key: cord-0031897-ogtwv2mq authors: Nguyen, Ngoc Hai; Tran, Hoang Anh Thu; Nguyen, Trung Quan; Nguyen, Phuong Binh Thi; Le, Thu Ha Thi; Lai, Danh Cong; Nguyen, Minh Nam title: Phylogenetic analysis of porcine reproductive and respiratory syndrome virus in Vietnam, 2021 date: 2022-05-19 journal: Virus Genes DOI: 10.1007/s11262-022-01912-w sha: 28ed780079698205f6608fe2ff4ea88f8e059dd4 doc_id: 31897 cord_uid: ogtwv2mq The porcine reproductive and respiratory syndrome virus (PRRSV) causes more economic losses in the swine industry than any other virus. This study aimed to investigate the genetic diversity of PRRSV to assist in evaluating the effectiveness of PRRS vaccines. Twenty-eight samples from clinical cases were collected from 19 farms in seven provinces of Vietnam in 2021. Full-length PRRSV ORF5 genes from the 19 samples were amplified, sequenced, and compared to the corresponding sequences of referenced PRRSV strains from Genbank. The genetic analysis showed that 12 isolates were the highly pathogenic PRRSV subtype (HP—PRRSV) lineage 8, sublineage 8.7; six isolates were the classical North American PRRSV subtype (US-PRRSV), NADC-like group, lineage 1, sublineage 1.4, which were reported in Vietnam for the first time; and the final isolate was a vaccine-like strain. The field isolates of HP-PRRSV had relatively higher genetic diversity with US-PRRSV vaccine strains (84.0–94.5%) than HP-PRRSV vaccine strains (95.3–98.6%). Meanwhile, the six NADC-like isolates had low nucleotide similarity with US-PRRSV and HP-PRRSV vaccine strains (83.4–85.4% and 83.2–84.0%, respectively). Many amino acid substitutions were found in antigenic regions of GP5 involved in response to early antibody production, neutralizing antibodies, and viral immune evasion between these field strains and PRRSV vaccine strains. These findings provide insights into the molecular characteristics, genetic diversity, antigenicity, and evolution of PRRSV strains in Vietnam and postulate a compelling explanation for the limitations of current vaccination efforts. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11262-022-01912-w. distinguish lineages (Shi et al., 2010) . Furthermore, GP5 is the most important neutralizing antigen with the strongest ability to induce the neutralizing immune response against PRRSV (Ostrowski et al., 2002; Stoian and Rowland, 2019) . PRRSV strains are categorized as PRRSV-type 1 (European genotype-EU) or PRRSV-type 2 (North American genotype-NA) (Kuhn et al., 2016) . Furthermore, PRRSVtype 2 (NA-PRRSV) can be divided into several major subtypes, including classical North American PRRSV (C-PRRSV), highly pathogenic PRRSV (HP-PRRSV), and many others, in which NADC30-like strains (NL-PRRSV) has been identified in many PRRSV studies conducted in China (Gao et al., 2017; Jiang et al., 2020; Tian, 2017; Wei et al., 2019) . In Vietnam, all PRRSV field strains isolated from 2007 to 2015 belonged to sub-lineages 8.7 and 5.1 (Do et al., 2016) . The study of PRRS cases from 2008 to 2016 showed that the incidence rates in the North of Vietnam usually occur from March to April, and in the South from June to August (Lee et al., 2019) . Besides, PRRSV was well controlled by commercial vaccines belonging to two groups: HP-PRRSV (JXA1-R) and US-PRRSV (Ingelvac PRRS ATP, Fostera, Prime Pac, Ingelvac PRRS MLV, BSL-PS100, and Prevacent PRRS). However, recently, especially in 2021, the pigs in many farms that have used the attenuated PRRS vaccine for a long time still showed clinical signs associated with PRRS. This study was to assess genetic diversity based on the ORF5 gene of these field PRRSV strains, clarifying the cause of recent PRRS disease occurrence in these farms. A total of 28 samples from sick pigs with typical clinical manifestations of PRRS were submitted to Viet Han Veterinary Diagnosis Laboratory, Nong Lam University. These samples were from 19 farms in North, Central, and South Vietnam in 2021 ( Figure S1 and Table S1 ). Samples were delivered to the laboratory in a cool box and processed for RNA isolation within 24 h using a GeneJET Viral DNA/ RNA Purification Kit (ThermoFisher, USA) according to the manufacturer's instructions. cDNA was synthesized from the mRNA using RevertAid First Strand cDNA Synthesis Kit (ThermoFisher, USA). RT-PCR was performed to confirm PRRS using PRRS-P71 and PRRS-P72 primers (Guarino et al., 1999) (Table S2) . RT-PCR products were then electrophoresed in 1.5% agarose gel and observed under UV light. RNA of the positive samples was selected to amplify the full-length ORF5 of PRRSV as well as the flanking ORF4 and ORF6 regions (total size 764 bp) by RT-PCR with primer pairs P5F and P5R (Table S2 ) (Cha et al., 2004) . The products of the full-length ORF5 gene were purified using the GenJET Gel Extraction and DNA Cleanup Micro Kit (ThermoFisher, USA), cloned into the pGEM-T vector (Promega, USA), and transformed into E. coli DH5α cells (Takara, Japan). Cells containing the ORF5 gene were selected using bluewhite screening and colony PCR incorporating T7 and SP6 primers. pGEM-T/ORF5 was purified using a GenJET Plasmid Miniprep Kit (ThermoFisher, USA) and sent to a sequencing laboratory (Nam Khoa Biotek, Vietnam). Both forward and reverse complement sequences were overlapped to obtain a single sequence. A phylogenetic tree was constructed based on the ORF5 gene of 19 PRRSV strains from this study and 43 PRRSV reference strains. The nucleotide sequences of the ORF5 genes from this study were deposited in GenBank under the accession numbers MZ218074-92 (Table S1 ). All samples were positive for PRRSV by RT-PCR (Table S1 ). Phylogenetic analysis based on nucleotide sequences of the ORF5 gene showed that 17/28 isolates belonged to the HP-PRRSV, 10/28 isolates belonged to the US-PRRSV, and 1/28 isolates belonged to a recombinant strain of HP-PRRSV and US-PRRSV (Table S1 ). These results indicate that HP-PRRSV strains are dominant in PRRS pigs in Vietnam. We selected 19 PRRSV strains representing 19 farms in this study to build the phylogenetic tree based on the ORF5 nucleotide sequences (Fig. 1A) . These isolates belonged to genotype 2 and were divided into three subtypes. Twelve isolates of the HP-PRRSV subtype belonged to lineage 8 and sublineage 8.7, together with the vaccine strain JAX1-R and isolates from Vietnam and China. Meanwhile, six US-PRRSV isolates were clustered into sublineage 1.4, lineage 1 with isolates from Thailand. None of the 6 US-PRRSV strains belonged to lineage 5 with the VR-2332 like isolates collected in China, Thailand, and Vietnam. Furthermore, despite also belonging to lineage 8 with the HP-PRRSV isolates in the study, the isolate MZ218081 was found not to belong to sublineage 8.7. In particular, this isolate and the Fostera PRRS vaccine strain (AF494042) were classified into a clade belonging to lineage 8 (Fig. 1B) . Similar strains derived from PRRSV vaccine isolates have also been detected in outbreaks in Thailand (Tun et The ORF5 sequence of the 19 field PRRSV isolates shared 81-100% genetic identity and 78.5-100% amino acid identity. The 12 HP-PRRSV isolates belonging to lineage 8, sublineage 8.7, shared high similarity at both nucleotide (94.0-100%) and amino acid (90.5-100%) levels. They also had high nucleotide and amino acid similarity with reference HP-PRRSV strains (93.5-99.1% and 90.5-98.5%, respectively) and JAX1 strain (95.6-99.0% and 92.0-98.0%, respectively) (Table S3) . They had a lower sequence identity with US-PRRSV vaccine strains. They also had a high nucleotide and amino acid homology with vaccine strains belonging to lineage 8, including the Fostera strain (92.2-94.5% and 88.0-92.0%, respectively) and ATP strain (88.5-90.5% and 86.0-89.5%, respectively). Meanwhile, the similarity of these HP-PRRSV isolates at both nucleotide and amino acid levels was high with the Prime Pac strain of lineage 7 (87.8-90.3% and 86.5-92.0%, respectively) but lower with three vaccine strains belonging to a different lineage (84.0-89.2% and 81.0-87.5% respectively) (Table S5) . (Table S4) . Moreover, they share low sequence identity with the HP-PRRSV vaccine strain (83.2-84.0% and 84.0-85.5% at nucleotide and amino acid levels, respectively) and the six US-PRRSV vaccine strains (83.9-85.4% and 82.5-87.5% at nucleotide and amino acid levels, respectively) (Table S5) . The epitope B is highly conserved and related to broadly neutralizing antibodies (Kwon et al., 2008) . The substitution of amino acid 39 in GP5 helps PRRSV field strains escape from the neutralizing immunity of the vaccines (Vashisht et al., 2008) . Two changes were found at glycosylation sites (amino acid positions 34 and 44), which play a key role in viral immune evasion (Ansari et al., 2006) . Furthermore, five amino acids were substituted at positions 52-61 (epitope C), including amino acid positions 54, 57, 58, 59, and 61. Amino acid substitutions at positions 57 in GP5 resulted in an escape from neutralizing antibodies (Guo et al., 2019) . Five amino acids were substituted at positions 187-200, particularly 189, 191, 192, 196, and 200 . Amino acid changes were also observed in two T-cell epitopes with five amino acid sites at 117-131 and four amino acid sites at 149-163 (Fig. 2) The green, blue, and orange boxes indicate the amino acid positions of non-neutralizing, neutralizing and T-cell epitopes, respectively. The yellow box demarcates the position of the important linear epitope PRRS outbreaks were found in farms implementing routine vaccinations against PRRS. The new PRRSV strains carry new genetic variations and antigenic alterations that may lead to escaping PRRS vaccination-induced immunity. The antigenic changes in the GP5 of the PRRRS strains in Vietnam may provide a compelling explanation for the limitations of current vaccination efforts. Therefore, it will be critical for novel vaccine development to account for these factors. The online version contains supplementary material available at https:// doi. org/ 10. 1007/ s11262-022-01912-w. epitopes present in glycoprotein 5 of the North American genotype of porcine reproductive and respiratory syndrome virus. Vaccine 26:4747-4753 21. Wei C, Dai A, Fan J, Li Y, Chen A, Zhou X, Luo M, Yang X, Liu J (2019) Efficacy of Type 2 PRRSV vaccine against challenge with the Chinese lineage 1 (NADC30-like) PRRSVs in pigs. Sci Rep 9:1-10 Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Influence of N-linked glycosylation of porcine reproductive and respiratory syndrome virus GP5 on virus infectivity, antigenicity, and ability to induce neutralizing antibodies Stadejek T (2021) ICTV virus taxonomy profile: Arteriviridae 2021 Genomic sequence and virulence comparison of four Type 2 porcine reproductive and respiratory syndrome virus strains Instability of the restriction fragment length polymorphism pattern of open reading frame 5 of porcine reproductive and respiratory syndrome virus during sequential pig-to-pig passages Serologic marker candidates identified among B-cell linear epitopes of Nsp2 and structural proteins of a North American strain of porcine reproductive and respiratory syndrome virus Molecular evolution of type 2 porcine reproductive and respiratory syndrome viruses circulating in Vietnam from Genotypic and geographical distribution of porcine reproductive and respiratory syndrome viruses in mainland China in 1996-2016 Detection of porcine reproductive and respiratory syndrome virus by reverse transcription-polymerase chain reaction using different regions of the viral genome Prevalence and genetic characteristics of porcine reproductive and respiratory syndrome virus in central China during 2016-2017: NADC30-like PRRSVs are predominant Genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) from 1996 to 2017 in China Reorganization and expansion of the nidoviral family Arteriviridae Identification of virulence determinants of porcine reproductive and respiratory syndrome virus through construction of chimeric clones Seasonal patterns and space-time clustering of porcine reproductive and respiratory syndrome (PRRS) cases from 2008 to 2016 in Vietnam Comparison of the structural protein coding sequences of the VR-2332 and Lelystad virus strains of the PRRS virus Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain Phylogenybased evolutionary, demographical, and geographical dissection of North American type 2 porcine reproductive and respiratory syndrome viruses Challenges for porcine reproductive and respiratory syndrome (PRRS) vaccine design: reviewing virus glycoprotein interactions with CD163 and targets of virus neutralization Suppl-1, M3: NADC30-like porcine reproductive and respiratory syndrome in China Genetic diversity and multiple introductions of porcine reproductive and respiratory syndrome viruses in Thailand Acknowledgements We are grateful for the technical support that we