabelled albumin microspheres for targeted delivery of antigens to the M-cells of the Peyer's patches Avidin/biotin-liposome system injected in the pleural space for drug delivery to mediastinal lymph nodes Pharmacokinetics and biodistribution of 111 In avidin and 99 Tc biotin-liposomes injected in the pleural space for the targeting of mediastinal nodes Folate-PEG-CKK 2-DTPA, A potential carrier for lymph-metastasized tumor targeting Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery Molecular targeting of lymph nodes with l-selectin ligand-specifi c US contrast agent: a feasibility study in mice and dogs Hyaluronan in drug delivery Lymphatic targeting of zidovudine using surfaceengineered liposomes Alginate/chitosan microparticles for tamoxifen delivery to the lymphatic system Homing of negatively charged albumins to the lymphatic system: general implications for drug targeting to peripheral tissues and viral reservoirs