key: cord-0017232-b73o95b6 authors: Kleiman, Eden; Sierra, Gloria; Mao, Binchen; Magcase, Dennie; George, Marybeth V.; Daftarian, Pirouz M. title: Adenosine-related small molecules show utility of recall antigen assay to screen compounds for off-target effects on memory T cells date: 2021-05-05 journal: Sci Rep DOI: 10.1038/s41598-021-88965-3 sha: 490166d850d6d65a68e45196349b7c29a67b3939 doc_id: 17232 cord_uid: b73o95b6 Extracellular adenosine suppresses T cell immunity in the tumor microenvironment and in vitro treatment of memory T cells with adenosine can suppress antigen-mediated memory T cell expansion. We describe utilizing the recall antigen assay platform to screen small molecule drug off-target effects on memory T cell expansion/function using a dosing regimen based on adenosine treatment. As a proof of principle, we show low dose GS-5734, a monophosphoramidate prodrug of an adenosine analog, does not alter memory T cell recall at lower doses whereas toxicity observed at high dose favors antigen-specific memory T cell survival/proliferation over non-specific CD8(+) T cells. Conversely, parent nucleoside GS-441524 at high dosage does not result in cellular toxicity and reduces antigen-specific T cell recall in most donors. Despite similar chemical structure, these drugs displayed opposing effects on memory T cell expansion and viability highlighting the sensitivity of this assay setup in screening compounds for off-target effects. Recall antigen assay. The recall antigen assay spanned a duration of 7 days. On day 0, donor PBMCs (purchased from Astarte Biologics, now part of Cellero, Lowell, MA) were washed twice after thaw and resuspended at 5 × 10 6 viable cells per mL in AIM V medium (ThermoFisher Scientific, Waltham, MA, Cat # 12055091) with 5% human AB serum (Millipore Sigma, Burlington, MA, Cat # H3667). Control unstimulated cells were first plated in a round-bottom 96-well plate, 100 µL per well (500,000 cells). For the remainder of cells, 10 µg/mL peptide (final concentration unless otherwise stated) was added to cells to create a cell/peptide mixture. 100 µL (500,000 cells) of cell/peptide mixture was added to appropriate wells. NLVPMVATV peptide was purchased from Astarte Biologics. IVTDFSVIK, AVFDRKSDAK, and ATVQGQNLK peptides were purchased from MBLI (Chicago, IL). On day 1 of the recall antigen assay, each well was supplemented with 100 µL complete medium, 50U/mL IL-2 final concentration (Millipore Sigma, Cat # 11147528001) with or without treatments (i.e. adenosine, GS-5734 and GS-441524) for a final well volume of 200 µL. On days 3 and 5, 100 µL volume from each well was removed without disturbing cell pellet. This was replaced with fresh complete IL-2 supplemented media (50 U/mL final concentration), with or without treatments so that total well volume was maintained at 200 µL. Readout for recall antigen assay was flow cytometry on day 7. Tetramers were used in flow cytometric analysis that corresponded to the peptide used for stimulation. Tetramer positive cells correspond to memory T cells that expanded in response to peptide stimulation on day 0. For adenosine-treated wells, 1 mM adenosine (Millipore Sigma, Cat # A9251) was given on day 1 and 0.5-0.75 mM adenosine was given on days 3 and 5. Adenosine was dissolved in complete media unless otherwise noted. GS-5734 and GS-445124 (Cayman Chemical, Ann Arbor, MI) were dissolved in Hybri-Max DMSO (Millipore Sigma, Cat # D2650). Adenosine was also prepared in Hybri-Max DMSO and used as a control in initial experiments although at much lower concentration than adenosine dissolved in complete medium. Adenosine deaminase (ADA) (Cat #10102105001) and Inosine (Cat #I4125) were both purchased from Millipore Sigma. Inosine was prepared in complete media. Tofacitinib (Selleckchem, Cat # CP-690550) was prepared in DMSO. For 48-h stimulation of previously expanded PBMCs, the ratio of expanded to unexpanded (same donor PBMCs) was 2:1 with 500,000 cells total per well. 1 mM adenosine was added to appropriate wells at the time of peptide stimulation. The readout for 2-day peptide-pulsed samples was flow cytometry using both surface staining for tetramer and intracellular cytokine staining. Bead-based proliferation assay. Donor PBMCs were incubated with 5 µM CellTrace Blue Cell Proliferation kit (ThermoFisher, Cat # C34574) proliferation dye and then stimulated with anti-CD3/anti-CD28 beads (ThermoFisher, Cat # 11132D) in a 96-well round-bottom plate. Adenosine was added to appropriate wells day 0 at 1 mM final concentration and again on day 1 at 0.5 mM final concentration. Proliferation was assessed 4 days post-stimulation for proliferation dye dilution using flow cytometry. Surface and intracellular staining. PBMCs were first incubated with 50 nM Dasatinib (Selleck Chemical LLC, Cat # S1021) in complete medium for 15 min at 37 °C. Dasatinib is used to prevent TCR downregulation and enhance tetramer staining 17 . Cells were washed with FACS buffer (0.5% BSA in PBS) and then stained with antibody/tetramer cocktail (in FACS buffer) for 30 min at room temperature. Cells were then washed and resuspended in FACS buffer with viability dye 7-AAD (MBLI, Code # FP00020050) except for the experiment using donor #4 and #5 PBMCs which used Fixable Viability Dye eFLuor 780 (ThermoFisher, Cat #65-0865-14). For Annexin V (BioVision Inc., Milpitas, CA, Cat # K101-100) and 7-AAD co-staining, both were added at the same time in 1X Annexin V binding buffer. For intracellular stains, cells were washed with PBS twice following surface stain. Cells were then fixed, permeabilized and stained in permeabilization buffer according to manufacturer's guidelines. Intracellular staining was performed using either the True-Nuclear Transcription Factor Buffer Set (Biolegend, San Diego, CA, Cat # 424401) or CytoFix Fixation buffer/FACS Permeabilizing solution 2 (BD Biosciences, San Jose, CA, Cat # 554655/340973). For True-Nuclear Transcription Factor Buffer Set the fix and permeabilization reagents were True-Nuclear 1X Fix Concentrate and True-Nuclear 1X Perm Buffer, respectively. Alternatively, cells were fixed using CytoFix Fixation buffer and permeabilized using permeabilizing solution 2. After intracellular staining, cells were washed twice in PBS and resuspended in PBS. For intracellular cytokine staining, 5 μg/mL brefeldin A (Millipore Sigma, Cat # B7651) was added 4 h prior to surface staining ( www.nature.com/scientificreports/ Analysis software. Statistical analysis was performed using GraphPad Prism software (GraphPad, San Diego, CA). All bar graph data presented is shown as mean with standard deviation. Flow cytometry analysis was performed using FlowJo software (BD Biosciences). Sequential high-dose adenosine Inhibits memory T cell recall. We employed a reductionist approach to simulate one aspect of the TME environment by incorporating a series of high dose adenosine treatments during the course of the recall antigen assay to specifically suppress antigen-specific memory T cell expansion without loss of PBMC viability. We adopted a flow cytometry-based tetramer readout to measure of CD8 + antigen-specific T cell expansion on day 7 post-peptide stimulation. Adding adenosine on day 1, 3 and 5 gave the most consistent suppression of expansion, although adenosine treatment on days 3 and 5 also inhibited expansion suggesting an optimal window for adenosine mediated suppression (Fig. 1A ). All subsequent experiments were performed administering adenosine (or drug) on days 1, 3 and 5 (Fig. 1B) . This assay format has utility in screening drugs targeting the adenosinergic signaling pathway, particularly A2AR receptor antagonists (unpublished internal data) but is applicable to any other pathway. Adenosine and adenosine analogs have typically been administered as in vitro screens to assess the ability of compounds to reverse cytokine suppression or short term cAMP induction 18, 19 . To our knowledge this is the first reported use of adenosine and other small molecules to screen human memory T cells during peptide-induced expansion for off-target effects (Fig. 1B) . Initially, we sought to characterize the mechanism of adenosine-mediated suppression on memory T cell proliferation. Adenosine inhibited T cell proliferation of anti-CD3/anti-CD28 stimulated PBMCs (Fig. S1 ) consistent with prior results 20 . Adenosine, at the same high dose, also inhibited peptide-induced antigen-specific T cell expansion (Fig. 1C ,D discussed below). Antigen-specific T cells that emerged from adenosine treatment stained positive for Ki67 to the same degree as non-adenosine treated samples (Fig. S2 ). Furthermore, cell viability was not adversely affected by high dose adenosine ( Fig. S3-5 ). This suggests that most, but not all, memory T cell expansion was inhibited by persistent high dose adenosine. Adenosine metabolites are unlikely to be mediating the observed suppression as enzyme supplementation with adenosine deaminase (ADA) restored memory T cell recall (Fig. S6A ). Treatment with adenosine metabolite inosine (at equivalent concentrations to adenosine) resulted in no diminution of memory T cell expansion and in fact was slightly higher consistent with recent evidence that CD8 + T cells can use inosine as an alternative carbon source to fuel expansion 21 (Fig. S6B ). Adenosine also displayed limited impact on memory T cell co-inhibitory receptor surface expression as PD-1 and LAG-3 were not significantly altered. However, adenosine caused downregulation of TIM-3. Bystander CD8 + T cells (tetramer negative) were more susceptible to adenosine-mediated co-inhibitory receptor downregulation (Fig. S7 ). Adenosine treatment also affected co-inhibitory receptor expression on non-lymphoid cells. Short-term adenosine (no peptide) treatment significantly increased the percentage and surface expression of PD-1 ligand PD-L1/PD-L2 in CD14 + CD11bcells (Fig. S8) . However, adenosine did not negatively affect short term IFNγ cytokine production or induction of polyfunctional human effector memory CD8 + T cell marker TOX (Fig. S9) 22 on expanded memory T cells. Together, these data suggest that in our system, high dose adenosine primarily suppresses memory T cell proliferation with limited effect on activation. Chemically similar anti-viral drugs have divergent effects on memory T cell proliferation at high dose. Recent evidence has suggested GS-5734 as a promising drug in the fight against SARS-CoV-2. We chose to test this prodrug and GS-441524 since they were similar in structure to adenosine. Characterized PBMCs containing memory T cells responsive to CMV pp65 peptides or EBV peptides were utilized in these studies as surrogates for how other antigen-specific memory T cells would behave. Data from HLA-A*02:01 donor #1 PBMCs stimulated with CMV pp65 NLVPMVATV peptide shows that 500 nM and 5 µM GS-5734 did not alter memory T cell expansion ( Fig. 1C and S10 ). High dose GS-5734 treatment at 50 µM was associated with toxicity, consistent with its reported CC 50 10 , particularly towards CD8 + T cells (Fig. S3, 5) . However, 50 µM GS-5734 resulted in a statistically higher percentage of antigen-specific memory T cells relative to non-antigen-specific CD8 + T cells (Fig. 1C) . Whether this is due to an increased survival advantage of antigen-specific memory T cells or increased proliferation in the absence of competing CD8 + T cells is unclear. GS-441524 did not alter antigen-mediated memory T cell proliferation at 500 nM and 5uM but significantly reduced expansion at 50 µM ( Fig. 1C) with minimal associated cellular toxicity (Figs. S3, 5) . Nonspecific adenosine receptor agonist NECA and A2AR-specific agonist CGS-21680 have been reported to modestly reduce murine T cell proliferation when stimulated with anti-CD3 monoclonal antibody 23 . However, donor #1 PBMCs treated with NECA and the CGS-21680 displayed negligible effects on proliferation (Fig. S10 ) at the doses used in our system. We obtained similar results with GS-5734 and GS-441524 using a second donor harboring a different HLA allele. HLA-A*11:01 donor #3 PBMCs were treated separately with either EBV EBNA-3B peptide IVTDFSVIK, EBV EBNA4 peptide AVFDRKSDAK or CMV pp65 peptide ATVQCQNLK. High dose GS-5734 displayed toxicity, and consistently resulted in an upwards trend in the percentage of antigen-specific memory T cells among the T cell pool reaching statistical significance in the AVF-peptide treated samples (Fig. 1D ). Also consistent with data from donor #1, high dose GS-441524 lowered antigen-specific memory T cell recall (Fig. 1D -significantly in two of three cases) without affecting cell viability (Fig. S4) . These data were further confirmed using two additional donor PBMCs (HLA-A*02:01 donor #4 and #5). For donors #4 and #5, 50 µM GS-5734 treatment increased both the percentage of antigen-specific memory T cells and overall cell death (Fig. S11A-B) . High dose GS-441524 decreased antigen-specific memory T cell recall in donor #4 but increased antigen-specific memory T cell recall in donor #5 suggesting GS-441524 displays donor-dependent effects (Fig. S11 A-B) . Expanded memory T cells treated with high dose adenosine, GS-5734 or GS-441524 show high levels of CD28 surface expression (Fig. S11 B,C, E, F) Assay platform can be used to assess memory T cell activation effects. We next examined potential off-target effects on the expression of co-activating receptor CD137 on recently expanded memory T cells using this platform. We chose to focus on CD137 due to its ability to serve as a general marker for antigenspecific T cell activation regardless of cytokine secretion profile and T cell differentiation status 27 (Fig. S12) . The effect of drug on activation induced CD137 expression varied by recall antigen used ( Fig. 2 and Fig. S13 ). 50 µM GS-5734 and 50 µM GS-441524 both increased memory T cell CD137 expression in donor #3 EBVpeptide stimulated PBMCs (Fig. 2B,C) , whereas 50 µM GS-441524 treatment of donor #3 with AVF-and ATVpeptide stimulation resulted in significant CD137 reduction in bystander CD8 + T cells (Fig. 2D) . This data shows that drug-induced activation (at least by this one measure) of memory T cells is peptide-dependent, and thus memory T cell subset-dependent. It also illustrates that in some cases, the activation status of antigen-specific memory T cells and bystander cells can further diverge due to drug. We have described a simple drug screening platform that can be utilized for assessment of potential off-target memory T cell effects occurring from small molecule treatment. The recall antigen assay has been applied to test the efficacy of checkpoint blockade therapeutics as to whether they can further augment antigen-specific memory T cell recall [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] . However, to our knowledge, formatting the recall antigen assay to screen small molecule compounds is a novel application. We focused our efforts here on CD8 + memory T cells but this assay is amendable to studying CD4 + memory T cell off-target effects. In addition, this assay platform offers the advantage of utilizing unmanipulated donor PBMCs representing a heterogeneous mix of most immune cell types. It also offers the advantage of a simple physiological T cell stimulation and the opportunity to assay effects on bystander cells. Use of persistent high dose adenosine provided a framework dosing regimen for screening compounds during the recall antigen assay. Adenosine administered only once 24-h after peptide stimulation (day 1) was ineffective in suppressing memory T cell expansion while adenosine administered at later time points (day 3 and day 5) was effective. This is in contrast with how early high dose adenosine treatment is able to inhibit proliferation of www.nature.com/scientificreports/ supraphysiologically stimulated T cells ( 20 and Fig. S1 ). Many factors could account for this difference including the homogeneity and differentiation state of T cells, the strength and diversity of receptors engaged during stimulation as well as proliferation kinetics. Our in vitro data shows that adenosine-mediated inhibition during recall is additive when adenosine is administered on both days 3 and 5. This persistent dosing regimen is needed to achieve maximum suppression and is likely due to the short half-life of adenosine 39 . Use of different compounds may necessitate different dosing regimens based on potency and half-life which. Here we show the effects of high dose GS-5734 treatment on memory T cell expansion are consistent across different donors and peptide stimulations. GS-441524 showed the ability to negatively regulate antigen-specific T cell expansion in most donors screened. High dose GS-5734 consistently displayed cellular cytotoxicity whereas high dose GS-445124 had no observable effect on viability. In addition, both compounds elevated CD137 expression in EBV peptide stimulated memory T cells while effects on bystander cells was varied. Despite similarity between GS-5734 and GS-41524 in structure, their biological effects differed greatly. Given that GS-5734 is metabolized to intermediates including GS-445124 13 , the divergent effects between these two compounds is either tied to the direct action of GS-5734 and/or GS-5734 metabolites that are upstream of GS-445124. The results highlight the sensitivity of this assay to screen drugs of similar structures as to whether memory T cell proliferation and function is unencumbered. In theory, this assay is amenable to a variety of other drug classes such as those used in cancer immunotherapy 40 to monitor for immune-related adverse events (irAEs). As a proof of concept, we utilized a structurally unrelated compound, JAK1/3 inhibitor Tofacitinib, and demonstrate complete suppression of antigen-specific memory T cell expansion without noticeable adverse effects on general cell viability (Fig. S11A,D) . This result is consistent with the documented role Tofacitinib has in suppressing CD8 + T cell activity [41] [42] [43] . We would predict enhanced utility of this assay by matching the recall peptide (disease model), "experienced" PBMCs and the appropriate investigational drug. For example, in the case of SARS-CoV-2 infection, one could stimulate SARS-CoV-2 "experienced" PBMCs with relevant peptide (e.g. from the spike protein) along with drug candidate to assess off-target effects specifically on spike-reactive memory T cells. In support of this, our data shows that the magnitude of GS-5734-mediated fold increase in memory T cells (mean of 1.4-fold for IVT and mean of 6.7-fold for ATV) and the magnitude of GS-441524-mediated fold decrease in memory T cells differs within the same donor using different viral peptide stimulations (Fig. 1D) . This requires additional studies to understand if this phenomenon stems from intrinsic differences in antigens and the specific memory T cell subsets they activate and/or relates to existing antigen-specific memory T cell frequency as well as other factors. Received: 25 August 2020; Accepted: 7 April 2021 Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19 Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19 SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8(+) T cell responses Compassionate use of remdesivir for patients with severe covid-19 Treatment of COVID-19 with remdesivir in the absence of humoral immunity: A case report Baricitinib plus remdesivir for hospitalized adults with COVID-19 Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro Concerns about pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic (PK-PD) studies in the new therapeutic area of COVID-19 infection Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice Correction to remdesivir: A review of its discovery and development leading to human clinical trials for treatment of COVID-19 Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2 Adenosine metabolism: Emerging concepts for cancer therapy A Metabolic immune checkpoint: Adenosine in tumor microenvironment More tricks with tetramers: A practical guide to staining T cells with peptide-MHC multimers A2AR antagonism with CPI-444 induces antitumor responses and augments efficacy to anti-PD-(L)1 and anti-CTLA-4 in preclinical models Enhanced antitumor immunity by a novel small molecule HPK1 inhibitor Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling Inosine is an alternative carbon source for CD8(+)-T-cell function under glucose restriction TOX is expressed by exhausted and polyfunctional human effector memory CD8(+) T cells A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments CD28(-) and CD28(low)CD8(+) regulatory T cells: Of mice and men Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates Programmed death-1 blockade enhances expansion and functional capacity of human melanoma antigen-specific CTLs PD-1 blockade and TLR7 activation lack therapeutic benefit in chronic simian immunodeficiency virus-infected macaques on antiretroviral therapy TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection A fully human IgG1 anti-PD-L1 MAb in an in vitro assay enhances antigen-specific T-cell responses Discovery and preclinical characterization of the antagonist anti-PD-L1 monoclonal antibody LY3300054 Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4+ CD25(Hi) regulatory T cells Targeting LAG-3 and PD-1 to enhance T cell activation by antigen-presenting cells Nivolumab enhances in vitro effector functions of PD-1(+) T-lymphocytes and leishmania-infected human myeloid cells in a host cell-dependent manner Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade Turnover of adenosine in plasma of human and dog blood The next generation of immunotherapy for cancer: Small molecules could make big waves Reversibility of peripheral blood leukocyte phenotypic and functional changes after exposure to and withdrawal from tofacitinib, a Janus kinase inhibitor, in healthy volunteers Reversal of CD8 T-cell-mediated mucocutaneous graft-versus-host-like disease by the JAK inhibitor tofacitinib The JAK1/3 inhibitor tofacitinib suppresses T cell homing and activation in chronic intestinal inflammation We thank Dr. Emma Chen (Crown Biosciences), Dr. Adel Benlahrech (ImmunoCore) and Dr. Reece Marillier (iTeos Therapeutics) for critical review of the manuscript. The authors declare no competing interests. Supplementary Information The online version contains supplementary material available at https:// doi. org/ 10. 1038/ s41598-021-88965-3.Correspondence and requests for materials should be addressed to E.K.Reprints and permissions information is available at www.nature.com/reprints.Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.