key: cord-0016174-g2yq3d4q authors: Obakiro, Samuel Baker; Kiprop, Ambrose; Kigondu, Elizabeth; K'Owino, Isaac; Odero, Mark Peter; Manyim, Scolastica; Omara, Timothy; Namukobe, Jane; Owor, Richard Oriko; Gavamukulya, Yahaya; Bunalema, Lydia title: Traditional Medicinal Uses, Phytoconstituents, Bioactivities, and Toxicities of Erythrina abyssinica Lam. ex DC. (Fabaceae): A Systematic Review date: 2021-03-03 journal: Evid Based Complement Alternat Med DOI: 10.1155/2021/5513484 sha: be6ea99daf74cd51bd28621c0c0da6008ad091aa doc_id: 16174 cord_uid: g2yq3d4q BACKGROUND: Many studies have been undertaken on the medicinal values of Erythrina abyssinica Lam. ex DC. (Fabaceae). The details, however, are highly fragmented in different journals, libraries, and other publication media. This study was therefore conducted to provide a comprehensive report on its ethnobotany, ethnomedicinal uses, phytochemicals, and the available pharmacological evidence supporting its efficacy and safety in traditional medicine. METHOD: We collected data using a PROSPERO registered systematic review protocol on the ethnobotany, phytochemistry, and ethnopharmacology of Erythrina abyssinica from 132 reports that were retrieved from electronic databases. Documented local names, morphology, growth habit and habitat, ethnomedicinal and nonmedicinal uses, diseases treated, parts used, method of preparation and administration, extraction and chemical identity of isolated compounds, and efficacy and toxicity of extracts and isolated compounds were captured. Numerical data were summarized into means, percentages, and frequencies and presented as graphs and tables. RESULTS: Erythrina abyssinica is harvested by traditional herbal medicine practitioners in East, Central, and South African communities to prepare herbal remedies for various human and livestock ailments. These include bacterial and fungal infections, tuberculosis, malaria, HIV/AIDS, diarrhea, cancer, meningitis, inflammatory diseases, urinary tract infections, wounds, diabetes mellitus, and skin and soft tissue injuries. Different extracts and phytochemicals from parts of E. abyssinica have been scientifically proven to possess anti-inflammatory, antibacterial, antioxidant, antiplasmodial, antiproliferative, antifungal, antimycobacterial, antidiarrheal, anti-HIV 1, antidiabetic, and antiobesity activities. This versatile pharmacological activity is due to the abundant flavonoids, alkaloids, and terpenoids present in its different parts. CONCLUSION: Erythrina abyssinica is an important ethnomedicinal plant in Africa harboring useful pharmacologically active phytochemicals against various diseases with significant efficacies and minimal toxicity to mammalian cells. Therefore, this plant should be conserved and its potential to provide novel molecules against diseases be explored further. Clinical trials that evaluate the efficacy and safety of extracts and isolated compounds from E. abyssinica are recommended. Erythrina abyssinica Lam. ex DC. (Fabaceae) is an important medicinal plant as evidenced by the existence of its names in various local languages and high frequency of citation in ethnobotanical surveys [1] [2] [3] [4] . e genus Erythrina derives from the Greek word "erythros," translated to mean red (a reflection of the showy red flowers of its various species). e epithet ''abyssinica'' means ''from Ethiopia'' [5] . e Erythrina genus houses at least 120 species distributed mainly in tropical and subtropical zones [6] . Plants in this genus are usually referred to as "coral trees" due to their red flowers and branches that resemble the shape of sea coral [7] . Erythrina abyssinica is a deciduous leguminous tree native to East Africa but also found in Central and South Africa [8, 9] . Tropical Asia and Central America have E. abyssinica as an exotic species. e common English names of E. abyssinica are coral tree, Uganda coral, kaffir boom, erythrina, flame tree, red-hot-poker tree, and lucky-bean tree [10] . Some of the local names used across indigenous communities are summarized in Table 1 . Medicinal plants have been a veritable source of cure for a number of human and livestock diseases, and thus, they are widely used in many communities. is is because plants house abundant secondary metabolites (phytochemicals) with potential pharmacological activities. ese include flavonoids, alkaloids, terpenoids, phenols, chalcones, quinones, aromatic hydrocarbons, chromones, and coumarins. It is these phytochemicals that are locally extracted in herbal preparations and used as remedies for the management of several diseases. e World Health Organization (WHO) estimated that 80% of the world's population especially in low-and middle-income countries rely on herbal medicines for primary health care [30] . e use of herbal medicines in the management of several ailments among people continues to gain momentum due to their availability, affordability, perceived effectiveness, and cultural acceptability across ethnic backgrounds [31] . Globally, there has been an increase in natural product research in the last two decades [30, 32] . is has been partly in response to the increasing antimicrobial resistance, emergence of new diseases, and decrease in the chemical diversity of natural product libraries [30, [32] [33] [34] [35] [36] . It has also been so in an effort to continue the search for more effective, safer, and cheaper therapeutic agents for existing diseases, to substitute expensive prescription drugs [37] [38] [39] [40] . Erythrina abyssinica is among those revered plants [40, 41] that has been widely researched [3] . However, the information on it is highly fragmented in different journals, books, university libraries, and other publication media platforms. is review was therefore undertaken to compile a comprehensive document that describes the ethnobotany, phytochemistry, and ethnopharmacology of E. abyssinica so as to generate integrated and sufficient scientific evidence to support its medicinal use. e study further emphasizes the importance of conserving this medicinal plant amidst the growing destruction of natural resources for settlement, industrialization, construction, and energy production [27, [42] [43] [44] [45] [46] [47] ]. e protocol used in this systematic review was registered with the International Prospective Register of Systematic Reviews (PROS-PERO) and can be accessed from their website (https://www. crd.york.ac.uk/prospero/display_record.php? ID�CRD42020187081) with the registration number CRD42020187081. e Preferred Reporting Items for the Systematic Reviews and Meta-Analyses (PRISMA) guidelines [48] have been used in the reporting of this study ( Figure 1 ). Electronic data on ethnobotany, phytochemistry, efficacy, and toxicity of E. abyssinica were retrieved from electronic databases such as Scopus, Web of Science Core Collection, PubMed, American Chemical Society, ScienceDirect, Scientific Electronic Library Online (SciELO), Google Scholar, and NAPRALERT (a comprehensive natural products database with ethnomedical and pharmacological information of extracts and isolated compounds). Sets of keywords such as "ethnobotany," "traditional medicine," "ethnobotany," "alternative medicine," "ethnopharmacology," "phytochemistry," "extraction," "isolation," "efficacy," "safety," "toxicity," "phytochemicals," "structural elucidation," and clinical study were combined with "Erythrina abyssinica." e retrieved articles were downloaded and stored in EndNote X9 ( omson Reuters, San Francisco, CA, USA) by three independent authors (SBO, TO, and YG). Duplicate articles were then removed from the file. Further, manual search from the reference lists of screened eligible articles and deposited electronic copies of dissertations and theses in University online libraries were done. e authors continuously received notifications of any new "similar reports" meeting the search criteria from ScienceDirect, Scopus, and Google Scholar. Retrieved articles were first screened based on the titles and abstracts for relevance to the study by three independent reviewers (MPO, SM, and YG). Articles that reported on other species of Erythrina but not abyssinica and Full-text articles excluded, with reasons (n = 39) articles not in English or French (n = 8) review articles (n = 11) did not rovide an data (n = 22) Full-text articles retrieved from reference list check through manual search (n = 11) Full articles assessed for eligibility (n = 121) Figure 1 : PRISMA flow diagram showing the search and retrieval steps of the study (adopted from Moher et al. [48] ). Kenya [10, [16] [17] [18] [19] Qanqari (Iraqw), Mriri (Chagga), Muhemi (Hehe), and Muungu (Pare), Kisebhe (Rungwe) Tanzania [20] [21] [22] Figure 2 ). is could be due to the (1) growing need for more effective and less toxic medicinal products of plant origin, (2) [3] . Erythrina abyssinica grows as a multibranched deciduous tree or shrub up to a height of 12-15 m tall usually with a rounded spreading crown ( Figure 3 ). e branches have a corky thick deeply fissured bark with prickles (4-8 mm long). e leaves are trifoliate alternately arranged with long (6-20 cm) petiole. e leaflets can be ovate, cordate, and almost circular, rounded at the base and obtuse or notched at the apex, with network venation, dense hair usually at the abaxial surface, and prickles [49, 50] . e inflorescence is raceme, dense, pyramidal, and either terminal or axial with a long peduncle (up to 20 cm) and caducous bracts. Flowers are bisexual and papilionaceous having densely hairy, cylindrical, split at one side calyx, brightly coloured (orange to red) corolla with free keel petals, 10 fused and one free stamen, one carpel with a superior cylindrical oblong ovary, long style, and flat stigma head [51] . e fruits are linearoblong pods, brown to black in colour, usually hairy, dehisce at two values to release ellipsoid, long (6-12 mm), and bright red seeds [52] . e tree is anchored firmly in the ground by a deep root system [13, 20] . Erythrina abyssinica can be propagated either using seeds, wildings [40] , or cuttings, but the former has comparatively lower germination rates of 10-30% with propagation restricted to rainy seasons [3, 11, 53] . It grows naturally in woodland and wooded grasslands (savannah woodlands, grasslands, and scrublands, secondary scrub vegetation, regions with 500-2000 mm annual rainfall and optimal temperatures of 15-25°C) [11, [54] [55] [56] [57] . us, it is widespread from Sudan, South Sudan, Uganda, Kenya, Rwanda, Burundi, Democratic Republic of Congo, Congo (Brazzaville), Tanzania to Ethiopia, Eritrea, Angola, Namibia, Botswana, Central African Republic, Swaziland, Lesotho, Gabon, Zambia, Zimbabwe, and Mozambique ( Figure 4) [3, 10, 11, 53] . It has also been introduced as an ornamental in Mauritius and various places in Tropical Asia and Central America, including Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan, and Sri Lanka [10, 53] . In South Sudan for instance, the tree grows at up to 2000 m altitude while in Tanzania, they are found at up to 2300 m. e tree naturally grows on loamy to clay soils, with preference for deep well-drained soils on plateaus and slopes with a pH of 3.5-5.5. e tree is termite-and fire-resistant primarily due to its deep root system but cannot tolerate frost, explaining its limited distribution in cold regions [11, 53] . abyssinica being a legume is well known for fixing nitrogen into the soil and thus enhances soil fertility. Because of this, it plays an important role in phytorestoration and forest regeneration in polluted soils [64] [65] [66] . Its flowers also secrete nectar that is fed on by pollinating insects especially bees hence being important in both horticulture and apiculture [67] . Although this plant usually grows naturally in the wild, some communities cultivate it in their homesteads as an ornamental plant, for live fencing purposes due to its brightly coloured flowers and prickles, a material for dye, and craft materials such as curios and necklaces (from seeds) [9, 20, 68, 69] . e stem of this plant is also harvested to obtain timber and charcoal for furniture and energy purposes, respectively [20] . In livestock farming, the plant leaves are used as fodder for animals [5, 70, 71] . e stem bark, seeds, roots, root bark, leaves, and flowers of E. abyssinica and the whole plant either in combination or singly are used to prepare herbal remedies for various human ailments (Table 2) . However, the stem bark and roots are the most commonly used parts in the preparation of herbal remedies. Even in efficacy, toxicity, and phytochemical studies, the stem bark and roots were the most investigated. is could probably be due to high yield associated with them because of their high potential in concentrating and storing phytochemicals. e seeds were indicated to be poisonous when crushed [11] . e commonest methods of preparation and administration of herbal medicines from this plant are boiling (decoctions) and then drinking, cold infusions (taken orally), pounding dried samples into powder and then licking, pounding fresh samples into a paste and applying topically, squeezing fresh samples and mixing with bathing water, or direct chewing of the different parts (Table 2) . Among the frequently reported ailments for which herbal medicines containing E. abyssinica are used include bacterial and fungal infections, malaria, leprosy, tuberculosis (cough), inflammatory diseases, HIV/AIDS, cancer, and metabolic disorders such as diabetes mellitus, obesity, and anaemia. Other conditions treated using this plant include snake bites, antagonizing poisons, venereal diseases (sexually transmitted diseases, e.g., gonorrhea, syphilis, and urinary tract infections including schistosomiasis), soft tissue and skin infections, diarrhea, infertility and pregnancy-related conditions, pneumonia, epilepsy, central nervous system-(CNS-) related disorders, vomiting, hepatitis, and helminthiasis. In ethnoveterinary medicine, extracts of E. abyssinica are used in the management of poultry and livestock diseases such as new castle disease, anaplasmosis, and helminthosis [43, 89, 119, 123, 124] . Qualitative phytochemical screening of medicinal plants is an essential step to their detailed phytochemical and pharmacological investigation [125] . Preliminary phytochemical screening of different solvent extracts of E. abyssinica indicated the presence of tannins, saponins, alkaloids, and flavonoids as the main therapeutic secondary metabolites (Table 3) . Like in many natural product research studies, chromatography has been used in the isolation of compounds from crude extracts of E. abyssinica. e most widely used techniques included high-performance liquid chromatography (HPLC), gas chromatography (GC), high-performance thin-layer chromatography (HPTLC), and ultraperformance liquid chromatography (UPLC) [129] . Spectroscopic techniques such as mass spectrometry (MS), ultraviolet (UV) spectrophotometry, one-dimensional nuclear magnetic resonance (1D-NMR) spectroscopy, and its complementary techniques (heteronuclear multiple bond correlation (HMBC) spectroscopy, heteronuclear multiple quantum coherence (HMQC) spectroscopy, nuclear overhauser effect spectroscopy (NOESY), and circular dichroism (CD) spectroscopy) have been used to elucidate chemical structures of the isolated compounds [130] . Chromatography-spectroscopy hyphenated techniques have become more commonly used in recent decades due to the increased efficiency, sensitivity, and detection limits [1] . ese include LC-MS, GC-MS, UPLC-MS, HPTLC-UV, HPLC-photodiode array detection, LC- NMR-MS, GC-NMR-MS, and high-resolution electron spray ionization (ESI)-MS [130] . A total of 122 phytochemicals which are primarily alkaloids, flavonoids, and triterpenoids have been isolated from E. abyssinica ( Figure 5 ; Table 4 ). Some of the isolated compounds are specific to E. abyssinica while others have been reported to be present in other species of the genus Erythrina [149] . Because genus Erythrina belongs to the family Fabaceae, its members have a rich diversity of secondary metabolites (phytochemicals) amongst themselves due to possession of various biosynthetic pathways [150] . However, some species share common phytochemicals, and hence, these act as biomarkers for nutraceutical, pharmacological, and toxicological potentials in the food and drug industries [130, 151] . (1) Alkaloids. In the present study, we retrieved thirteen alkaloids (1-12 and 95) that have been isolated from E. abyssinica (Table 4, Figure 5 ). e Erythrina alkaloids have a tetracyclic carbon skeleton with three rings (A, B, and C) common to all the alkaloids and the fourth ring (D) which varies among the different alkaloids [1, 152] . Lactonic alkaloids contain ring D as an unsaturated δ-lactone, dienoid alkaloids possess a benzenoid ring D (with two double bonds at C-1 and C-2, and C-6 and C-7), and alkenoid alkaloid possess a benzenoid ring D with a double bond between C-1 and C-6. Aromatic alkaloids and those containing a double bond at C-16 undergo stereoisomerism to give rise to other alkaloid derivatives [152] . (2) Flavonoids. A total of 106 flavonoids have been isolated and identified from E. abyssinica. ese include five benzofurans, six chalcones, two coumestans, six isoflavones and seventy-two flavanones, four flavones, and eleven pterocarpans. (i) Benzofurans. Benzofurans are heterocyclic compounds consisting of benzene and furan rings fused together. Five benzofurans (65-69) have been isolated from the stem bark of E. abyssinica [144] . (ii) Chalcones. Chalcones, also known as chalconoids or benzyl acetophenones, are α, β-unsaturated ketones made up of two aromatic rings (designated as rings A and B) with diverse substituents. ey possess conjugated double bonds and a completely delocalized π-electron system on both benzene rings. Chalcones have been widely known in medicinal chemistry as potential templates for the synthesis of therapeutic agents [153] . In this study, seven chalcones (15, 28-32, and 47) were retrieved to have been isolated from the roots and stem bark of E. abyssinica. (iii) Coumestans. Coumestans are oxidized derivatives of pterocarpans consisting of a benzoxole fused to a chromen-2-one to form 1-benzoxolo[3,2-c]chromen-6-one. ey are responsible for the phytoestrogenic activity of most medicinal plants of the family Fabaceae [154] . Two coumestans, erythribyssin N (62) and isosojagol (64), were isolated from the stem bark of E. abyssinica. (iv) Isoflavones and Flavanones. Isoflavones are a large group of flavonoids possessing a 3-phenylchroman skeleton that is biosynthetically obtained by rearrangement of the 2-phenylchroman flavonoid system. ey are naturally occurring exclusively in the family Fabaceae (Leguminosae). Differences among isoflavones arise from the presence of extra heterocyclic rings, different oxidation states in this skeleton, and the number of substituents on the isoflavone moiety [155] . On the other hand, flavanones have the basic 2,3-dihydroflavone structure. ey are distinguished from the rest of the flavonoid class by the lack of a double bond between C-2 and C-3 and the presence of a chiral center at C-2 position. Members differ from one another in the position and/or the number of the constituent methoxy and hydroxyl substituents [156] . Unlike isoflavones, flavanones are naturally occurring in members of family Fabaceae, Compositae, and Rutaceae. A total of six isoflavones (v) Pterocarpans. Pterocarpans are structural analogs to isoflavonoids with a benzofurochromene skeleton. ey can also be derived from coumestans through reduction reactions. ey have two asymmetric centers at C-6a and C-11a and may exist as cis or 23 Table 4 . [82] Evidence-Based Complementary and Alternative Medicine 21 e presence of pterocarpans has been attributed to their synthesis by members of the family Fabaceae in response to infections by microorganisms as defense molecules [157] . Eleven pterocarpans (13, 16, 23, 76, 85, 86, 93, 94 , and 112-114) were isolated from the roots and root bark of E. abyssinica [133, 134, 136, 141] . (3) Terpenoids (Sesquiterpenes and Triterpenoids). Sesquiterpenes are terpenoids with fifteen carbons (C15) consisting of three isoprene units. ey are the dominant constituents of essential oils and other pharmacologically active oxygenated hydrocarbons occurring in higher plants. ey naturally exist as hydrocarbons or oxygenated derivatives of hydrocarbons such as carbonyl compounds, alcohols, lactones, and carboxylic acids [158] . ree sesquiterpenes, 3,6caryolanediol (115) and clovane-2,9-diol (116) along with caryolane-1,9-diol (96), were isolated from E. abyssinica roots [134] . On the other hand, two new triterpenoids, abyssaponin A (97) and abyssaponin B (97) along with a triterpenoid saponin, soyasapogenol B (99), were isolated from E. abyssinica stem bark [147] . In this section, we report investigations which evaluated the pharmacological potential of both extracts and isolated pure compounds from E. abyssinica. Indeed, phytochemicals in this species possess antibacterial, antifungal, antiviral, anticancer, antioxidant, anti-inflammatory, antimycobacterial, anti-HIV/AIDS, antiplasmodial, antihelmintic, antiobesity, antipyretic, antidiabetic, antianemic, and hepatoprotective bioactivities (Tables 4 and 5 ). e aqueous root bark of E. abyssinica at doses less than 100 mg/kg showed considerable in vivo anti-inflammatory activity against Trypanosoma brucei-induced inflammation in mice [50] . e extracttreated group had a lower number of astrocyte reactivity and reduced perivascular cuffing than the nontreated mice. It was suggested that the extracts reduced the infiltration of the inflammatory cells into the cerebrum of the brain. e antiinflammatory activity was attributed to the alkaloids and flavonoids present in the extracts although the pure compounds responsible were not identified [50] . Interestingly, other crude extracts and pure compounds isolated from members of the genus Erythrina have been validated to possess good anti-inflammatory activities via different mechanisms. For example, the ethyl acetate and ethanol extracts of E. latissimi, E. caffra, and E. lysistemon showed good anti-inflammatory activity through reduction in the synthesis of prostaglandins as a result of inhibition of cyclooxygenase activity [168] . Erycristagallin isolated from E. mildbraedii inhibited leukotriene synthesis via the 5-lipoxygenase pathway, thereby demonstrating in vitro anti-inflammatory activity (IC 50 � 23.4 μM) in polymorphonuclear leukocytes [169] . ree flavonoids (abyssinone V, erycrystagallin, and 4′-hydroxy-6,3′,5′-triprenylisoflavonone) isolated from the methanolic stem bark extract E. variegate had strong phospholipase A2 (PLA2) inhibitory activity with IC 50 values of 6, 3, and 10 μM, respectively [170] . is implied that these compounds can significantly reduce the synthesis of arachidonic acid and consequently diminish the synthesis of prostaglandins and leukotrienes. Two prenylated flavanones (sigmoidin A and sigmoidin B) isolated from E. sigmoidea were reported to selectively inhibit 5-lipoxygenase but had no effect on cyclooxygenase-1 activity. Sigmoidin A had a doseresponse inhibitory potency (IC 50 � 31 mM). In the PLA2induced mouse paw oedema assay, only the sigmoidin B inhibited oedema formation with a percentage inhibition of 59% compared to cyproheptadine (positive control) which had 74% after 60 minutes. In the TPA test, both compounds reduced the induced oedema by 89% and 83%, respectively. It was suggested that the compounds had different mechanisms of action depending on whether one or two prenyl groups were present in ring B of the flavonoid [83] . Since these same compounds have been isolated from E. abyssinica, it is highly probable that the reported anti-inflammatory activity of this plant is due to one or a combination of these mechanisms. e in vitro 2, 2-diphenyl-1picrylhydrazyl (DPPH) radical scavenging assay has been widely used to evaluate the antioxidant activity of various phytochemicals and extracts. e ethanolic extract of E. abyssinica (10-320 μg/mL) showed dose-dependent DPPH radical scavenging that was comparable to that of ascorbic acid (a known antioxidant) [159] . Abyssinone VII, sigmoidin B, eryvarin L, and 3-methylbutein isolated from the stem bark and root wood of E. abyssinica showed considerable DPPH radical scavenging potency (IC 50 � 12-52 μg/mL) although the standard antioxidants (ascorbic acid, gallic acid, and quercetin) had superior activity (IC 50 � 4-18 μg/mL) [134] . e acetone crude extract of the root bark of E. abyssinica (IC 50 � 7.7 μg/mL) and two isolated pterocarpenes, erycristagallin (IC 50 � 8.2 μg/mL) and 3-hydroxy-9-methoxy-10-(3,3-dimethylallyl) pterocarpene (IC 50 � 10.8 μg/mL), showed DPPH radical scavenging activity in a dose-dependent manner similar to that of quercetin (IC 50 � 5.4 μg/mL) [133] . e radical scavenging activity of these compounds is due to their free phenolic groups which can donate electrons to the radicals [171] . For flavonoids, the O-dihydroxyl structure in the B ring, the 2,3double bond in conjunction with the 4-oxo function in the C ring, and the 3-and 5-hydroxyl groups with hydrogen bonding to the keto group are responsible for the antioxidant activity. In pterocarpans, the 3,3-dimethylallyl groups enhance the radical scavenging activities and also increase the lipophilicity of these compounds making them better antioxidants than polar flavonoids [133] . e chloroform, methanol, and ethyl acetate extracts showed cytotoxic activity against different tumor cells (cervical, liver, laryngeal, colon, and breast) and strongly inhibited protein tyrosine phosphatase (PTP1B) activity with IC 50 ranging between 1 and 100 μg/ mL. Using the dimethylthiazol-2,5-diphenyl-tetrazolium 38% inhibition factor against hyperglycemia at a dose of 500 mg/kg (6 mg/ kg glibenclamide � 49.6%) [114] Evidence-Based Complementary and Alternative Medicine 25 e mean skin protein was 32.5 and 35.5% for the stem bark and leaf, respectively (oxytetracycline � 40.5%). Although the leaf extract had better healing properties than the bark, there was no significant difference between both extracts and the negative control [165] 28 Evidence-Based Complementary and Alternative Medicine Evidence-Based Complementary and Alternative Medicine 29 Evidence-Based Complementary and Alternative Medicine [147] . e mechanisms by which these phytochemicals mediated their anticancer activity were however not elucidated. However, related phytochemicals isolated from E. suberosa showed to induce apoptosis through the inhibition of NF-kB factor and via an increase in cytosolic cytochrome C that stimulates caspases 9 and 3 which further activates intrinsic apoptosis pathway [172] . Activity. e aqueous extract of this plant showed significant antihyperglycemic activity at a dose of 500 mg/kg in rats using the oral glucose tolerance test (OGTT) with a hyperglycemia inhibition factor of 38.5% as compared to glibenclamide (49.6%). It was suggested that probably the inhibition of the SLGT-1 and GLUT-2 transporters along with α-glucosidase were the possible mechanisms for the antidiabetic activity [114] . In an acute OGTT, the ethanolic extract of E. abyssinica significantly decreased blood glucose levels in both normal and streptozotocin-(STZ-) induced diabetic rats in a dosedependent manner (100, 200 , and 400 mg/kg) when compared with negative (normal saline) and positive control (glibenclamide) [159] . In a subchronic antidiabetic Extracts not active on E. coli, weak activity against P. aeruginosa and K. pneumoniae (MIC greater than 50 mg/mL). e methanol extract more active on MRSA (MIC � 6.25 mg/mL) and DCM on S. aureus (MIC � 25.0 mg/mL). Hexane extracts were the least active on all strains. [62, 167] All extracts had good activity against M. gypseum (MIC less than 12.5 mg/mL) but weak activity against C. albicans and C. neoformans (MIC greater than 100 mg/mL). e hexane extract was active on T. mentagrophytes (MIC � 25.0 mg/mL). Lupinifolin and 9ethyldodecyl 2-hydroxy-4-methoxybenzoate from methanolic extract had zone of inhibition of 9.0 mm each against B. subtilis and E. coli, respectively. e compounds and crude extract inhibited Fusarium spp., Trichophyton spp., and Penicillium spp. with inhibition zones of 9.0-18.0 mm. MIC: minimum inhibitory concentration; IC 50 : inhibitory concentration; GU: growth units. Evidence-Based Complementary and Alternative Medicine test, daily oral administration of the same doses of extract for six weeks significantly lowered blood glucose levels in STZ-induced diabetic rats in a dose-dependent manner when compared with the diabetic control group. In this study, glibenclamide (5 mg/kg) significantly lowered blood glucose in nondiabetic rats only but not in diabetic rats [159] . Benzofurans, coumestans, and flavanones isolated from the stem bark of E. abyssinica had marked stimulation of the AMP-activated protein kinase (AMPK) activity with varying potencies at 10 μM concentrations with coumestans and benzofurans showing the highest potency. e prenyl groups in coumestans and benzofurans were suggested to be responsible for the enhanced stimulatory activity while their substitution with a methoxy group in the B ring could be responsible for the decreased activation of the AMPK. Activated AMPK plays a critical role in glucose and lipid metabolism such as enhancing insulin sensitivity, stimulating glucose uptake in the muscles, suppressing gluconeogenesis in the liver, increased oxidation of fatty acids oxidation, and diminished fatty acid synthesis. All these mechanisms are responsible for the antidiabetic activity of the isolated phytochemicals [144] . Further, prenylated flavanones from the stem bark of E. abyssinica inhibited protein tyrosine phosphate 1B (PTP1B) activity in an in vitro assay with IC 50 values ranging from 15.2 to 19.6 μM compared to RK-682 (positive control, IC 50 � 4.7 μM). Since PTP1B regulates the insulin and leptin signaling pathways, its inhibition has been reported to result in hypoglycemic effect, and hence, its inhibitory compounds have a great potential in acting as antidiabetic and antiobesity agents [135, 142, 160] . Sigmoidin A, a flavanone isolated from the stem bark of E. abyssinica showed a considerable in vitro inhibitory activity on pancreatic lipase (IC 50 � 4.5 μM) and α-glucosidase enzyme (IC 50 � 62.5 μM). Although orlistat (an antiobesity drug) exhibited a superior inhibitory activity against pancreatic lipase (IC 50 � 0.3 μM), the observed activity suggested that prenylated flavonoids have potential antilipase activity and hence could be antiobesity agents. Interestingly, its α-glucosidase inhibitory potency was better than that of acarbose (IC 50 � 190.6 μM), a standard antidiabetic agent [146] . e antiplasmodial activity of E. abyssinica has been evaluated using the nonradioactive antiplasmodial (in vitro) and four-day Plasmodium berghei ANKA suppressive (in vivo) bioassays [163] . e ethyl acetate extracts had strong in vitro antiplasmodial activity against chloroquine-resistant and chloroquine-sensitive Plasmodium strains with IC 50 values of 5.3 and 7.9 μg/mL, respectively [49, 163] . Subsequently, isolated chalcones, flavanones, and isoflavonoids had promising antiplasmodial activity against chloroquine-sensitive and chloroquine-resistant P. falciparum strains with IC 50 ranging from 4.9 to 24.9 μM although chloroquine still had superior activity [49] . Another earlier in vitro study by Kebenei et al. [143] assessed the possible use of artemisinin in combination with a potential antimalarial drug from ethyl acetate extract of E. abyssinica stem bark reported that abyssinone V isolated from the extract was effective against chloroquine-sensitive (D6) P. falciparum parasites with IC 50 value of 3.19 μg/mL. e interaction of artemisinin and abyssinone V analyzed using combination ratios of 10 : 90 to 90 : 10, respectively, against P. falciparum led to the identification of an antimalarial combination therapy of artemisinin and abyssinone V with sum of fraction inhibiting concentration (FIC) of 0.79 at a ratio of 2 : 3, respectively [143] . In an in vivo study, the root extracts of this plant suppressed P. berghei infection by 77%, 71%, and 48% in mice treated at 50, 25, and 12.5 mg/kg, respectively. It was also found out that the mice treated with a higher dose (50 mg/ kg) had a significantly longer survival time than those treated with lower doses and even chloroquine [164] . e crude leaf extracts of E. abyssinica had weak activity against P. falciparum chloroquine-sensitive Sierra Leone I (D6) and multidrug-resistant Indochicha I (W2) strains with IC 50 ranging from 165 to 468 μg/mL [145] . Conversely, erythinasinate A and 7-hydroxy-4′-methoxy-3-prenylisoflavone isolated from E. abyssinica methanolic leaf extract had moderate antiplasmodial activity against W2 and D6 with IC 50 between 120 and 150 μg/mL [145] . Isolated compounds had a much higher antiplasmodial activity than the crude extract. Isolation removes matrix interference and increases the concentration of the active ingredient at the drug target [173] . In another study, the ethyl acetate extract of this plant at 10 μg/mL inhibited the growth of P. falciparum by 83.6% as compared to chloroquine (98.1%) [73] . is antiplasmodial activity was also confirmed in E. burttii, a related species. e acetone root bark extract of E. burttii had good in vitro antiplasmodial activity against the chloroquine-resistant and chloroquine-sensitive P. falciparum strains with IC 50 of 1.73 and 0.97 μg/mL, respectively [163] . e methanolic leaf extract of E. abyssinica also exhibited moderate mosquitocidal and larvicidal activities with 65.5% and 65.1% mortality and corresponding IC 50 values of 231.90 and 218.90 mg/mL, respectively. However, the activities were lower compared to that of the standard drug temephos (99.90 %) [49, 145] . e antihelmintic activity of E. abyssinica has been validated using the worm motility assessment assay on Ascaridia galli. e ethanolic leaf extract of this plant at increasing doses up to 50 mg/mL had good antihelmintic activity against A. galli comparable to that of piperazine [124] . At 50 mg/mL, the extract immobilized 95% of the worms as compared to 100% of the standard drug. In another study, 5% concentration of the extract killed all the worms after 48 hours [120] . Although the active phytochemicals were not identified, it was suggested that the antihelmintic activity of this plant could be due to tannins and alkaloids present in the crude extracts. is is because tannins are polyphenolic compounds like some synthetic antihelmintic drugs such as oxyclozanide and niclosamide. erefore, the tannins could in a similar way interfere with energy release in the worms through uncoupled oxidative phosphorylation. But also, the tannins could bind to free proteins in the gastrointestinal tract or glycoprotein on the cuticle of the helminth, thereby impairing food absorption, e hexane, dichloromethane, ethyl acetate, methanol, and ethanol extracts of this plant showed antibacterial and antifungal activities with minimum inhibitory concentrations (MICs) between 3 and 10,000 μg/mL against different pathogens. Generally, the extracts had strong activity against Gram-positive bacteria and moderate to weak activity against Gram-negative bacteria [100, 123, 141, 145, 167, 174, 175] . It was suggested that this could be due to the unique cell wall of Gram-negative bacteria which consists of an additional lipopolysaccharide layer and periplasmic space that make it difficult for antibiotics to penetrate into them. e wide variation in the MIC values could be due to the difference in the resistance profiles of the tested microorganisms with those strains that are more resistant having higher values of MIC compared to the sensitive strains. Although standard drugs had superior activity, isolated pure compounds had higher activity (slightly lower MIC values) than the crude extracts. Flavonoids from the stem bark had MIC ranging between 0.3 and 10 μg/mL against B. subtilis, S. aureus, E. coli, and S. cerevisiae as compared to the antibacterial chloramphenicol (MIC � 0.001-0.5 μg/mL) and antifungal miconazole (MIC � 0.005 μg/mL) [134] . Two pterocarpans and eight flavonoids isolated from the root bark had significant activity against S. aureus and B. subtilis with MIC ranging between 6.25 and 50 μg/mL. But moderate activity against many Gram-negative bacterial and fungal strains with MIC greater than 100 μg/mL [141] . Phaseolin and erythrabyssin I showed significant antifungal activity (MIC � 6-50 μg/mL) against S. cerevisiae, C. utilis, R. chinensis, and M. mucedo [136] . In a recent study, Schultz et al. [176] reported that ethyl acetate and ethanolic extracts of E. abyssinica bark did inhibit Enterococcus faecium EU-44 (IC 50 � 64 μg/mL and MIC > 256 μg/mL), Staphylococcus aureus UAMS-1 (IC 50 � 32 μg/mL and MIC 64 μg/mL), Acinetobacter baumannii CDC-0033 (IC 50 � > 256 μg/mL and MIC > 256 μg/ mL) but had no activity against Klebsiella pneumoniae CDC-004, Pseudomonas aeruginosa AH-71, and Enterobacter cloacae CDC-0032. Further, the extracts did not exhibit quorum sensing above 40% at 16 μg/mL in a quorumsensing inhibition plant extract library screen on S. aureus accessory gene regulator I reporter strain [176] . No study reported the mechanism of action of either the extracts or isolated compounds. erefore, it remains to be determined whether the phytochemicals are microbiostatic or microbicidal. e crude methanolic root extract of E. abyssinica showed considerable antimycobacterial activity on the rifampicin-resistant (TMC-331) and pan-sensitive (H37Rv) Mycobacterium tuberculosis strain with a MIC of 2.35 mg/mL and 0.39 mg/mL, respectively. e MICs for isoniazid were 9.38 and 0.25 μg/mL for TMC-331 and H37Rv, respectively [126] . In another study using the automated BACTEC Mycobacterial Growth Indicator Tube (MGIT) 960 TB system, the methanolic root bark of this plant inhibited the growth of four Mycobacterial strains (M. tuberculosis, M. smegmatis, M. kansasii, and M. fortuitum) at a concentration of 2 mg/mL. Isoniazid, a standard antitubercular drug had a growth inhibitory concentration of 0.5 mg/mL [177] . In a synergistic interaction study, the methanol and ethanol extracts of E. abyssinica (0.49 μg/mL) when combined with either rifampicin or isoniazid (0.01 μg/mL) had a complete inhibitory effect on the growth of M. tuberculosis (H37Rv). e standard drugs and methanol and ethanol extracts at the same tested concentration had innumerous, 125 and 10 colony-forming units [166] . It was postulated that probably the flavonoids, alkaloids, tannins, and terpenoids present in the extracts interacted with the standard drugs at the drug target levels, hence enhancing the activity of each other. e confirmed synergism could be used to explain the concomitant use of herbal medicines alongside the conventional therapies but also reaffirms the benefit of combination therapy in the management of susceptible and resistant tuberculosis. Despite the widespread use of E. abyssinica in the traditional management of tuberculosis, we did not find any reports on isolation and characterization of compounds from this plant against M. tuberculosis. e anti-HIV-1 activity of this plant was evaluated using the MTT method. e alkaloidal fraction showed cytotoxicity of HIV-1-infected MT-4 cells with an IC 50 of 53 μM compared to efavirenz which had an IC 50 of 45 μM. e anti-HIV activity was attributed to the isoquinoline-type alkaloids present in the fraction that inhibit the HIV-1 replication through inhibition of viral entry and reverse transcription processes [59] . e other antiviral activities of this plant have not been validated. However, erysodine, erysotrine, and erythraline isolated from E. cristagalli but also present in E. abyssinica showed significant antiviral activity against tobacco mosaic virus (TMV) with IC 50 of 1.48, 1.28, and 1.52 μM, respectively, using the leaf disc method. e positive control ningnanmycin had an IC 50 of 0.18 μM [178] . Of great interest was the new alkaloid glycoside, erythraline-11-β-O-glucopyranoside which showed a much superior antiviral activity (IC 50 � 0.59 μM) against TMV as compared with its aglycone, erythraline (IC 50 � 1.52 μM). e haematinic activity of this plant was evaluated in mice using the phenyl hydrazine-induced anaemic mice model. At doses less than 100 mg/kg, the aqueous stem bark extract of E. abyssinica significantly increased the diminished levels of haemoglobin (Hb), red blood cells (RBCs), and packed cell volume (PCV) in mice at the end of four weeks following daily oral administration of the extract. On the other hand, the extract did not have a significant effect on the levels of white blood cells, mean corpuscular volume, mean corpuscular haemoglobin, and other differentials. e observed antianaemic activity was attributed to the flavonoids, alkaloids, and cardiac glycosides present in the aqueous extracts. However, isolation and characterization were not done to identify the pure compounds responsible for this activity. e hepatoprotective effect of the extract was evaluated using the nonalcoholic fatty liver disease (NAFLD) model on rats fed on high-fat and glucose diet. e water extracts at daily oral doses of 200 and 400 mg/kg for 56 days showed significant inhibitory effects against the development of nonalcoholic fatty liver disease. e extract was hepatoprotective against steatosis, inflammation, and hepatic ballooning. e extracts also significantly altered other hepatic-related biochemical indices as compared to standard drug pioglitazone [162] . is hepatoprotective activity was attributed to the coumestans, benzofurans, and pterocarpans present in the water extracts that regulate the activity of AMP kinases and protein tyrosine phosphatase 1B. e estrogenic activity of this plant was studied using the smart button data loggers' model in ovariectomized rats. e methanol extract (200 mg/kg) and estrogen (1 mg/kg) reduced the number and frequency of hot flushes (171) as compared to those ovariectomized rats that did not receive the extract (264). Also, the rats treated with extract and estrogen had significantly reduced durations (683 and 869 minutes, respectively) of hot flashes than the untreated rats (1935 minutes). us, the methanol extract seemed to offer protection against small temperature rises which trigger hot flashes in the ovariectomized untreated rats. Although the real chemicals in the extract responsible for the antipyretic activity were not identified, it was postulated that the chemicals mimic estrogen by increasing the sweating threshold and thermoneutral zone size [161] . In a related study, the estrogenic activity of the erythroidines isolated from E. poeppigiana was evaluated using various estrogen receptor-(ER-) dependent test systems. ese included the receptor binding affinity and cell culture-based ER-dependent reporter gene assays. It was found out that both α-erythroidine and β-erythroidine showed significant binding affinity values for ERα of 0.015 % and 0.005%, respectively, whereas only β-erythroidine bound to ERβ (0.006 %). In reporter gene assays, both erythroidines showed a significant estrogenic stimulation of ER-dependent reporter gene activity in osteosarcoma cells that was detectable at 10 nM in a dose-dependent manner [179] . ese erythroidines have also been reported to be present in E. abyssinica and thus could be responsible for the estrogenic activity of this plant. e longknown neuropharmacological activity of this plant was the curariform activity which is largely attributed to alkaloids present in it. Erysodine and erysopine isolated from the seeds of E. abyssinica showed significant curare-like activity both in vitro and in vivo [132] . e other CNS demonstrated activities of compounds present in E. abyssinica include anticonvulsant [180, 181] , analgesic [180] , and anxiolytic. In another study, erysodine and erysothrine (0, 3, or 10 mg/kg) administered orally exhibited anxiolytic effect in mice with comparable efficacy to diazepam (2 mg/kg) administered intraperitoneally. Using the elevated plus maze (EPM) model, only erysodine (10 mg/kg) increased the percentage of open arm entries and open arm time. In the light-dark transition model (LDTM), both erysothrine and erysodine demonstrated anxiolytic-like activity. However, while erysodine (10 mg/kg) increased both times spent in the illuminated compartment and the number of transitions between compartments, erysothrine (3 mg/kg) increased the number of transitions only. It was further observed that none of the two alkaloids neither altered the locomotory behaviour (i.e., the number of closed arm entries) of the animals in the EPM [182] . 3.6. Toxicity Profile of E. abyssinica. Toxicological evaluation of medicinal plants, isolated pure compounds, and corresponding herbal products is one of the key requirements for their approval and licensing as pharmaceutical products by regulatory authorities. is is because apart from possessing pharmacological activity that can be exploited for therapeutic benefits, the same phytochemicals may interact with the same or different receptors and elicit toxicity. Some toxicities may either be dose-dependent or dose-independent. On the other hand, some may be immediate while others delayed. Although no substance can be declared to be completely devoid of toxicity, toxicity tests (acute, subacute, subchronic, and chronic) are used to determine the relative toxicity of potential therapeutic agents. Despite the huge data regarding the pharmacological potential of E. abyssinica, there is a paucity of data regarding its toxicity. e seeds are traditionally known to be poisonous [11] . In an in vitro acute toxicity assay using the brine shrimp lethality model, the methanolic and ethanolic extracts of E. abyssinica had LC 50 ≥ 1000 μg/mL [127] and 997 μg/mL [159] , respectively. A related in vitro study using the haemolytic assay reported that the hexane (62.5 μg/mL), dichloromethane (62.5 μg/mL), ethyl acetate (62.5 μg/mL), and methanol (125 μg/mL) extracts of this plant showed low percentage haemolysis (15.5, 9.1, 15.4, and 39 .7%) of red blood cells [175] . e higher percentage haemolysis observed with the methanol extract was attributed to the higher concentration of methanol extract. ese in vitro results indicated that the extracts were safe within 24 hours of administration. In a study which determined the in vivo acute toxicity of crude extracts from this plant, it was found out that the median lethal dose (LD 50 ) of leaf and stem bark extracts was above 300 mg/kg body weight. All the mice orally administered with the extracts (100, 200 , and 300 mg/kg) survived up to 72 hours and there were no significant behavioural changes between the treatment and control groups [183] . In another study, the methanolic root extract was found to have an oral LD 50 of 776.2 mg/kg in mice [126] . As with the previous study, acute toxicity signs became more apparent at the highest doses. But still they were limited to sedation and reduced motor activity. Based on the OECD 2001 guidelines, since the LD 50 is greater than 300 mg/kg, it can be inferred that the crude extracts are weakly toxic within 24 hours of a single high dose [184] . It is important to know that the seeds of E. abyssinica contain curare-like alkaloids. us, it is believed that, at high doses, these may cause anaesthesia, paralysis, and even death by respiratory failure [185] . In a subacute toxicity evaluation of the extract from this plant, the mice were dosed with 100, 200, and 300 mg/kg of the extract daily for 30 days. ere was no significant difference in behaviour and physical and general activity parameters such as water intake, food consumption, and body weight between the treated groups and control group (no extract given) throughout the period of the experiments [183] . However, there were variations in biochemical parameters between the E. abyssinica-treated groups and nontreated group although it was not statistically significant. Particularly the treated group had higher levels of urea and creatinine and lower levels of potassium and sodium. ere was also high total and/or conjugated bilirubin associated with E. abyssinica-treated groups. is could probably suggest possible liver insufficiency or interference with bile flow. However, this finding was inconclusive as it could be due to other contributing factors other than the liver. Another study reported that the E. abyssinica (1000 mg/kg) significantly increased the levels of urea and creatinine and level of serum diagnostic enzymes particularly alkaline phosphatase, lactate dehydrogenase, gamma-glutamyltransferase, and alpha-amylase in treated mice after 28 days of daily oral administration [128] . is probably indicated some degree of impairment of renal, liver, and heart functions. Histopathological evaluation of the tissues of the liver revealed necrotic foci, dilated and congested blood vessels, numerous hepatocytes with double nuclei in view, and infiltration of inflammatory cell, while the kidney tissues showed necrotic foci in the papillary region, loss of tubules in necrotic foci, and vacuolated cells in place of original cells. e liver being the primary detoxifying organ of the body while the kidney being the excretory organ are highly susceptible to damage by phytochemicals present in the extracts/herbal medicines. e haematological parameters were also slightly altered by extract administration, suggesting an effect on the hematopoietic tissue [183] . As with the biochemical parameters, the assays did not conclusively show haemolysis or other blood-related toxicity of the extracts. In contrast, another study found out that the stem extract (1000 mg/kg) did not significantly alter the haematological indices of the treated rats as compared to the nontreated after 28 days of daily oral administration [128] . It can therefore be inferred that extracts of this plant have minimal toxicity effect on the hematopoietic tissue. Since this plant has been reported to have minimal toxicity on the liver, kidney, and hematopoietic tissue, it should be used with caution in traditional medicine. More evidence regarding its chronic toxicity is needed to guarantee its safety especially in the management of chronic conditions. We did not find any relevant report reporting results of a clinical trial on either a pharmaceutical product or an herbal product from E. abyssinica. is could be probably due to the huge financial requirement to conduct clinical trials but also other challenges surrounding herbal medicine use. E. abyssinica has been proven to harbor useful pharmacologically active phytochemicals against various diseases with significant efficacies although with some minimal toxicity profiles. ere is therefore a need to generate more toxicological data about this plant and different isolated phytochemicals so as to generate sufficient evidence as regards their safety for human use. Once proven safe, the plant could provide a cheap and sustainable source of novel molecules for the development of new therapeutic agents for human ailments. To the best of our knowledge, we did not find any E. abyssinica-based pharmaceutical products in the literature, different pharmacopoeia, and drug development pipeline. e active phytochemicals identified could therefore be prioritized and/or optimized for further drug development. ere is also a need to standardize and promote rational herbal medicine use through encouraging registration and licensing of products with proven efficacy and safety. Clinical studies utilizing extracts and isolated compounds from E. abyssinica are required. Due to its ethnomedicinal purposes, communities should be sensitized and encouraged to conserve this plant species. Adenosine monophosphate-activated protein kinase CNS: Central is is a review article and no raw experimental data were collected. All data generated or analyzed during this study are included in this published article. 36 Evidence-Based Complementary and Alternative Medicine Disclosure is work was initially presented at Natural Products Research Network for Eastern and Central Africa Uganda Chapter (NAPRECA-U) in its virtual seminar held on 24 September 2020. e authors declare that there are no conflicts of interest regarding the publication of this paper. e genus Erythrina L.: a review on its alkaloids, preclinical, and clinical studies Medicinal plants and traditional treatment practices used in the management of HIV/ AIDS clients in Mpigi District, Uganda A bibliographic assessment using the degrees of publication method: medicinal plants from the rural greater mpigi region (Uganda) Medicinal plants used by 'root doctors,' local traditional healers in Bié province, Angola Erythrina abysynica. e anti-helminthic plant Erythrina suberosa: ethnopharmacology, phytochemistry and biological activities Erythrina variegata Linn: a review on morphology, phytochemistry, and pharmacological aspects Medicinal plants used in the promotion of animal health in Tanzania Useful trees and shrubs useful trees and shrubs in eritrea: identification, propagation and management for agricultural and pastoral communities Agroforestry database: a tree reference and selection guide version 4.0 Useful Trees and Shrubs for Uganda-Identification, Propagation, and Management for Agricultural and Pastoral Communities, Regional Soil Conservation Unit Medicinal plants used in traditional management of cancer in Uganda: a review of ethnobotanical surveys, phytochemistry, and anticancer studies Medicinal Plants of East Africa Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration Medicinal Plants of East Africa Medicinal Plants of East Africa Plants used in antivenom therapy in rural Kenya: ethnobotany and future perspectives Antimalarial plants used across kenyan communities Indigenous multipurpose multipurpose trees of Tanzania: uses and economic benefits for people Ethnopharmacological study on medicinal plants used to treat infectious diseases in the rungwe district Medicinal plants used by rwandese traditional healers in refugee camps in Tanzania Traditional phytotherapy remedies used in Southern Rwanda for the treatment of liver diseases Inventaire pharmacologique general des plantes medicinales rwandaises Screening of medicinal plants of Rwanda (Central Africa) for antimicrobial activity Study of Rwandese medicinal plants used in the treatment of diarrhoea I Ethnobotanical study of medicinal plants in the blue nile state, south-eastern Sudan Evaluation of selected Sudanese medicinal plants for their in vitro activity against hemoflagellates, selected bacteria, HIV-1-RT and tyrosine kinase inhibitory, and for cytotoxicity Survey of some common medicinal plants used in Eritrean folk medicine WHO global report on traditional and complementary medicine Ethnobotanical survey of medicinal plant species used by communities around Mabira central forest reserve, Uganda plant natural products targeting bacterial virulence factors Industrial natural product chemistry for drug discovery and development Plant natural products research in tuberculosis drug discovery and development: a situation report with focus on Nigerian biodiversity modern natural products drug discovery and its relevance to biodiversity conservation," in Microbial Resources: From Functional Existence in Nature to Applications Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review Potential of Zanthoxylum leprieurii as a source of active compounds against drug resistant Mycobacterium tuberculosis Ulcerogenic potential of Eucalyptus globulus L . leaf extract in Wistar albino rats Indigenous traditional knowledge of medicinal plants used by herbalists in treating opportunistic infections among people living with HIV/ AIDS in Uganda Micropropagation of an endangered medicinal and indigenous multipurpose tree species: Erythrina abyssinica Tree species selection for land rehabilitation in Ethiopia: from fragmented knowledge to an integrated multi-criteria decision approach New anti-tuberculosis drugs and regimens: 2015 update An ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities and peoples regional state, Ethiopia Deforestation and its impact on ethno-medicinal practices among Bodo tribe of kokrajhar district in Assam, India Bio-Diversity and conservation of medicinal and aromatic plants Diversity of medicinal plants and anthropogenic threats in the Samburu central sub-county of Kenya Utilization and Conservation of Medicinal Plants in China with Special Reference to Atractylodes Lancea Preferred reporting Items for systematic reviews and meta-analyses: the PRISMA statement Anti-plasmodial flavonoids from the stem bark of Erythrina abyssinica Erythrina abyssinica prevents meningoencephalitis in chronic Trypanosoma brucei brucei mouse model Erythrina abyssinica Studies on the germination oferythrina abyssinicaandjuniperus procera Timbers/Bois D'oeuvre 1 Field Guide to Common Trees & Shrubs of East Africa Medicinal Plants of East Africa Organized by UNU-GTP, GDC and KenGen, at Lake Bogoria and Lake 38 Evidence-Based Complementary and Alternative Medicine Naivasha A Field Guide to Uganda Forest Trees Diversity and utilization of antimalarial ethnophytotherapeutic remedies among the Kikuyus (Central Kenya) Anti-HIV-1 and cytotoxicity of the alkaloids of Erythrina abyssinica Lam. growing in Sudan Antifungal activity of ziziphus mucronata and Erythrina abyssinica bark crude extracts on Cryptococcus neofomans and Candida albicans species Dictionnaire Rundi-Français Evaluation of stem bark of erythrina abyssinica for antimicrobial and termiticidal principles Traditional herbal remedies used for the treatment of urinary schistosomiasis in Zimbabwe Role of Acacia and Erythrina trees in forest regeneration by vertebrate seed dispersers in Effects of young agroforestry trees on soils in on-farm situations in western Kenya Nitrogen release dynamics of Erythrina abyssinica and Erythrina brucei litters as influenced by their biochemical composition Trees and plants for bees and beekeepers in the Upper Mara Basin Cultural and social uses of plants from and around kibale national park, Western Uganda Antidiabetic potential of Erythrina abyssinica via protein tyrosine phosphate 1B inhibitory activity Forage potential ofErythrina abyssinica: intake, digestibility and growth rates for stall-fed sheep and goats in southern Ethiopia Classification of Erythrina provenances by rumen degradation characteristics of dry matter and nitrogen Ethnobotanical study of selected medicinal plants traditionally used in the rural Greater Mpigi region of Uganda Antiplasmodial and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima, Uganda Traditional plants used for medicinal purposes by local communities around the Northern sector of Kibale National Park, Uganda Medicinal plants used for management of malaria among the Luhya community of Kakamega East sub-County, Kenya Traditional medicines among the Embu and Mbeere people of Kenya Medicinal plants used in paediatric health care in namungalwe sub county Ethnopharmacological survey of medicinal plants used against malaria in bukavu city Medicinal plants of the Maasai of Kenya: a review Ethnobotanical survey of selected medicinal plants used by the ogiek communities in Kenya against microbial infections Ethnobotanical study of medicinal plants used by Sabaots of Mt. Elgon Kenya Structural elucidation of new flavanones isolated fromErythrina abyssinica Anti-inflammatory activities of two flavanones, sigmoidin A and sigmoidin B, from Erythrina sigmoidea Ethnobotanical survey of medicinal plants used in Kakamega County, Western Kenya A survey of ethnobotany of the AbaWanga people in Kakamega county, Western province of Kenya A study of the medicinal plants used by the Marakwet community in Kenya Medicinal plants use in and around Kalinzu central forest reserve, Western Uganda An ethnobotanical survey of medicinal plants used by the people in Nhema communal area, Zimbabwe Bio-prospective studies on medicinal plants used in the treatment of poultry diseases in Uganda Antimicrobial storage and antibiotic knowledge in the community: a cross-sectional pilot study in north-western Angola Antibacterial activity of five medicinal plant extracts used by the Maasai people of Kenya Ethnobotanical study of selected medicinal plants used against bacterial infections in Nandi county, Kenya Conservation status and use of medicinal plants by traditional medical practitioners in Machakos District, Kenya Wound healing properties of selected plants used in ethnoveterinary medicine His Principles of Practice and Pharmacopoeia (Zambeziana) Knowledge on plants used traditionally in the treatment of tuberculosis in Uganda Local management of tuberculosis by traditional medicine practitioners in lake Victoria region Use of traditional medicines in the management of HIV/AIDS opportunistic infections in Tanzania: a case in the Bukoba rural district Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda Screening of some Kenyan medicinal plants for antibacterial activity Ethnobotanical study of nutri-medicinal plants used for the management of HIV/AIDS opportunistic ailments among the local communities of Western Uganda Medicinal plants used by traditional medicine practitioners for the treatment of HIV/AIDS and related conditions in Uganda Utilization of medicinal plants used in the management of HIV/AIDS opportunistic infections in Njeru sub-county Medicinal plants used to induce labour during childbirth in Western Uganda Ethnobotanical study of anthelmintic and other medicinal plants traditionally used in Loitoktok district of Kenya Ethnopharmacological survey of the medicinal plants used in Tindiret, Nandi county, Kenya Ethnopharmacological survey of the Bunda district, Tanzania: plants used to treat infectious diseases Medicinal plants in urban districts of Tanzania: plants, gender roles and sustainable use Medicinal resources of the miombo woodlands of urumwa, Tanzania: plants and its uses Ethnobotanical survey of traditionally used medicinal plants for infections of skin, gastrointestinal tract, urinary tract and the oral cavity in Borabu sub-county Traditional herbal drugs of southern Uganda Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties Hypoglycemic activity of some Kenyan plants traditionally used to manage diabetes mellitus in eastern province Hypoglycemic and antihyperglycemic activities of nine medicinal herbs used as antidiabetic in the region of lubumbashi (DR Congo) Traditional dietary additives of the Maasai are antiviral against the 40 Evidence-Based Complementary and Alternative Medicine measles virus Herbal medicine acceptance, sources and utilization for diarrhoea management in a cosmopolitan urban area ( ika, Kenya) Phytochemical screening of tanzanian medicinal plants. I Masai and kipsigis notes on East african plants A survey of plants and plant products traditionally used in livestock health management in Buuri district e in-vitro ascaricidal activity of selected indigenous medicinal plants used in ethno veterinary practices in Uganda Ethnopharmacological survey of medicinal plants used in the treatment of snakebites in Central Uganda In vitro antimicrobial activity of crude extracts of Erythrina abyssinica and capsicum annum in poultry diseases control in the South western agroecological zone of Uganda. A bird's-eye view Vitro Antihelminthic Efficacy of Erythrina Abyssinica Extracts on Ascaridia Galli Phytochemical evaluation of roots of Plumbago zeylanica L. and assessment of its potential as a nephroprotective agent e efficacy of the crude root bark extracts of Erythrina abyssinica on rifampicin resistant mycobacterium tuberculosis Brine shrimp lethality bioassay of some selected Zimbabwean traditional medicinal plants In vivo antianaemic effect and safety of aqueous extracts of Erythrina abyssinica and zanthoxylum usambarensis in mice models Phyto active compounds from herbal plant extracts: its extraction, isolation and characterization Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts e tetracyclic Erythrina alkaloids Erythrina alkaloids. Isolation and characterization of erysodine, erysopine, erysocine and erysovine 8-Methoxyneorautenol and radical scavenging flavonoids from Erythrina abyssinica Radical scavenging-flavonoids from Erythrina abyssinica New prenylated flavanones fromErythrina abyssinicawith protein tyrosine phosphatase 1B (PTP1B) inhibitory activity Antimicrobial agents from an East African medicinal plant Erythrina abyssinica Indicanines B and C, two isoflavonoid derivatives from the root bark of Erythrina indica Flavanones from the stem bark of Erythrina abyssinica Minor flavanones fromErythrinaabyssinica Isoprenylated flavonoids from the stem bark ofErythrinaabyssinica# Ethnobotanical drug discovery based on medicine men's trials in the african savanna: screening of East african plants for antimicrobial activity II New 5-deoxyflavonoids and their inhibitory effects on protein tyrosine phosphatase 1B (PTP1B) activity Synergism of artemisinin with abyssinone-V from Erythrina abyssinica (Lam. ex) against Plasmodium falciparum parasites: a potential anti-malarial combination therapy AMPactivated protein kinase (AMPK) activation by benzofurans and coumestans isolated fromErythrina abyssinica Alysicarpus ovalifolius (Schumach) and Erythrina abyssinica (DC) for antiplasmodial, larvicidal, mosquitocidal and antimicrobial activities e anti-obesity potential of sigmoidin A Triterpenoid saponins and C-glycosyl flavones from stem bark of Erythrina abyssinica Lam and their cytotoxic effects Kaempferol 3-O-(2-O-ß-D-Glucopyranosyl-6-O-a-L-Rhamnopyranosyl-ß-D-Glucopyranoside) from the african plant Erythrina abyssinica Assessing sub-saharian Erythrina for efficacy: traditional uses, biological activities and phytochemistry Evolution of secondary metabolites in legumes (Fabaceae) Phytochemical profiling of underexploited Fabaceae species: insights on the ontogenic and phylogenetic effects over isoflavone levels Chalcone: a privileged structure in medicinal chemistry Studies in Natural Product Chemistry Pharmacology of ME-344, a novel cytotoxic isoflavone Flavanones proanthocyanidin: chemistry and biology: from phenolic compounds to proanthocyanidins extraction techniques and applications: food and beverage Pterocarpans with inhibitory effects on protein tyrosine phosphatase 1B from Erythrina lysistemon Hutch Sesquiterpenes from the medicinal plants of Africa Evaluation of antidiabetic and antioxidant effects of ethanolic leaf extract of Erythrina Abbysinica Lam. Ex DC Cytotoxic and PTP1B inhibitory activities from Erythrina abyssinica Effects of the methanol extract of Erythrina abyssinica on hot flashes in ovariectomized rats Hepatoprotective effects of erythrina abyssinica lam ex dc against non alcoholic fatty liver disease in sprague dawley rats e antiplasmodial and radical scavenging activities of flavonoids of Erythrina burttii In vivo evaluation of antimalarial activity of stem and root extracts of Erythrina abyssinica Antitubercular and phytochemical investigation of methanol extracts of medicinal plants used by the Samburu community in Kenya In vitro anti-tuberculous study on the combination of extracts of stem-bark of Erythrina abyssinica Lam. ex DC and conventional drugs Antimicrobial activities of Clutia abyssinic and Erythrina abyssinica plants extracts used among the Kipsigis community of Bomet district in Kenya Cyclooxygenase inhibiting and anti-bacterial activities of South African Erythrina species Anti-inflammatory activity of erycristagallin, a pterocarpene from Erythrina mildbraedii Phospholipase A2Inhibitors from anErythrinaSpecies from Samoa Blume Free-radical scavenging activity and phytochemical analysis in the leaf and stem of Drymaria diandra Blume e anticancer potential of flavonoids isolated from the stem bark of Erythrina suberosa through induction of apoptosis and inhibition of STAT signaling pathway in human leukemia HL-60 cells New perspectives on how to discover drugs from herbal medicines: CAM's outstanding contribution to modern therapeutics Isolation and characterization of antimicrobial compounds from the plants, Erythrina abyssinica DC. and Chasmanthera Dependens Hochst Evaluation of the antimicrobial activity of erythrina abyssinica leaf extract Targeting ESKAPE pathogens with anti-infective medicinal plants from the Greater Mpigi region in Uganda Efficacy of Medicinal Plants Used by Communities Around Lake Victoria Region and the Samburu against Mycobacteria, Selecfed Bacteria and Candida Albicans A new Erythrinan alkaloid glycoside from the seeds of Erythrina crista-galli Erythroidine alkaloids: a novel class of phytoestrogens Alkaloids of genus Erythrina: an updated review Erysothrine, an alkaloid extracted from flowers of Erythrina mulungu Mart. ex Benth: evaluating its anticonvulsant and anxiolytic potential Anxiolytic-like effects of erythrinian alkaloids from erythrina suberosa Wound healing properties of selected plants used in ethnoveterinary medicine OECD guideline for testing of chemicals: acute oral toxicity-acute toxic class method Garden Plants in Zimbabwe: their ethnomedicinal uses and reported toxicity