key: cord-0027107-aros25iv authors: Madireddy, Sahithi; Madireddy, Samskruthi title: Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder date: 2022-02-06 journal: Int J Mol Sci DOI: 10.3390/ijms23031844 sha: 3af29bf0ec710659d757e4219b3b79a258804cfb doc_id: 27107 cord_uid: aros25iv Bipolar disorder (BD) is characterized by mood changes, including recurrent manic, hypomanic, and depressive episodes, which may involve mixed symptoms. Despite the progress in neurobiological research, the pathophysiology of BD has not been extensively described to date. Progress in the understanding of the neurobiology driving BD could help facilitate the discovery of therapeutic targets and biomarkers for its early detection. Oxidative stress (OS), which damages biomolecules and causes mitochondrial and dopamine system dysfunctions, is a persistent finding in patients with BD. Inflammation and immune dysfunction might also play a role in BD pathophysiology. Specific nutrient supplements (nutraceuticals) may target neurobiological pathways suggested to be perturbed in BD, such as inflammation, mitochondrial dysfunction, and OS. Consequently, nutraceuticals may be used in the adjunctive treatment of BD. This paper summarizes the possible roles of OS, mitochondrial dysfunction, and immune system dysregulation in the onset of BD. It then discusses OS-mitigating strategies that may serve as therapeutic interventions for BD. It also analyzes the relationship between diet and BD as well as the use of nutritional interventions in the treatment of BD. In addition, it addresses the use of lithium therapy; novel antipsychotic agents, including clozapine, olanzapine, risperidone, cariprazine, and quetiapine; and anti-inflammatory agents to treat BD. Furthermore, it reviews the efficacy of the most used therapies for BD, such as cognitive–behavioral therapy, bright light therapy, imagery-focused cognitive therapy, and electroconvulsive therapy. A better understanding of the roles of OS, mitochondrial dysfunction, and inflammation in the pathogenesis of bipolar disorder, along with a stronger elucidation of the therapeutic functions of antioxidants, antipsychotics, anti-inflammatory agents, lithium therapy, and light therapies, may lead to improved strategies for the treatment and prevention of bipolar disorder. Bipolar disorder (BD) is a chronic mental illness characterized by an alternation between mania or hypomania and depression [1] [2] [3] [4] . It is often associated with impaired functionality [5, 6] . Neurotransmitter imbalance, oxidative stress (OS), and genetic causes are some of the factors that have been linked to the pathophysiology of BD [7, 8] . A consistent finding in BD is the presence of OS, which makes biomolecules susceptible to oxidative and nitrosative damage [9] . Dopamine (DA) levels are notably increased during mania, and DA produces reactive oxygen species (ROS) and quinones that can proceed to oxidize proteins [9] . The overproduction of ROS and reactive nitrogen species, along with impaired maintenance of balance by antioxidant systems, can result in damage to lipids, proteins, DNA, and RNA [9, 10] . In addition, the presence of ROS/reactive nitrogen species in mitochondria leads to oxidation of mitochondrial DNA (mtDNA), proteins, and lipids [10, 11] . Inflammation and immune dysfunction may be involved in BD pathophysiology [12] [13] [14] [15] [16] [17] . OS has been posited to play a role in the development of several psychiatric disorders, including BD [92] [93] [94] . For instance, two recent studies found increased OS in BD OS has been posited to play a role in the development of several psychiatric disorders, including BD [92] [93] [94] . For instance, two recent studies found increased OS in BD [93, 95] . Moreover, postmortem samples of the blood and brain revealed that younger patients with BD consistently show damage from OS [96] [97] [98] [99] [100] [101] [102] . Alterations in neuroplasticity, signaling, and neurotransmitter uptake by increased OS may be involved in the pathogenesis of these dysfunctions [103, 104] . These harmful changes may be partially a consequence of increased lipid peroxidation in membranes, proteins, and DNA due to increased OS [105, 106] . Such biomarkers as protein oxidation, 8-hydroxydeoxyguanosine, and lipid peroxidation can indicate the extent of oxidative damage [107, 108] . Increased lipid peroxidation and SOD levels, respectively, in BD patients who were manic compared with controls. However, Gergerlioglu et al. found that BD patients had decreased SOD levels during manic episodes [120] . Several key findings regarding how OS mechanisms can contribute to BD have been reported. Excess ROS can damage mitochondria through mutations to mtDNA, thereby damaging the electron transport chain and altering membrane permeability [74, 121, 122] . ROS overproduction can also damage proteins that regulate calcium, such as gated calcium channels, calcium ion (Ca 2+ )-ATP synthases, and proteins in the electron transport chain [74] . This outcome disrupts calcium homeostasis, leading to elevated calcium [74] . SOD and glutathione are key components of the antioxidant defense against OS [72, 123] . Therefore, increased SOD activity may be seen as a mechanism of mitigating increased oxidative damage in BD [81] . On the other hand, increased SOD and CAT levels could also cause increased H 2 O 2 production, which may contribute to neural damage through oxidation of lipids and proteins [124, 125] . Levels of uric acid in BD patients undergoing mania have been found to be higher than those in BD patients undergoing depression but not those in BD patients undergoing euthymia [112] . Differences in TBARS levels between mania and depression have not been observed [112] . Compared with healthy controls, BD patients who were not taking medication have been reported to exhibit increased SOD levels and decreased GPX levels. BD patients and healthy controls have been found to demonstrate comparable SOD and GPX levels after treatment. Overall, BD is correlated with OS, uric acid/TBARS levels are increased in specific phases, and treatment may restore SOD and GPX to normal levels [112, 126] . Mitochondria are responsible for energy production and providing substrates for cell growth. In addition, they are involved in cell resilience and oxidative/nitrosative stress [127] [128] [129] [130] [131] . Mitochondria in the brain are important for influencing neural activity, neural plasticity, and behavioral adaptation through their effects on long-term potentiation [132] [133] [134] [135] [136] . Mitochondrial dysfunction has been shown to be crucial in BD [137] [138] [139] [140] [141] [142] [143] . BD may include underlying mitochondrial dysfunction based on observations of decreased cellular respiration, altered mitochondrial structure, mtDNA mutations, and decreased production of proteins involved in respiration [54, 87] . Failure of respiration is further evidenced by a decrease in pH and decreased presence of compounds containing high-energy phosphates in the brain [54, 87] . Moreover, mitochondrial disorders may lead to psychotic, affective, and cognitive symptoms [54, 87] . Genetic, postmortem, and molecular studies have indicated that mitochondrial dysregulation could lead to the nervous system impairment observed in BD [144] . Some patients with BD have been found to exhibit deterioration in mitochondrial quality control mechanisms [141] . In addition, postmortem analyses of the brains of patients with BD have found decreased expression of genes involved in the electron transport chain [145] . As noted previously, BD is also associated with mutations and polymorphisms of mtDNA [146] [147] [148] [149] [150] . Because it lacks the protection of histones, mtDNA is especially vulnerable to mutations from oxidative damage [53] . Mitochondrial dysfunction increases ROS generation, which leads to greater OS [151] . Consistent with this reasoning, OS markers have been reported to be increased in the brains of BD patients analyzed postmortem as well as in the blood of BD patients [91, 152] . Mitochondrial dysfunction may also play a role in the altered calcium signaling observed in BD [153, 154] . OS can cause DNA damage, which some studies on patients with BD have observed [74, 155, 156] . A significant association between DNA damage and BD as well as associations between DNA damage and the severity of BD and depressive symptoms have been reported [157] . In particular, Andreazza et al. showed a positive correlation between DNA damage and the severity of manic and depressive symptoms [113] . With the use of comet assay to evaluate DNA damage, they observed increased DNA damage in BD patients compared with controls [113] . Another study characterized the OS profile of monozygotic twins who were experiencing manic episodes [81] . Compared with healthy twins, bipolar twins had elevated SOD, TBARS, and DNA damage [81] . The bipolar twins also had decreased CAT levels. After treatment with mood stabilizers, TBARSs and SOD in the bipolar twins returned to normal levels; however, CAT levels and DNA damage were still abnormal 6 weeks after the treatment started [93] . In a rat model of mania, amphetamine administration increased DNA damage in the blood and hippocampus [81] , and DNA damage was positively correlated with lipid peroxidation [89] . BDNF is important for the development, plasticity, and survival of neurons [75, 158, 159] . Six meta-analyses found decreased BDNF levels in BD patients compared with both healthy individuals and patients with unipolar depression [52, [160] [161] [162] [163] . Lowered BDNF levels were observed with both mania and depression in BD [52, [160] [161] [162] [163] . Patients with BD may have abnormal plasma levels of other neurotrophins as well [75] . The link between higher levels of OS and decreased BDNF levels has been well demonstrated in BD [54, 81] . In addition, a connection between mitochondrial complex I dysfunction, ROS production, and decreased BDNF level has been established [164] . A study of 59 BD patients and 26 healthy controls examined the association of BDNF levels with antioxidant defenses [165] . It found that the peripheral BDNF level in BD was correlated with antioxidant enzyme activity [165] . Another study also found a negative correlation between TBARS and BDNF levels in patients with BD, implying that a modified oxidative status might lead to decreased BDNF levels [166] . A meta-analysis demonstrated substantial reductions in peripheral BDNF levels in manic and depressive episodes of BD [163] . A similar metaanalysis consisting of 35 studies and 3798 research participants reported that BD patients exhibited lower peripheral BDNF levels compared with healthy controls [52] . Another study measured mtDNA copy number in leukocytes, plasma BDNF level, and antioxidant enzyme activity in 97 BD patients and 31 healthy controls [158] . BDNF level, mtDNA copy number, and GPX activity in the BD patients were significantly lower than those in the controls [158] . Other researchers have examined the association between plasma BDNF level and the functions of GPX and SOD in BD patients and healthy controls [165] . Peripheral BDNF level in BD and antioxidant enzyme activity had a robust correlation regulated by metabolic comorbidities [165] . Overall, these findings suggest that a lowered BDNF level may be a component of the pathophysiology of BD [52,160]. DAT is critical to the dopaminergic system due to its function in DA reuptake, causing its removal from the synaptic cleft [91] . Recent studies have highlighted a possible link between DAT and mania [91] . The enhanced dopaminergic transmission accompanying mania can contribute to OS in patients with BD [89, 167] . Elevated DA causes a significant increase in ROS production and mitochondrial dysfunction, which may further damage DNA and cause cell death [91, 168] . OS can induce posttranslational modifications of the DAT, which would decrease DA reuptake [91] . Because patients with BD have lower levels of antioxidant enzymes [169] , they may be highly vulnerable to DAT oxidation [170] . Toxicity from increased DA can kill dopaminergic neurons, potentially resulting in the depressive phase of BD [167] . Notably, pharmaceutical therapies for BD, including Nacetylcysteine and lithium, may protect against OS and DA toxicity [171] [172] [173] , pointing to the possibility of preventing the vicious cycle of DA inhibiting the DAT [91] . Therefore, understanding DA dysregulation in BD will help determine the pathophysiology of BD and may assist in the development of novel therapeutic agents to augment treatment [91] . BD development may be triggered by immune system dysregulation [16, [174] [175] [176] such as acute-phase protein and cytokine alterations, which can cause BD through neurotransmitterand neuropeptide-related effects [177, 178] . Proinflammatory cytokines include interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α), whereas anti-inflammatory cytokines include IL-10 and IL-4, which can prevent immune system activation [179] [180] [181] . Notably, high proinflammatory cytokine levels have been consistently observed in patients with BD, especially during acute episodes [177, 180, [182] [183] [184] . Moreover, patients with BD exhibit reduced anti-inflammatory cytokine levels during the manic phase [185] [186] [187] [188] . Even genetic studies have indicated that a multitude of genes that partake in various neuroimmunological and inflammatory pathways are either up or downregulated in BD. Genetic studies have suggested that the presence of BD correlates with differential upregulation or downregulation of several genes involved in inflammatory and neuro-immunological pathways [189] . Circulating mtDNA and inflammation level, indicated by plasma cytokine (GM-CSF, IL-2, IL-4, and IL-6) measurements, were correlated in the patients [190] . In another study, patients with BD generally showed increased proinflammatory cytokine levels [191] . In addition, depressed patients displayed reduced plasma anti-inflammatory cytokine and increased TNF-α levels, suggested to play a potential role in treatment resistance [191] [192] [193] . In another study investigating the relationships between OS, cytokines, and circadian preferences, plasma IL-10, IL-6, and TNH-α were measured [194] . Among BD patients, there was a greater change in circadian rhythms than in controls and patients with major depressive disorder [194] . Those BD patients who had reversed day/night cycles also had lower serum IL-6, IL-10, and TBARS. This suggests that oxidative stress may affect immune function and may be correlated with CNS functions in a subset of BD patients [194] . A 2021 meta-analysis described increased IL-6, TNF-α, and C-reactive protein (CRP) levels in patients with BD, with particularly increased TNF-α and CRP levels during manic and depressive episodes [195] . Another meta-analysis found elevated TNF-α, IL-4, and soluble IL-2 and IL-6 receptor levels in patients with BD compared to healthy controls [196] . In addition, certain pieces of evidence suggest that antidepressants could reduce systemic inflammation, even though the anti-inflammatory effects of antidepressants are yet to be evaluated fully [197] . Moreover, the immune system could contribute to BD pathology through the regulation of the hypothalamic-pituitary-adrenal (HPA) axis [177] . Proinflammatory cytokines increase HPA axis activity, resulting in increased systemic cortisol levels [198] . One hypothesis for BD states that mtDNA mutations or mitochondrial RNA deletions lead to impaired mitochondrial regulation of calcium, causing BD symptoms [54, 199] . Consistent with this hypothesis, calcium levels in peripheral cells of patients with BD have been found to be higher than normal [77, [200] [201] [202] . A persistent increase in intracellular calcium can cause neurons to undergo degeneration and die [203] . Excess calcium in mitochondria induces mitochondrial permeability transition, after which the mitochondria swell and the outer mitochondrial membrane ruptures [204] . Furthermore, ROS production in mitochondria stimulates the uptake of Ca 2+ and enhances membrane permeability, leading to cytochrome c release and the initiation of apoptosis [203, 205] . Mitochondrial permeability transition further hampers oxidative phosphorylation, inhibits citric acid cycle enzymes, reduces ATP synthesis, increases ROS generation, as well as increases the release of calcium and apoptogenic factors to the cytosol [54, 206, 207] . Increased calcium concentrations also result in an altered mitochondrial potential and the formation of superoxide ion radicals [204] , thus contributing to a vicious cycle [74] . Consumption of nutrients are beneficial to brain health and its functioning [208] . Diet can affect a range of processes that are altered in BD, such as monoaminergic activity, mitochondrial activity, inflammation, OS, and neuroprogression [209] [210] [211] . Oxidants may be crucial to psychiatric disorders as they are linked to membrane-related pathology in the central nervous system [212, 213] . Certain oxidants can cause adverse increases in other metabolites, which can lead to specific psychiatric symptoms [73] . As previously noted, BD is characterized by lipid peroxidation and changes in antioxidant enzymes [214] . Consequently, antioxidant compounds may improve symptoms and may be explored as an adjunctive therapy. For instance, minocycline, an antibiotic, seems to have neuroprotective effects through its antioxidant activity, a mechanism that is also applicable to the pathophysiology and treatment of BD [215, 216] . Poor nutrition is often associated with OS and inflammation, which can impact the immune system [217] . Early studies suggest that anti-inflammatory agents are likely to be beneficial for patients with BD exhibiting immune dysregulation [15] . A study of 118 BD patients found a vitamin D deficiency rate 4.7× greater than that in the general population [218] . In a cross-sectional case-control study, Naifar et al. measured 25-hydroxy vitamin D in the plasma of patients with acute decompensation of BD relative to healthy controls [219] . In contrast to the prior study, their analysis discovered significantly higher levels of 25-hydroxy vitamin D in the BD patients compared with the healthy controls [219] . The study revealed that an increase in 25-hydroxy vitamin D production is correlated with acute decompensation of BD. Vitamin D supplementation correlates with a decline in manic and depressive symptoms, but further studies on the efficacy of specific doses are needed to corroborate these data [220] [221] [222] . Vitamin D has also been shown to exhibit anti-inflammatory effects [217] . Folic acid and folates are considered useful for treating depressive symptoms [223] due to their role in neurotransmitter synthesis and DNA methylation [224] . As reported in multiple studies, individuals who are depressed have lower concentrations of plasma and erythrocyte folate compared with both healthy people and people with other psychiatric disorders [225] . Reduced levels of folate correlate with poor responsiveness to antidepressant medication [226] . One study examined adding 200 µg/d of folic acid to lithium treatment in BD, with the authors ultimately suggesting that folic acid supplementation may be used during maintenance therapy [226] . Behzadi et al. reported positive outcomes from the inclusion of folic acid along with valproates in the treatment of mania [227] . Moreover, recent studies encompassing a group of 10 BD-I patients undergoing depression have shown the advantageous effects of augmenting standard treatment with levomefolic acid [228] . Intake of folic acid as levomefolic acid may be more effective because levomefolic acid is more bioavailable [228] . Several reports have identified variations in the blood magnesium concentration of patients with BD [229] . One study highlighted significantly increased serum magnesium concentrations in patients with BD during mania, hypomania, and depression. However, during remission, serum magnesium returned to normal levels and did not differ from the levels in healthy controls [229] . Another study measured magnesium concentration in 129 BD patients (23 exhibiting mania, 58 exhibiting depression, and 48 in remission) along with 50 healthy controls [229] . It found that the BD patients undergoing a depressive, manic, or hypomanic episode had significantly higher serum magnesium concentrations compared with the healthy controls [229] . The serum magnesium levels of the patients in remission were unaltered compared with those of the controls. These results suggest that serum magnesium may be used as a potential marker of the pathophysiological alterations accompanying acute BD [229] . In addition, several reports have noted altered serum copper levels in patients with BD [230] . A study of 133 BD patients (23 exhibiting mania/hypomania, 61 exhibiting depression, and 49 in remission) showed significantly increased levels of serum copper among patients in stage I compared with patients in advanced stages of the disorder [230] . Omega-3 PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid (DHA), are critical to the development and activities of the brain, including neuronal migration, maturation, formation of synapses, neuronal plasticity, and synaptic transmission [226] . Alterations in PUFA levels have been suggested to be present in BD [231, 232] . An analysis of six studies including a total of 118 BD-I patients and 147 healthy controls showed deficits in erythrocyte DHA and decreased eicosapentaenoic acid in the BD-I patients [232] . Omega-3 PUFAs have been suggested as possible therapeutic supplements for a variety of illnesses, such as cancer, diabetes, arteriosclerosis, hypertension, arthritis, psychiatric disorders, dementia, and autoimmune diseases [233] . More specifically, study results for the use of omega-3 PUFAs in BD have been encouraging [234] [235] [236] [237] . The increase in BDNF levels caused by omega-3 PUFAs has been proposed to account for how omega-3 PUFAs may enhance the outcomes of BD [235] . In addition, recent research indicates that anti-inflammatory medication might contribute to mood disorder treatment [21]. Omega-3 PUFAs, naturally occurring anti-inflammatory agents, are found to be well-tolerated [208, 238, 239] . In a randomized controlled trial (RCT), omega-3 fatty acids displayed a significant antidepressant effect in subjects with high inflammatory marker levels [240] . Multiple epidemiological and experimental studies have considered the association between dietary intake/supplementation of PUFAs and incidence or severity of depression [241] . Some research studies have also proposed that increased dietary PUFA consumption in patients with BD is beneficial [242] . Daily administration of 1 to 2 g of eicosapentaenoic acid has been found to reduce depressive symptoms, including those in patients with BD-I [243] . Another study examined the effectiveness of prophylactic administration of omega-3 PUFAs in BD: Eighty patients with BD were randomized such that 40 received placebo and the other 40 received 1 g of eicosapentaenoic acid as well as 1 g of DHA as adjunctive therapy for 52 weeks [244] . The study determined that omega-3 PUFA administration had a prophylactic effect in the patients. A double-blind randomized trial assessed daily DHA supplementation at 1250 mg versus placebo for 12 weeks in 31 BD patients who were euthymic and 15 healthy controls [245] . In contrast to the above-mentioned results, the trial found improved cognitive function based on performance in emotion inhibition only in healthy controls who received DHA for 12 weeks. This finding suggests that DHA supplementation may be effective in increasing cognitive performance, but further research on this topic is required [245] . In addition to omega-3 fatty acids and vitamin D, other nutrients with reported antiinflammatory and antioxidant effects include vitamin A, vitamin C, and phytochemicals such as polyphenols and carotenoids [246] [247] [248] . Vitamin C is considered an antioxidant because it quenches free radicals while being oxidized into dehydroascorbic acid [248] . Moreover, it has been shown to act on neutrophils to induce phagocytosis, ROS generation, and migration to the infection site [249, 250] . Omega-3 fatty acids; vitamins A, C, and D; polyphenols; carotenoids; and other anti-inflammatory compounds might contribute to the homeostatic regulation of OS and inflammation, both under normal conditions and during infection. Clinical trials involving patients with BD have demonstrated encouraging results for a diverse group of anti-inflammatory agents [251] . When aspirin, celecoxib, infliximab, N-acetylcysteine (NAC), omega-3 fatty acids, and pioglitazone were administered as adjuvant therapy, they were found to be effective in reducing BD-related depression [251] . Evidence has particularly supported the use of NAC as an adjuvant therapeutic agent for BD-related depression [252] . In an RCT involving 75 patients with BD, adjunctively administered NAC significantly reduced depression severity after 24 weeks compared to conventional treatment alone [253] . Of note, valproate also exhibited anti-inflammatory effects both systemically and in the CNS in encephalomyelitis rat models [254] . Moreover, valproic acid was found to reduce proinflammatory cytokine production in controls [255] . Lithium, the first-line drug treatment for BD, both for bipolar depression [256] [257] [258] [259] [260] [261] and for mixed episodes [262] [263] [264] [265] [266] [267] [268] [269] [270] [271] [272] [273] [274] has numerous neuroprotective, neurotrophic, and neuroplastic effects [275] [276] [277] [278] . In addition to being the mood stabilizer conventionally used in ameliorating the pathophysiology of BD, lithium has some antidepressant activity [279] [280] [281] [282] . The therapeutic effects of lithium have been hypothesized to be partially linked to its antioxidant capabilities. One study examined 29 BD patients in a depressive episode who were treated with lithium for 6 weeks as well as 28 controls [145] . Plasma TBARS levels as well as SOD, CAT, and GPX activities were measured at baseline and 6 weeks in both groups [145] . Lithium administration only caused a decrease in TBARS and SOD levels; this was most evident in BD-II [106, 145] . TBARS levels were significantly lower after 6 weeks in patients who responded to lithium compared with those who did not [95, 145] . A similar study showed significantly lower TBARS and SOD:CAT levels in BD patients [283] who were administered lithium but not in healthy people given lithium [155, 284] . Short-term lithium treatment has been shown to lower SOD:CAT and TBARS levels in patients with BD who were experiencing mania as well [95] . These outcomes were corroborated by a follow-up study showing a reduction in SOD and TBARS levels in patients with BD after 6 weeks of lithium therapy [285] . The study also found that lithium responders exhibited significantly lower TBARS levels compared with nonresponders [106] . Taken together, these findings support the role of OS in the pathophysiology of BD, in addition to the role of the antioxidant activity of lithium in providing effective clinical intervention [286] [287] [288] [289] . Moreover, lithium reduces proapoptotic activities and increases the level of neuroprotective proteins, including Bcl-2 [81, 290, 291] . These mechanisms may contribute to the neuroprotective action of the drug. Lithium reportedly exhibits anti-inflammatory activity through the inhibition of IL-1B, TNF-α, and cyclooxygenase-2 synthesis and stimulation of IL-2 and IL-10 production [16, [292] [293] [294] . There have also been reports on lithium's proinflammatory effects, such as the enhancement of IL-4, IL-6, and other inflammatory cytokine synthesis [208, 295, 296] . Through its anti-inflammatory effects, lithium was found to decrease proinflammatory cytokine levels and alleviate manic behavior in a mouse model of mania [297] . Two recent preclinical studies reported on the neuroprotective effects of lithium. In a study focusing on rat glia, lithium pretreatment reduced TNF-α, IL-1β, NO, and prostaglandin E 2 secretion in response to lipopolysaccharide-induced inflammation [298, 299] . In another study using a rat model of intracerebral hemorrhage, lithium prevented perihematomal cell death and reduced COX-2 expression and reactive microglia number [298, 300] . In addition to regulating apoptosis, lithium is known to protect against excitotoxicity [301, 302] as well as to increase BDNF and intracellular calcium levels [145] . It causes an increase in neuroplasticity, which mitigates the reduction in gray and white matter observed in BD [301] and may ameliorate the visuospatial asymmetry produced by BD [303] . Lithium therapy has demonstrated frontal cortex enhanced electron transport chain complexes I, II, and III activity in the postmortem brains of patients with BD [304] . In addition, de Sousa et al. observed the ability of lithium to improve the activity of electron transport chain complex I in the leukocytes of patients with BD to an extent dependent on the plasma lithium level [305] . By affecting a range of biological processes, lithium has proven to be a potent treatment for BD [306] [307] [308] [309] [310] [311] [312] . Antipsychotic agents are effective in managing the symptoms of mania by blocking DA D 2 receptors [91, 313] . Therefore, people with BD-I who undergo manic episodes are more likely to be prescribed antipsychotic agents [314, 315] . A recent meta-analysis showed the efficacy of typical and atypical antipsychotic agents in the treatment of mania, suggesting that disrupted signaling of DA may contribute to the presentation of manic symptoms in patients with BD [316, 317] . Atypical antipsychotic agents, including olanzapine, clozapine, risperidone, quetiapine, aripiprazole, cariprazine, and ziprasidone, are classified as first-line medications for psychotic depression [314, [318] [319] [320] [321] . They are the preferred antipsychotic agents for long-term maintenance therapy [318] [319] [320] [321] . Some patients with BD, including those who respond poorly to mood stabilizers and typical antipsychotic agents or who exhibit rapid cycling, may benefit from the use of clozapine [314, 322] . Especially among older adults, clozapine may be beneficial in the treatment of BD and psychotic disorders [323] . Several research studies have shown that the efficacy of clozapine is increased during the manic phase of BD, as depicted in a study where patients with BD who were in a manic/mixed state responded better than did those who were in a depressed state [314] . The effectiveness of clozapine in the maintenance treatment of BD has been described in four open-label studies, of which three with a prospective study design specifically explored its effectiveness in mania [314] . In one study assessing the clinical benefit and adverse effects of clozapine, 100 and 102 patients with BD were administered clozapine and other antipsychotic agents, respectively [324] . Clozapine was found to have equivalent efficacy relative to the other antipsychotic agents for mania, and it outperformed them for treatment-resistant BD (TRBD) [324] . Fifteen clinical trials with 1044 patients in total were designed to evaluate the use of clozapine for TRBD [325] . Although the existing data are limited, they support the use of clozapine as a potent and safe treatment for TRBD [325] . In a mirror image study, 62 patients with BD who were in remission initially received clozapine treatment; of those patients, 25 were transferred to another antipsychotic treatment after a change in drug reimbursement, whereas 37 continued receiving clozapine [326] . The study indicated that a shift from clozapine to another antipsychotic agent might increase the likelihood of recurrence for BD patients in remission [326] . In addition, a case study found that 3 BD patients who had suicidal ideation benefited from the addition of clozapine to their treatment regimen, thereby suggesting that clozapine is a promising and safe medication for suicidality [327] . However, treatment with clozapine poses detrimental side effects, including a substantial risk of agranulocytosis, which could lead to death [314] . Olanzapine may be a competent maintenance drug treatment due to its antimanic and antidepressant effects [314] . In a group of patients with BD who were given olanzapine, a significantly better mean improvement in mania ratings and a significantly higher proportion of patients who attained remission were observed [314] . Furthermore, the results of an 8-week double-blind study of BD-I patients with depression administered placebo (n = 355) or olanzapine (5-20 mg/d; n = 351) revealed the efficacy of olanzapine as a therapeutic agent for mixed depression in BD-I [328] . Systematic investigations have demonstrated the efficacy and safety of using risperidone in the treatment of acute mania, either as an adjuvant therapy to lithium or valproate or as a stand-alone treatment [314] . In a 6-month multicenter open trial, risperidone proved to be safe and effective in the long term as an add-on treatment for TRBD, and it did not aggravate manic symptoms [314] . The study did reveal some adverse effects of risperidone, which were largely moderate and included weight gain [314] . A retrospective cohort study conducted with 469 BD-I patients who were given long-acting injections of risperidone for 1 year, in addition to concomitant BD medications, found that risperidone long-acting injections may decrease the severity of BD-I [157] . An exploratory analysis of 162 BD patients who had frequent relapses noted improvement in clinical status, depressive symptoms, and manic symptoms after add-on risperidone long-acting injection treatment [329] . Several other studies have investigated the efficacy of risperidone in pediatric patients with BD. One retrospective study observed pediatric patient charts over 18 months in an outpatient clinic for mood disorders [330] . Data obtained for BD patients with aggression who were prescribed risperidone revealed that mood stabilizers alone were ineffective in managing symptoms. Throughout the follow-up period, aggression and manic symptoms decreased in all patients [330] . Overall, the study established that the addition of risperidone may improve mania and aggression in pediatric BD patients who have inadequate responses to mood stabilizers alone [330] . A similar open study of 22 pediatric BD patients in a manic, hypomanic, or mixed state reported that 8 weeks of risperidone monotherapy (1.25 ± 1.5 mg/d) was associated with significantly improved symptoms [331] . Cariprazine, which has been authorized for use in the treatment of mania accompanying BD, is a partial D 2 /D 3 receptor agonist [332] [333] [334] [335] [336] [337] [338] . It appears to be a safe and effective medication for acute mania and mixed episodes in BD [339] [340] [341] [342] . Some research data have indicated that both low and high doses of cariprazine are effective and well tolerated as a drug treatment for mania, depression, and psychosis [343] [344] [345] . RCTs of BD-I patients in manic and mixed episodes found the greatest treatment benefit when cariprazine was provided in the range of 3 to 12 mg [346, 347] . Placebo-controlled studies of bipolar depression have indicated that 1.5 to 3 mg/d of cariprazine monotherapy is a competent treatment for acute depression in BD [346] . Durgam et al. conducted a phase II trial on 239 research participants assigned either to a placebo group or to a group receiving flexible doses of cariprazine [348] . Of the participants, 66.1% were administered a final dose of 12 mg/d, 16.9% were administered 9 mg/d, 12.7% were administered 6 mg/d, and 4.2% were administered 3 mg/d. Across the cariprazine group, the average dose was 8.8 mg/d [348] . Overall, the group administered cariprazine exhibited significantly greater gains in the Young Mania Rating Scale compared with the group that received placebo [348] . Another double-blind placebo-controlled trial randomly allocated placebo (n = 158), 1.5 mg/d of cariprazine (n = 157), and 3.0 mg/d of cariprazine (n = 165) in adult BD-I patients who were in a depressive episode [349] . Both cariprazine doses were safe, well tolerated, and effective in decreasing depressive symptoms [349] . Although a singular dosage recommendation has not been standardized for cariprazine yet, the results of these studies indicate its efficacy in certain cases of BD [346] [347] [348] [349] . The antipsychotic actions of quetiapine are likely derived from its antagonistic activity against DA D 2 receptors and serotonin 5-hydroxytryptamine 2 receptors [350] . Quetiapine is an atypical antipsychotic agent that is administered orally [351, 352] . On occasion, it is recommended for the treatment of BD, although some studies have suggested that it is more successful specifically in alleviating the symptoms of anxiety and depression accompanying BD [351] [352] [353] [354] . Five double-blind RCTs evaluated the tolerability and effectiveness of quetiapine over 8 weeks in BD patients who were undergoing a major depressive episode [350] . Quetiapine monotherapy at 300 mg/d, that at 600 mg/d, and extended-release quetiapine monotherapy at 300 mg/d caused a significantly greater improvement in Montgomery-Asberg Depression Rating Scale scores compared with placebo [350] . Another RCT over 104 weeks found that quetiapine used as maintenance drug therapy was more effective than lithium or placebo in preventing relapse [350] . However, the study only included patients who previously responded to quetiapine during the acute phase of BD [350] . Thus, a bias for quetiapine over lithium in the study sample may have already been present. In the patients with bipolar depression, the adverse effects of quetiapine at 300 mg/d, quetiapine at 600 mg/d, and extended-release quetiapine at 300 mg/d were mild or moderate; in general, all three quetiapine doses were well tolerated [350] . A number of therapies have demonstrated successful outcomes in BD, including psychotherapies (CBT and ImCT), phototherapy (BLT), and ECT. CBT has classically been used to treat depression and increase self-esteem through cognitive restructuring [355] [356] [357] . In addition to being used to treat unipolar depression, it has also been adapted to treat BD [358] [359] [360] [361] [362] [363] . Studies on the use of CBT for BD have suggested the use of CBT as an add-on treatment to pharmacotherapy to prevent depressive symptoms and relapse [357, 364] . Chiang et al. systematically analyzed the findings of 19 RCTs in which CBT was used as an adjuvant to pharmacotherapy [357] . Their analysis supported the adjunctive use of CBT in BD because of its clinical benefit both after treatment and during follow-up [357] . Moreover, a case study on 3 BD-II patients showed that the rate of BD recurrence could be decreased by the use of CBT as an adjuvant to medication [365] . The group format of CBT is also a potentially useful intervention for BD, as indicated by a study in which 41 patients with BD received 14 sessions of group CBT along with medication [366] . In the study, group CBT was found to improve depressive symptoms [366] . Likewise, another study of patients with BD reported that the group format of CBT was effective in decreasing fluctuations in mood state [356] . BLT, also known as phototherapy, uses glare therapy in the treatment of the symptoms of depression [367] [368] [369] [370] [371] [372] [373] [374] . Some research studies have reported that BLT was successful as an adjunctive therapy for BD [375] [376] [377] [378] [379] [380] . Tseng et al. demonstrated significant antidepressant activity with BLT [381] . Additional lines of evidence from RCTs have shown that BLT may reduce the symptoms of depression among the general population [382] [383] [384] [385] [386] [387] [388] . One benefit of BLT over antidepressants is that its risk of causing a switch to mania is lower (2.3% vs. 15-40%) [389] . Similarly, the effects of light therapy were analyzed in four trials on a total sample of 190 patients with bipolar depression, 94 of whom received the intervention [390] . The meta-analysis revealed a risk ratio of response to light therapy of 1.78 (95% confidence interval, 1.24-2.56) in patients with BD [390] . Another trial of 63 research participants investigated the effects of 1 h of light therapy daily for 2 weeks [391] . Thirty-three participants received BLT, whereas 30 received dim red light therapy. The outcomes of the study indicate that BLT may be an effective and safe adjuvant for acute depression in BD [391] . An imagery-focused intervention addressing mood and anxiety in BD found that it helped reduce clinical symptoms [392, 393] . In addition, patients with BD accepted and were highly satisfied with the intervention [392, 393] . Eleven patients with BD were administered a combination of ImCT and standard care in one study, where their moods were monitored 6 months pre-and posttreatment [393] . In addition, their anxiety was measured for 1 month from the initiation of treatment. The study provided promising results, suggesting that the addition of ImCT to standard care could alleviate the depressive and anxious symptoms of BD in a manner that is satisfactory to patients [393] . ECT is a fast-acting and potent method for stimulating the brain [394, 395] . It is often used in major depression, but it can also be effective in TRBD [396] [397] [398] . For instance, a study of 344 patients with BD found that ECT was safe and effective in all stages of severe and medication-resistant BD [399] . The quick antidepressant action of ECT likely contributes to long-term prevention of suicide in affective illnesses, such as BD and major depressive disorder [400, 401] . An investigation of 487 patients with BD or unipolar depression from 2000 to 2013 reported that those who underwent ECT had a 19.7% lower probability of suicide compared with those who did not [401] . The therapeutic action of ECT for BD may be due to its influence on OS [396] . In one study, 28 TRBD patients and 49 controls received ECT, and several OS parameters were measured (SOD, GPX, CAT, and MDA) [396] . The outcomes suggested that a decline in lipid peroxidation levels contributed to the efficiency of ECT [396] . MDA levels were shown to decline exclusively in ECT responders, which points to the possible role of MDA reduction in the efficiency of ECT [396] . This suggests that OS is associated with BD severity and the response to ECT [396] . BD is becoming increasingly understood as a condition of aberrant neuroplasticity. Multiple factors, such as OS, imbalance of neurotransmitters, and genetics, are associated with the pathophysiology of BD. OS, caused by an imbalance between oxidant and antioxidant enzymes, may lead to cell damage. Decreased antioxidants and greater production of oxidizing agents lead to OS, causing alterations in proteins, carbohydrates, lipids, and DNA. In addition, reactive species act on mitochondria to eventually lead to increased concentrations of ROS/reactive nitrogen species, further oxidizing mitochondrial lipids, proteins, and DNA. In this regard, BD is associated with lipid peroxidation and DNA damage. Consistent with this observation, TBARS levels, which act as a lipid peroxidation marker, tend to be increased in patients with BD. Moreover, patients with BD have reduced BDNF levels, along with altered Ca 2+ homeostasis and increased peripheral Ca 2+ levels. Studies of both CNS-related and systemic cytokine changes in patients with BD have indicated that the neuroimmune system plays an important role in BD pathophysiology. Therefore, nutraceuticals may have a role in the adjuvant treatment of BD. An accumulating body of evidence suggests that the therapeutic use of antioxidants in BD is beneficial in the treatment of depression associated with BD. Supplements that have been proposed to have therapeutic value in BD include vitamin D, omega-3 PUFAs, and folic acid. In addition to omega-3 fatty acids and vitamin D, other nutrients such as vitamin A, vitamin C, polyphenols, carotenoids, and other anti-inflammatory compounds might contribute to the homeostatic regulation of OS and inflammation. To date, lithium is the leading mood stabilizer used to ameliorate the pathophysiology of BD because of its effects on neuroplasticity. Oral antipsychotic agents, such as clozapine, olanzapine, risperidone, cariprazine, and quetiapine, are regarded as the first-line drug treatments for psychotic depression, and they are especially recommended for maintenance therapy. In addition, CBT, BLT, ImCT, and ECT have all been proven as effective adjuvant therapies for the treatment of BD. Cortical haemodynamic response during the verbal fluency task in patients with bipolar disorder and borderline personality disorder: A preliminary functional near-Infrared spectroscopy study Bipolar disorder: Clinical overview Serum level of nerve growth factor is a potential biomarker of conversion to bipolar disorder in women with major depressive disorder The role of electroconvulsive therapy in the treatment of bipolar disorder Quality of life, functioning and cognition in bipolar disorder and major depression: A latent profile analysis Markers of neuroinflammation and neuronal injury in bipolar disorder: Relation to prospective clinical outcomes Beyond the therapeutic shackles of the monoamines: New mechanisms in bipolar disorder biology Longitudinal investigation of the parietal lobe anatomy in bipolar disorder and its association with general functioning Markers of inflammation and monoamine metabolism indicate accelerated aging in bipolar disorder Prevalence and correlates of cognitive impairment in euthymic adults with bipolar disorder: A systematic review Hippocampal volume and verbal memory performance in late-stage bipolar disorder Ventricular and periventricular structural volumes in first-versus multiple-episode bipolar disorder Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group Protection from the pathogenesis of neurodegenerative disorders, including alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's diseases, through the mitigation of reactive oxygen species Oxidative stress in bipolar and schizophrenia patients Oxidative imbalance in bipolar disorder subtypes: A comparative study Oxidative stress, mitochondrial damage and neurodegenerative diseases Biomarkers and staging of bipolar disorder: A systematic review Oxidative stress and the central nervous system Free radicals: Properties, sources, targets, and their implication in various diseases Oxidative stress: A key modulator in neurodegenerative diseases Oxidative stress in schizophrenia: An integrated approach The compensatory antioxidant response system with a focus on neuroprogressive disorders Role of oxidative stress in the pathophysiology of bipolar disorder Therapeutic potentials of superoxide dismutase Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress High glucose-induced oxidative stress and mitochondrial dysfunction in neurons A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia Regulation of reactive oxygen species-mediated damage in the pathogenesis of schizophrenia Effects of mood stabilizers on DNA damage in an animal model of mania Mitochondrial dysfunction in schizophrenia: A possible linkage to dopamine The relationship between oxidative stress and post-translational modification of the dopamine transporter in bipolar disorder Oxidative stress and neurodegeneration: Where are we now? Increased oxidative stress and DNA damage in bipolar disorder: A twin-case report Peripheral markers of oxidative stress and antioxidative defense in euthymia of bipolar disorder--Gender and obesity effects Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: A possible role for lithium antioxidant effects Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders Mitochondria, oligodendrocytes and inflammation in bipolar disorder: Evidence from transcriptome studies points to intriguing parallels with multiple sclerosis Biomarkers in bipolar disorder: A positional paper from the International Society for Bipolar Disorders Biomarkers Task Force A systemic toxicity index developed to assess peripheral changes in mood episodes Elevated serum measures of lipid peroxidation and abnormal prefrontal white matter in euthymic bipolar adults: Toward peripheral biomarkers of bipolar disorder Oxidative stress in older patients with bipolar disorder Oxidative stress and role of antioxidant and N-3 essential fatty acid supplementation in schizophrenia Impaired mitochondrial function in psychiatric disorders Method for the simultaneous determination of free/protein malondialdehyde and lipid/protein hydroperoxides. Free Radic Oxidative stress in early-stage bipolar disorder and the association with response to lithium Evaluation of oxidative stress in bipolar disorder in terms of total oxidant status, total antioxidant status, and oxidative stress index Oxidative stress markers in affective disorders Oxidative stress biomarkers in bipolar disorder with suicidal behavior, A systematic review An updated meta-analysis of oxidative stress markers in bipolar disorder Lipid peroxidation in psychiatric illness: Overview of clinical evidence Oxidative stress parameters and antioxidants in patients with bipolar disorder: Results from a meta-analysis comparing patients, including stratification by polarity and euthymic status, with healthy controls Thiobarbituric Acid-Reactive Substances: Markers of an Acute Episode and a Late Stage of Bipolar Disorder Serum S100B and antioxidant enzymes in bipolar patients Are there differences in lipid peroxidation and immune biomarkers between major depression and bipolar disorder: Effects of melancholia, atypical depression, severity of illness, episode number, suicidal ideation and prior suicide attempts The relationship between the number of manic episodes and oxidative stress indicators in bipolar disorder 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia DNA damage in bipolar disorder Changes in nitric oxide level and superoxide dismutase activity during antimanic treatment Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies What is bipolar disorder? A disease model of dysregulated energy expenditure Plasma glutathione suggests oxidative stress is equally present in early-and late-onset bipolar disorder Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling Uric acid levels in subjects with bipolar disorder: A comparative meta-analysis Mitochondria in health and disease Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder Therapeutic strategies for mitochondrial dysfunction and oxidative stress in age-related metabolic disorders A model of the mitochondrial basis of bipolar disorder Molecular mechanisms of bipolar disorder: Progress made and future challenges. Front. Cell Neurosci. 2017, 11, 30 Brain aging and neurodegeneration: From a mitochondrial point of view Mitochondria and synaptic plasticity in the mature and aging nervous system Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses Role of mitochondrial ROS in the brain: From physiology to neurodegeneration Targeting mitochondrial dysfunction for bipolar disorder Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia A randomised controlled trial of a mitochondrial therapeutic target for bipolar depression, mitochondrial agents: N-acetylcysteine, and placebo Mitochondrial dysfunctions in bipolar disorder: Effect of the disease and pharmacotherapy Mitochondrial Hypothesis and Its Relationship to Bipolar Disorder Mitochondrial dysfunction and oxidative stress in metabolic disorders-A step towards mitochondria based therapeutic strategies Mitochondrial agents for bipolar disorder Mitochondrial dysfunction in bipolar disorder: Evidence, pathophysiology and translational implications Number of manic episodes is associated with elevated DNA oxidation in bipolar I disorder Differential mitochondrial DNA copy number in three mood states of bipolar disorder Sequence and functional analyses of mtDNA in a maternally inherited family with bipolar disorder and depression Mitochondrial DNA variation and increased oxidative damage in euthymic patients with bipolar disorder What can mitochondrial DNA analysis tell us about mood disorders? Novel complex interactions between mitochondrial and nuclear DNA in schizophrenia and bipolar disorder The complex interaction of mitochondrial genetics and mitochondrial pathways in psychiatric disease Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases, A mechanistic insight The role of mitochondrial dysfunction in bipolar disorder Mitochondrial dysfunction in the pathophysiology of bipolar disorder: Effects of pharmacotherapy Novel biomarkers for bipolar disorder Cellular prion protein protects against reactive-oxygen-species-induced DNA damage. Free Radic Clinical outcomes of long-acting injectable risperidone in patients with bipolar I disorder: A 1-year retrospective cohort study Circulating brain-derived neurotrophic factor, antioxidant enzymes activities, and mitochondrial DNA in bipolar disorder: An exploratory report BDNF at the synapse: Why location matters Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies The relationship between neurotrophins and bipolar disorder BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis State-dependent decrease in levels of brain-derived neurotrophic factor in bipolar disorder: A meta-analytic study The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells-The potential of JNX1001 as a therapeutic agent Inter-relation between brain-derived neurotrophic factor and antioxidant enzymes in bipolar disorder Serum neurotrophin-3 is increased during manic and depressive episodes in bipolar disorder Dopamine dysregulation syndrome: Implications for a dopamine hypothesis of bipolar disorder Apoptosis inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder Increased oxidative stress in the mitochondria isolated from lymphocytes of bipolar disorder patients during depressive episodes Effect of lithium and lithium withdrawal on potassium-evoked dopamine release and tyrosine hydroxylase expression in the rat Modulation of cytokine production by drugs with antiepileptic or mood stabilizer properties in anti-CD3-and anti-CD40-stimulated blood in vitro Imaging the role of inflammation in mood and anxiety-related disorders Different levels of pro-and anti-inflammatory cytokines in patients with unipolar and bipolar depression CSF neuroinflammatory biomarkers in bipolar disorder are associated with cognitive impairment A systematic review of evidence for the role of inflammatory biomarkers in bipolar patients The effect of mood-stabilizing drugs on cytokine levels in bipolar disorder: A systematic review Cytokines in bipolar disorder: Paving the way for neuroprogression Inflammatory mediators of cognitive impairment in bipolar disorder Is bipolar disorder an inflammatory condition? The relevance of microglial activation Inflammatory signaling mechanisms in bipolar disorder Inflammation in bipolar disorder (BD): Identification of new therapeutic targets A review of the relationship between proinflammatory cytokines and major depressive disorder Neuroinflammation in bipolar depression Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder Increased excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from bipolar disorder patients Gene expression differences in bipolar disorder revealed by cDNA array analysis of post-mortem frontal cortex Targeted multiplexed selected reaction monitoring analysis evaluates protein expression changes of molecular risk factors for major psychiatric disorders The relationship between circulating mitochondrial DNA and inflammatory cytokines in patients with major depression Neurobiological links between depression and AD: The role of TGF-beta1 signaling as a new pharmacological target Neuroinflammation and excitatory symptoms in bipolar disorder Neurotrophins, cytokines, oxidative stress mediators and mood state in bipolar disorder: Systematic review and meta-analyses Circadian preferences, oxidative stress and inflammatory cytokines in bipolar disorder: A community study Peripheral levels of C-reactive protein, tumor necrosis factor-α, interleukin-6, and interleukin-1β across the mood spectrum in bipolar disorder: A meta-analysis of mean differences and variability Cytokines in bipolar disorder vs. healthy control subjects: A systematic review and meta-analysis Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies Endotoxin and the hypothalamopituitary-adrenal (HPA) axis Cellular calcium in bipolar disorder: Systematic review and meta-analysis Mitochondrial Ca2 + transport: Mechanisms, molecular structures, and role in cells The machineries, regulation and cellular functions of mitochondrial calcium Calcium and ROS: A mutual interplay Understanding calcium waves and sparks in central neurons In vivo protection of synaptosomes from oxidative stress mediated by Fe 2+ /H 2 O 2 or 2, 2-azobis-(2-amidinopropane) dihydrochloride by the glutathione mimetic tricyclodecan-9-yl-xanthogenate. Free Radic Cell biology of the mitochondrion Mitochondrial calcium function and dysfunction in the central nervous system Effect of simvastatin, coenzyme Q10, resveratrol, acetylcysteine and acetylcarnitine on mitochondrial respiration The role of diet in maintaining strong brain health by taking the advantage of the gut-brain axis A review of the evidence base for nutrition and nutritional supplements in older adults with bipolar disorder: A report from the OABD task force A systematic review of nutraceuticals for the treatment of bipolar disorder Adjunctive nutraceuticals for depression: A systematic review and meta-analyses Most effective combination of nutraceuticals for improved memory and cognitive performance in the house cricket, Acheta domesticus Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications Antioxidants as potential therapeutics for neuropsychiatric disorders A pilot study of minocycline for the treatment of bipolar depression: Effects on cortical glutathione and oxidative stress in vivo Nutraceuticals and nutritional supplements for the treatment of bipolar disorder: Protocol for a systematic review Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 crisis Prevalence of vitamin D deficiency in adult outpatients with bipolar disorder or schizophrenia Bipolar disorder vulnerability: The vitamin D path The role of vitamin D in bipolar disorder: Epidemiology and influence on disease activity Bipolar disorder: The vitamin D debate Vitamin D supplementation in bipolar depression: A double blind placebo-controlled trial Comparative evaluation of quetiapine plus lamotrigine combination versus quetiapine monotherapy (and folic acid versus placebo) in bipolar depression (cequel): A 2 × 2 factorial randomised trial Folate and DNA methylation: A review of molecular mechanisms and the evidence for folate's role Folate and unipolar depression Is diet important in bipolar disorder? Folic acid efficacy as an alternative drug added to sodium valproate in the treatment of acute phase of mania in bipolar disorder: A double-blind randomized controlled trial L-Methylfolate for bipolar I depressive episodes: An open trial proof-of-concept registry The serum concentration of magnesium as a potential state marker in patients with diagnosis of bipolar disorder The serum concentration of copper in bipolar disorder Altered polyunsaturated fatty acid levels in relation to proinflammatory cytokines, fatty acid desaturase genotype, and diet in bipolar disorder Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder The effect of adjunctive nutraceuticals in bipolar disorder: A systematic review of randomized placebo-controlled trials Review of nutritional supplements for the treatment of bipolar depression Therapeutic use of omega-3 fatty acids in bipolar disorder Omega-3 and omega-6 polyunsaturated fatty acids in bipolar disorder: A review of biomarker and treatment studies Omega-3 fatty acids and mental health. Glob. Health J. 2020, 4, 18-30 Anti-inflammatory treatments for mood disorders: Systematic review and meta-analysis Omega-3 fatty acids for the treatment of depression: Systematic review and meta-analysis Bipolar disorder and immune dysfunction: Epidemiological findings, proposed pathophysiology and clinical implications Fatty acids in treatment and prevention of depression Nutrition and bipolar depression Clinical use of nutraceuticals in the adjunctive treatment of depression in mood disorders A 52-week prophylactic randomised control trial of omega-3 polyunsaturated fatty acids in bipolar disorder The effect of DHA supplementation on cognition in patients with bipolar disorder: An exploratory randomized control trial Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention Metabolic effects of inflammation on vitamin A and carotenoids in humans and animal models Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis Enhanced human neutrophil vitamin C status, chemotaxis and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit Vitamin C and immune function Pharmacologic implications of inflammatory comorbidity in bipolar disorder Maintenance N-acetyl cysteine treatment for bipolar disorder: A double-blind randomized placebo-controlled trial Nacetyl cysteine for depressive symptoms in bipolar disorder-A double-blind randomized placebocontrolled trial Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats Anti-inflammatory effects of valproic acid in a rat model of renal ischemia/reperfusion injury: Alteration in cytokine profile The international college of neuro-psychopharmacology (CINP) treatment guidelines for bipolar disorder in adults (CINP-BD-2017), Part 3, the clinical guidelines Canadian network for mood and anxiety treatments (CANMAT) and international society for bipolar disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder Bipolar depression, A major unsolved challenge Use of lithium for treatment of bipolar disorder: Recommendations from clinical practice guidelines Lithium and suicide prevention in bipolar disorder Lithium in the prevention of suicide in mood disorders: Updated systematic review and meta-analysis The use of lithium in mixed states Clinical factors associated with lithium treatment response in bipolar disorder patients from India Lithium response in bipolar disorder correlates with improved cell viability of patient derived cell lines Controversies in bipolar disorder; role of second-generation antipsychotic for maintenance therapy Efficacy and effectiveness of lithium in the long-term treatment of bipolar disorders: An update Why is lithium effective in alleviating bipolar disorder? Med. Hypotheses 2021, 147, 110484 Lithium therapy for bipolar disorder Lithium in bipolar disorder: Optimizing therapy using prolonged-release formulations Overview of lithium's use: A nationwide survey Lithium use from 2000 to 2010 in Italy: A population-based study A nationwide study on concordance with multimodal treatment guidelines in bipolar disorder 20-Year trends in the pharmacologic treatment of bipolar disorder by psychiatrists in outpatient care settings Potential application of lithium in Parkinson's and other neurodegenerative diseases The putative use of lithium in Alzheimer's disease Lithium's antiviral effects: A potential drug for COVID-19 disease? Brain age in bipolar disorders: Effects of lithium treatment Estimation of lithium clearance in patients with bipolar disorder Lithium levels and treatment efficacy In vitro and in vivo evidence on the role of mitochondrial impairment as a mechanism of lithium-induced nephrotoxicity The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder Effects of lithium on oxidative stress parameters in healthy subjects Lithium and the interplay between telomeres and mitochondria in bipolar disorder Relationship between suicide mortality and lithium in drinking water: A systematic review and meta-analysis Predicting individual responses to lithium with oxidative stress markers in drug-free bipolar disorder Lithium and suicide in mood disorders: Updated meta-review of the scientific literature Suicidal behavior during lithium and valproate treatment: A within-individual 8-year prospective study of 50,000 patients with bipolar disorder The new news about lithium: An underutilized treatment in the United States Challenging the negative perception of lithium and optimizing its long-term administration Lithium, stress, and resilience in bipolar disorder: Deciphering this key homeostatic synaptic plasticity regulator An overview of pharmacotherapy for bipolar I disorder A review of the pharmacological and clinical profile of newer atypical antipsychotics as treatments for bipolar disorder: Considerations for use in older patients Review of lithium effects on immune cells Effects of lithium on inflammation Lithium ameliorates sleep deprivation-induced mania-like behavior, hypothalamic-pituitary-adrenal (HPA) axis alterations, oxidative stress and elevations of cytokine concentrations in the brain and serum of mice Bipolar disorder: Role of inflammation and the development of disease biomarkers Effects of lithium on lipopolysacchride-induced inflammation in rat primary glial cells Lithium pretreatment reduces brain injury after intracerebral hemorrhage in rats An oldie but goodie: Lithium in the treatment of bipolar disorder through neuroprotective and neurotrophic mechanisms The role of lithium in the treatment of bipolar disorder: Convergent evidence for neurotrophic effects as a unifying hypothesis Right fronto-parietal dysfunction underlying spatial attention in bipolar disorder Lithium-induced enhancement of mitochondrial oxidative phosphorylation in human brain tissue Lithium increases leukocyte mitochondrial complex I activity in bipolar disorder during depressive episodes Decreased motor impulsivity following chronic lithium treatment in male rats is associated with reduced levels of pro-inflammatory cytokines in the orbitofrontal cortex Neuroprotection after a first episode of mania: A randomized controlled maintenance trial comparing the effects of lithium and quetiapine on grey and white matter volume Can lithium salts prevent depressive episodes in the real world? Effectiveness of maintenance therapy of lithium vs. other mood stabilizers in monotherapy and in combinations: A systematic review of evidence from observational studies Real-world effectiveness of pharmacologic treatments for the prevention of rehospitalization in a finnish nationwide cohort of patients with bipolar disorder Comparative efficacy and tolerability of pharmacological treatments in the maintenance treatment of bipolar disorder: A systematic review and network meta-analysis Lithium for prevention of mood episodes in bipolar disorders: Systematic review and meta-analysis Atypical and typical antipsychotic drug interactions with the dopamine D2 receptor Antipsychotics in bipolar disorders Antipsychotic treatment experiences of people with bipolar I disorder: Patient perspectives from an online survey Olanzapine in the long-term treatment of bipolar disorder: A systematic review and meta-analysis Royal Australian and New Zealand college of psychiatrists clinical practice guidelines for mood disorders A history of the pharmacological treatment of bipolar disorder Atypical antipsychotics in bipolar disorder: Systematic review of randomized trials Cariprazine treatment of bipolar depression: A randomized double-blind placebo-controlled phase 3 study Clinical picture and treatment of bipolar affective disorder in children and adolescents Clozapine: Why is it so uniquely effective in the treatment of a range of neuropsychiatric disorders? Biomolecules 2021, 11, 1030 A systematic review of clozapine's effectiveness for primary psychotic and bipolar disorders in older adults Clozapine in bipolar disorder: A systematic review and meta-analysis Clozapine for treatment-resistant bipolar disorder, A systematic review Switching bipolar disorder patients treated with clozapine to another antipsychotic medication: A mirror image study Clozapine in treatment-resistant bipolar disorder with suicidality Olanzapine/fluoxetine combination for the treatment of mixed depression in bipolar I disorder: A post hoc analysis Adjunctive long-acting risperidone in patients with bipolar disorder who relapse frequently and have active mood symptoms Treatment of aggression with risperidone in children and adolescents with bipolar disorder: A case series An open-label trial of risperidone in children and adolescents with bipolar disorder Mechanism of action of cariprazine Cariprazine in bipolar disorder: Clinical efficacy, tolerability, and place in therapy Update on schizophrenia and bipolar disorder: Focus on cariprazine Urits, I. Cariprazine to treat schizophrenia and bipolar disorder in adults Kiss, B. Cariprazine demonstrates high dopamine D3 and D2 receptor occupancy in patients with schizophrenia: A clinical PET study with In vitro and in vivo comparison of [3H](+)-PHNO and [3H]raclopride binding to rat striatum and lobes 9 and 10 of the cerebellum: A method to distinguish dopamine D3 from D2 receptor sites Cariprazine for acute mood episodes in bipolar disorder Cariprazine for the treatment of bipolar disorder Cariprazine in youth with bipolar and psychotic disorders: A retrospective chart review Tolerability of cariprazine in the treatment of acute bipolar I mania: A pooled post hoc analysis of 3 phase II/III studies Cariprazine for the treatment of bipolar depression: A review Use of cariprazine in psychiatric disorders: A systematic review Clinically relevant response and remission outcomes in cariprazine-treated patients with bipolar I disorder Broad efficacy of cariprazine on depressive symptoms in bipolar disorder and the clinical implications Efficacy and safety of cariprazine in the treatment of bipolar disorder The efficacy of cariprazine on function in patients with bipolar depression: A post hoc analysis of a randomized controlled trial An 8-week randomized, double-blind, placebo-controlled evaluation of the safety and efficacy of cariprazine in patients with bipolar I depression Cariprazine in the treatment of bipolar disorder: A systematic review and meta-analysis Quetiapine: A review of its use in the management of bipolar depression Changes in the brain structural connectome after a prospective randomized clinical trial of lithium and quetiapine treatment in youth with bipolar disorder Convulsive syncope related to a small dose of quetiapine in an adolescent with bipolar disorder Efficacy and safety of risperidone and quetiapine in adolescents with bipolar II disorder comorbid with conduct disorder Pharmacotherapy of bipolar disorder with quetiapine: A recent literature review and an update Psychoeducation and cognitive-behavioral therapy in bipolar disorder: An update A cognitive behavioural group therapy for bipolar disorder using daily mood monitoring Efficacy of cognitive-behavioral therapy in patients with bipolar disorder: A meta-analysis of randomized controlled trials Cognitive behavioral therapy for bipolar disorder Relapse prevention in patients with bipolar disorder: Cognitive therapy outcome after 2 years Effectiveness of cognitive behavioral therapy in treating bipolar disorder: An updated meta-analysis with randomized controlled trials Gaps and limitations of psychological interventions for bipolar disorders Cognitive-behavioral therapy for severe and recurrent bipolar disorders: Randomized controlled trial Cognitive-Behavioral therapy for depression in bipolar disorder: A meta-analysis Effectiveness and acceptability of cognitive behavior therapy delivery formats in adults with depression Cognitive behavioral therapy for three patients with bipolar II disorder during depressive episodes. Case Rep The effectiveness of cognitive behavioral group therapy in treating bipolar disorder: A randomized controlled study The efficacy of light therapy in the treatment of seasonal affective disorder: A metaanalysis of randomized controlled trials Effects of bright light therapy for depression during pregnancy: A randomised, double-blind controlled trial Use of bright light therapy for older adults with dementia A population-based heritability estimate of bipolar disorder-In a Swedish twin sample The heritability of bipolar affective disorder and the genetic relationship to unipolar depression Cognitive change across cognitivebehavioral and light therapy treatments for seasonal affective disorder: What accounts for clinical status the next winter? The duration of light treatment and therapy outcome in seasonal affective disorder Bright light as a personalized precision treatment of mood disorders. Front. Psychiatry Efficacy and safety of bright light therapy for manic and depressive symptoms in patients with bipolar disorder: A systematic review and meta-analysis Bright light therapy for bipolar depression Light treatment in depression: An antique treatment with new insights Bright light therapy for nonseasonal depression: Meta-analysis of clinical trials Bright white light therapy in depression: A critical review of the evidence Light therapy for non-seasonal depression: Systematic review and meta-analysis Light therapy in the treatment of patients with bipolar depression: A meta-analytic study Accelerated aging in bipolar disorder: A comprehensive review of molecular findings and their clinical implications A randomized, placebo-controlled trial of light therapy for bipolar depression: Antidepressant efficacy, side effects, changes in suicidality and sleep Adjunctive bright light therapy for bipolar depression: A randomized double-blind placebo-controlled trial Moderators of cognitive therapy and bright light therapy effects on depressive symptoms in patients with breast cancer Light therapy for patients with bipolar depression: Systematic review and meta-analysis of randomized controlled trials Efficacy of light therapy versus antidepressant drugs, and of the combination versus monotherapy, in major depressive episodes: A systematic review and meta-analysis Efficacy of bright light therapy in bipolar depression Evidence for the efficacy of bright light therapy for bipolar depression Adjunctive bright light therapy for treating bipolar depression: A systematic review and meta-analysis of randomized controlled trials Clinical efficacy, onset time and safety of bright light therapy in acute bipolar depression as an adjunctive therapy: A randomized controlled trial Imagery-Based Cognitive Therapy for Bipolar Disorder and Mood Instability Imagery-focused cognitive therapy (ImCT) for mood instability and anxiety in a small sample of patients with bipolar disorder: A pilot clinical audit Efficacy and safety of electroconvulsive therapy in the treatment of bipolar disorder: A systematic review Electroconvulsive therapy and bipolar disorder Disturbance of oxidative stress parameters in treatment-resistant bipolar disorder and their association with electroconvulsive therapy Response Electroconvulsive therapy in an adolescent with bipolar disorder, substance use, and body dysmorphic disorder comorbidity: Case report Treatment-resistant bipolar depression: A randomized controlled trial of electroconvulsive therapy versus algorithm based pharmacological treatment The role of Electroconvulsive Therapy (ECT) in bipolar disorder: Effectiveness in 522 patients with bipolar depression, mixed-state, mania and catatonic features The role of ECT in suicide prevention Superior anti-suicidal effects of electroconvulsive therapy in unipolar disorder and bipolar depression