key: cord-0029645-3qnze0tx authors: Zhang, Xuelian; Zhou, Hui; Shen, Hongying; Wang, Mingli title: Pulmonary infection in traumatic brain injury patients undergoing tracheostomy: predicators and nursing care date: 2022-04-07 journal: BMC Pulm Med DOI: 10.1186/s12890-022-01928-w sha: e273d230b4042babaf17f9b2191c086185b29ceb doc_id: 29645 cord_uid: 3qnze0tx BACKGROUND: Pulmonary infection is common yet serious complication in patients with severe traumatic brain injury (STBI). We aimed to evaluate the predicators of pulmonary infection in STBI patients undergoing tracheostomy, to provide evidence for the clinical nursing care of STBI patients. METHODS: This study was a retrospective cohort design. STBI patients undergoing tracheostomy treatment from January 1, 2019 to August 31, 2021 in our hospital were included. The characteristics of pulmonary infection and no pulmonary infection patients were analyzed. RESULTS: A total 216 STBI patients undergoing tracheostomy were included, the incidence of pulmonary infection was 26.85%. Diabetes (r = 0.782), hypoproteinemia (r = 0.804), duration of coma(r = 0.672), duration of mechanical ventilation(r = 0.724) and length of hospital stay (r = 0.655), length of hospital stay post tracheostomy (r = 0.554), mortality (r = 0.598) were all correlated with pulmonary infection (all p < 0.05). Klebsiella pneumoniae (33.87%) and Staphylococcus aureus (29.03%) were the most commonly seen pathogens in the pulmonary infection of TBI patients. Logistic regression analyses indicated that diabetes (OR 2.232, 95% CI 1.215–3.904), hypoproteinemia with plasma total protein < 60 g/L (OR 1.922, 95% CI 1.083–3.031), duration of coma ≥ 22 h (OR 2.864, 95% CI 1.344–5.012), duration of mechanical ventilation ≥ 5 days (OR 3.602, 95% CI 1.297–5.626), length of hospital stay ≥ 21 days (OR 2.048, 95% CI 1.022–3.859) were the risk factors of pulmonary infection in TBI patients undergoing tracheostomy (all p < 0.05). CONCLUSIONS: Further investigations on the early preventions and treatments targeted on those risk factors are needed to reduce the pulmonary infection in clinical practice. Severe traumatic brain injury (STBI) is one of the most important causes of death and disability worldwide [1] . Studies [2] [3] [4] have found that organ failure and secondary infection after brain trauma are the most important causes of death. The literature reports [5, 6] a fatality rate that can reach 50.17%, and the concurrent pulmonary infection rate can be as high as 60.84%. STBI patients are prone to secondary pulmonary infection, which can significantly increase the disability and mortality of patients [7, 8] . Therefore, early prediction, diagnosis and early intervention of whether STBI patients have secondary pulmonary infection can help to reduce the mortality of patients and improve the prognosis of patients. During the treatment of STBI, tracheostomy is often used to provide respiratory support in patients with craniocerebral injury [9] . However, tracheostomy is a traumatic operation, which destroys the body barrier of the patient's respiratory system and it usually takes a long treatment period [8, 10, 11] . Therefore, the STBI patients are more prone to pulmonary infection [12] . Currently, the characteristics of pulmonary infection in STBI patients undergoing tracheostomy remains unclear [13] . Identifying the risk factors of pulmonary infection in STBI patients undergoing tracheostomy is beneficial to the counteractive measures making to reduce pulmonary infection which will impact on the management and treatment of STBI. Therefore, in this present study, we aimed to analyze the characteristics of pulmonary infection in STBI patients undergoing tracheostomy, to identify the potential influencing factors of pulmonary infections, thereby providing reliable evidences into the clinical STBI treatment. In this study, all methods were performed according to the relevant guidelines and regulations. This present study was a retrospective cohort design. And the study had been approved by the ethical committee of First Affiliated Hospital of Soochow University (approval number: 2019-200), and written informed consents had been obtained from all the included patients or related guardians of patient. This study selected STBI patients who underwent tracheostomy in the department of neurosurgery of our hospital from January 1, 2019 to August 31, 2021 as study population. The inclusion criteria were: patients with TBI and a Glasgow Coma Scale (GCS) ≤ 8 points at admission; STBI patients who received tracheostomy treatment during the hospital stay; and patients with duration of mechanical ventilation > 48 h. The exclusion criteria of this study are: patients whose condition deteriorated rapidly and died within 24 h of admission; Patients with pulmonary infection diagnosed by the respiratory symptoms, blood gas analysis and lung X-rays at the admission of patients; patients whose relatives did not agree to participate in this study. We focused on the pulmonary infection in STBI patients undergoing tracheostomy, which should be a part of hospital-acquired pneumonia. The diagnosis of pulmonary infection during hospital stay was referred to the relevant diagnostic criteria for pulmonary infection [14] [15] [16] , specifically as following: ① The patient had respiratory symptoms such as cough, excessive sputum, purulent sputum, rapid breathing, fever; ② body temperature ≥ 38 °C; ③ the white blood cell > 10 × 10 9 ; ④ Auscultation of the lungs could hear dry and wet rales; ⑤ X-rays or chest CT of lungs indicated small patchy shadows; ⑥ Pathogenic bacteria cultured in sputum; ⑦ Patients have history of tracheostomy or intubation, aspiration, pulmonary edema, atelectasis, shock, surgical anesthesia, invasive infection of the wound, suppurative thrombophlebitis. Patients can be diagnosed with pulmonary infection if they meet at least 4 items above. We analyzed the bacteria and fungi in the bacteriological detections. We used the Microstation automatic microbial identification system (X900) produced by Henrui Biolog company (Nanjing, China) and related media to configure the bacterial suspension for the identification of pathogenic bacteria, which could automatically generate identification results. Sputum culture device were used to suck the deep secretions of lower respiratory tract through tracheal cannula and immediately sent to our laboratory for bacteria culture and drug sensitivity test. The operation process and the collection of sputum specimens were strictly performed in accordance with the principle of sterility. We retrospectively collected following data from the medical record: gender, age, body mass index (BMI), alcohol drinking, smoking, hypertension, diabetes, hyperlipidemia, hypoproteinemia (plasma total protein < 60 g/L), types of TBI, GCS at admission, duration of coma, duration of mechanical ventilations, length of hospital stay and mortality. The characteristics of pulmonary infection and no pulmonary infection patients were compared. We used SPSS 19.0 software to analyze the data. For normally distributed data, we used mean and standard deviation, whereas for non parametric we used median and inter-quartile range (IQR). Comparison between groups was performed by t test. Categorical variables were presented as cases or percentage (%), the group comparisons were performed by chi-square test. Pearson correlation analyses were conducted to assess the correlation of characteristics and pulmonary infection. Logistic regression analyses were conducted to analyze the risk factors related to the occurrence of pulmonary infection. In this study, P < 0.05 was considered statistically significant. A total 216 STBI patients undergoing tracheostomy were included, of whom 58 patients had pulmonary infection, the incidence of pulmonary infection was 26.85%. As presented in Table 1 , there were significant differences in the diabetes, hypoproteinemia, duration of coma, duration of mechanical ventilation and length of hospital stay, length of hospital stay post tracheostomy, mortality between pulmonary infection and no pulmonary infection group (all p < 0.05). No significant differences in the gender, age, BMI, alcohol drinking, smoking, hypertension, hyperlipidemia, types of TBI, GCS at admission and duration of mechanical ventilation prior to tracheostomy were found (all p > 0.05). As indicated in Table 2 , Pearson correlation analyses indicated that diabetes (r = 0.782), hypoproteinemia (r = 0.804), duration of coma (r = 0.672), duration of mechanical ventilation (r = 0.724) and length of hospital stay (r = 0.655), length of hospital stay post tracheostomy (r = 0.554), mortality (r = 0.598) were all correlated with pulmonary infection (all p < 0.05). Table 3 indicated the distribution of pathogens of pulmonary infection in STBI patients, Klebsiella pneumonia (33.87%) and Staphylococcus aureus (29.03%) were most commonly seen pathogens in the pulmonary infection of TBI patients. The variable assignment of multivariate logistic regression in this present study were presented in Table 5 . As showed in Table 6 STBI is one of the clinical critical illnesses, which can lead to a higher disability rate and fatality rate. In clinical practice, tracheostomy may reduce the risk of VAP, avoid the complications of prolonged ventilation, and it helps in weaning patients from the ventilator if they are on the ventilator for a prolonged period. However, tracheostomy is one of the high-risk factors for pulmonary infection [17, 18] . However, if patients with TBI are complicated with pulmonary infections, it may further affect their recovery effect and prognosis, and even lead to an increase in their mortality [19] . Therefore, it is very important for such patients to prevent and control pulmonary infections [20, 21] . To achieve effective control and treatment, a comprehensive understanding of associated factors is necessary for the prevention and treatment of pulmonary infection. The results of this study After tracheostomy, the gas is not humidified and filtered by the upper respiratory tract thus entering the lungs directly, causing possible damage to the ciliary epithelium of the respiratory tract mucosa with difficult removal of secretions and foreign bodies [22, 23] . The patients included in this study received mechanical ventilation after tracheostomy performance, thus receiving active or passive humidification of the airways. The factors that dry inhaled air, blockage of sputum, pathogenic bacteria and particles with pathogenic bacteria make it easy to cause pulmonary infection [24] . At the same time, patients with impaired consciousness who are not ventilated initially post STBI will be vulnerable or prone to aspiration of stomach contents, and digestive juice damages the bronchial mucosa and cilia and may predispose to infection and a picture of pneumonitis [25, 26] . Patients with impaired consciousness are prone to aspiration of stomach contents, and digestive juice damages the bronchial mucosa and cilia and causes infection [27] . In addition, patients with STBI often have stress ulcers, poor gastrointestinal function, malnutrition, which is associated with the occurrence of pulmonary infection [28] . The immune status and body repair ability of diabetic patients are worse than those of no diabetic patients, and the risk of infection is higher [29, 30] . Therefore, intervention on the immune status and blood sugar of diabetic patients should be strengthened [31] . Besides, the longer the coma, the higher risk of pulmonary infection, which is related to the worse immune status [32] . The decline in pulmonary function is also an important reason for the infection [33] . Therefore, interventions in the respiratory tract should be strengthened. People with chronic underlying diseases have relatively poor overall body status, and have poor resistance and repair ability to pathogenic bacteria, so they are more prone to pulmonary infections [34] . Therefore, in addition to the necessary adjustments to the immune status of such patients, close monitoring of blood glucose fluctuations and intensified respiratory management are necessary treatments [35] . In this study, the sputum of patients was cultured and identified, and the types and distribution of pathogens were analyzed. The research results show that gramnegative bacteria are still the first pathogens of lung infections, second by gram-positive bacteria and fungi, suggesting that pathogen monitoring should be strengthened and targeted medications should be given during treatment. Due to long-term exposure to tracheostomy and disease stress, the patient's immunity is significantly reduced, resulting in a significant increase in the patient's pulmonary infection rate, and the types of infections are gradually diversified. We have found that Klebsiella pneumoniae and Staphylococcus aureus were most commonly seen pathogens in the pulmonary infection of TBI patients, both Klebsiella pneumoniae and Staphylococcus aureus are highly sensitive to Cefoperazone, Meropenem, and Levofloxacin. Therefore, clinical antibiotics should be given according to the drug resistance and sensitivity assessment, to improve the effects and safety of treatment [36, 37] . Pulmonary infection seriously affects the prognosis of patients with STBI, and infection should be prevented and controlled in a timely and effective manner [38] . The clinical treatment and nursing operations should strictly abide by the aseptic operating procedures, including tracheostomy, dressing change, and tracheal tube care throughout the entire process. Meanwhile, sputum bacteria culture + drug susceptibility test should be carried out in time, antibiotics should be adjusted in time according to the test results, and the collection of sputum specimens should avoid contamination that affects the test results and delays treatment [39] . Suction sputum in time, try to avoid infection around the tracheal incision and damage to the mucous membrane of the respiratory tract to reduce bacterial migration [40, 41] . Besides, adopt a reasonable posture, turn over and pat the back on time to avoid sputum accumulation is helpful to prevent pneumonia [42] [43] [44] . Furthermore, early nutritional supports are needed, and if necessary, infusion of plasma or albumin to improve the body's resistance to prevent and reduce the chance of nosocomial infection [45] . Several limitations in this present study must be considered. Firstly, our study is a retrospective study design, the collected data are very limited, there can be other factors influencing pulmonary infection that we cannot include for analysis. Secondly, even rough the sample size is large enough, it can be underpowered for some factors to detect the group differences, there by potential biases can be existed. Thirdly, the most included STBI were adult patients with age ≥ 18 years, only 4 children with STBI were included in our study, the further stratified analysis of pulmonary infection in the adult and children populations are needed in the future with larger sample size and rigorous design. In conclusion, we have found that the pulmonary infection is a very common and serious complication in patients undergoing tracheostomy. Diabetes, hypoproteinemia, duration of coma ≥ 22 h, duration of mechanical ventilation ≥ 5 days, length of hospital stay ≥ 21 days are the risk factors of pulmonary infection in those patients. And the pulmonary infections are mainly caused by gram-negative bacteria. Future studies on the effects and safety of timely and effective measures in response to these risk factors to reduce the pulmonary infections and improve the prognosis of STBI patients are needed. Abbreviations STBI: Severe traumatic brain injury; GCS: Glasgow Coma Scale; BMI: Body mass index. Traumatic brain injury in children and adolescents: psychiatric disorders 24 years later Extracranial complications after traumatic brain injury: targeting the brain and the body Nutrition therapy, glucose control, and brain metabolism in traumatic brain injury: a multimodal monitoring approach Noninvasive real-time assessment of intracranial pressure after traumatic brain injury based on electromagnetic coupling phase sensing technology Current status of indications, timing, management, complications, and outcomes of tracheostomy in traumatic brain injury patients The influence of the CRS-R score on functional outcome in patients with severe brain injury receiving early rehabilitation Hypertonic saline infusion in traumatic brain injury increases the incidence of pulmonary infection Effects of nasogastric and percutaneous endoscopic gastrostomy tube feeding on the susceptibility of pulmonary infection in long-term coma patients with stroke or traumatic brain injury Multivariate analysis of secondary pulmonary infection in patients with severe craniocerebral injury after emergency treatment Experimental traumatic brain injury does not lead to lung infection Traumatic brain injury-the effects of patient age on treatment intensity and mortality Traumatic ischemic injury in a top of the basilar distribution: a case report Early or late bacterial lung infection increases mortality after traumatic brain injury in male mice and chronically impairs monocyte innate immune function Hospital infection diagnostic criteria A nomogram for predicting postoperative pulmonary infection in esophageal cancer patients Respiratory tract virus infections in the elderly with pneumonia convenient online submission • thorough peer review by experienced researchers in your field • rapid publication on acceptance • support for research data, including large and complex data types • gold Open Access which fosters wider collaboration and increased citations maximum visibility for your research: over 100M website views per year submit your research ? An inflammatory pulmonary insult post-traumatic brain injury worsens subsequent spatial learning and neurological outcomes Pulmonary embolism following severe traumatic brain injury: incidence, risk factors and impact outcome The role of osmolality in saline fluid nebulization after tracheostomy: time for changing? Rapid changes in mucociliary transport in the tracheal epithelium caused by unconditioned room air or nebulized hypertonic saline and mannitol are not determined by frequency of beating cilia Pharmacological targeting of secondary brain damage following ischemic or hemorrhagic stroke, traumatic brain injury, and bacterial meningitis: a systematic review and meta-analysis Tracheostomy tube placement: early and late complications Perioperative considerations for tracheostomies in the era of COVID-19 Novel percutaneous tracheostomy for critically Ill patients with COVID-19 Evidence-based guidelines for the use of tracheostomy in critically ill patients Effect of early versus late or no tracheostomy on mortality and pneumonia of critically ill patients receiving mechanical ventilation: a systematic review and meta-analysis Critical care guidance for tracheostomy care during the COVID-19 pandemic: a global, multidisciplinary approach Long term outcomes in chronic lung disease requiring tracheostomy and chronic mechanical ventilation Traumatic brain injury causes chronic cortical inflammation and neuronal dysfunction mediated by microglia Traumatic brain injury, diabetic neuropathy and alteredpsychiatric health: the fateful triangle Type 2 diabetes predicts increased risk of neurodegenerative complications in veterans suffering traumatic brain injury Traumatic brain injury associated with dementia risk among people with type 1 diabetes Complication rates of open surgical versus percutaneous tracheostomy in critically ill patients. Laryngoscope Complications and outcomes of acute respiratory distress syndrome Evidence-based guides in tracheostomy use in critical patients Treatment of chronic pulmonary aspergillosis: current standards and future perspectives Therapeutic effects of pentoxifylline on invasive pulmonary aspergillosis in immunosuppressed mice An unusual case of reactivated latent pulmonary cryptococcal infection in a patient after short-term steroid and azathioprine therapy: a case report Prone during pandemic: development and implementation of a quality-based protocol for proning severe COVID-19 hypoxic lung failure patients in situationally or historically low resource hospitals Sputum smear conversion and associated factors among smear-positive pulmonary tuberculosis patients in East Gojjam Zone, Northwest Ethiopia: a longitudinal study Percutaneous and open tracheostomy in patients with COVID-19: comparison and outcomes of an institutional series Early versus late tracheostomy in patients with acute traumatic spinal cord injury: a systematic review and meta-analysis Predictors of post-stroke fever and infections: a systematic review and meta-analysis Severe Candida glabrata pancolitis and fatal Aspergillus fumigatus pulmonary infection in the setting of bone marrow aplasia after CD19-directed CAR T-cell therapy: a case report Compare the effect of noninvasive ventilation and tracheostomy in critically ill mechanically ventilated neurosurgical patients: a retrospective observe cohort study Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations None. XZ, MW designed research; XZ, HZ, HS, MW conducted research; XZ, HZ analyzed data; XZ, HS wrote the first draft of manuscript; HS had primary responsibility for final content. All authors read and approved the final manuscript. None. All data generated or analyzed during this study are included in this published article. In this study, all methods were performed in accordance with the relevant guidelines and regulations. This present study had been approved by the ethical committee of First Affiliated Hospital of Soochow University(approval number:11019036), and written informed consents had been obtained from all the included patients or related guardians of patient. Not applicable. The authors declare that they have no competing interests.Received: 23 December 2021 Accepted: 29 March 2022