key: cord-0000797-zrz6jyma authors: Ferdinands, Jill M.; Denison, Amy M.; Dowling, Nicole F.; Jost, Heather A.; Gwinn, Marta L.; Liu, Lindy; Zaki, Sherif R.; Shay, David K. title: A Pilot Study of Host Genetic Variants Associated with Influenza-associated Deaths among Children and Young Adults date: 2011-12-03 journal: Emerg Infect Dis DOI: 10.3201/eid1712.111002 sha: 6170c6d5c7e660f19226bfd026159c4ba6915fda doc_id: 797 cord_uid: zrz6jyma We compared the prevalence of 8 polymorphisms in the tumor necrosis factor and mannose-binding lectin genes among 105 children and young adults with fatal influenza with US population estimates and determined in subanalyses whether these polymorphisms were associated with sudden death and bacterial co-infection among persons with fatal influenza. No differences were observed in genotype prevalence or minor allele frequencies between persons with fatal influenza and the reference sample. Fatal cases with low-producing MBL2 genotypes had a 7-fold increased risk for invasive methicillin-resistant Staphylococcus aureus (MRSA) co-infection compared with fatal cases with high- and intermediate-producing MBL2 genotypes (odds ratio 7.1, 95% confidence interval 1.6–32.1). Limited analysis of 2 genes important to the innate immune response found no association between genetic variants and fatal influenza infection. Among children and young adults who died of influenza, low-producing MBL2 genotypes may have increased risk for MRSA co-infection. I t is unknown why some apparently healthy persons become severely ill after infl uenza infection while others infected by the same strain remain asymptomatic or become only mildly ill. The presence of neutralizing antibody to a specifi c infl uenza strain is protective, and certain chronic medical conditions increase the risk for severe outcomes of infl uenza infections, but the risk factors for infl uenzaassociated deaths among previously healthy persons remain largely unknown (1) . Infectious disease mortality risk has a heritable component; children of parents who died of an infectious disease are ≈6× more likely to die of an infectious cause compared with the general population (2) . A recent large family study that used genealogic databases found an elevated risk for infl uenza death among relatives of persons who died of infl uenza (3) . By comparing the infl uenza mortality rate for relatives of persons who died of infl uenza with the infl uenza mortality rate for relatives of spouses of persons who died, the authors showed that the increased risk was not explained by shared exposure to infl uenza virus and thus may have a genetic component. However, to our knowledge, no published studies have examined the association between specifi c host genetic variants and severe infl uenza disease outcomes. To address the paucity of research on host genomics and infl uenza, the Centers for Disease Control and Prevention (CDC) convened a meeting of experts in 2007 to solicit opinions on how to explore the role of host genomics in public health activities for infl uenza conducted by the agency. A study of host genomic factors related to severe infl uenza outcomes in children was recommended as an activity that CDC was well positioned to pursue. This article reports the fi ndings of the study implemented in response to that recommendation. We conducted a hypothesis-generating pilot study to examine if host genetic variants were associated with fatal infl uenza virus infection by comparing prevalence of selected host genetic variants among children and A Pilot Study of Host Genetic Variants Associated with Infl uenzaassociated Deaths among Children and Young Adults 1 young adults who died of infl uenza with population-based prevalence estimates. We focused on 8 single-nucleotide polymorphisms (SNPs) in 2 candidate genes important in the innate immune response to infl uenza infection and for which national prevalence estimates were available: the gene for tumor necrosis factor superfamily, member 2 (offi cial symbol TNF) and the mannose-binding lectin gene (offi cial symbol MBL2). Because infl uenza-associated deaths in children, but not adults, are nationally reportable in the United States, most cases in this study were pediatric cases reported to CDC through the Infl uenza-associated Pediatric Mortality Surveillance system. This system requires state public health authorities to report to CDC any infl uenza-associated death among persons <18 years old that occurred within their jurisdiction. Information collected by this surveillance system constitutes the primary phenotypic information used in this study and includes underlying health status and chronic medical conditions, infl uenza vaccination status, clinical course and features, and results of microbiologic and virologic testing. Reporting to this surveillance system does not require submission of tissue samples; however, CDC routinely receives tissue samples for a subset of fatal pediatric infl uenza cases for diagnostic confi rmation. For some cases, medical records and autopsy reports provided additional information. A total of 442 infl uenza-associated deaths among children (<18 years old) and young adults (18-40 years old) residing in the United States were reported to CDC for the 1998-99 through 2007-08 infl uenza seasons; of these, 105 cases with laboratory-confi rmed infl uenza infection had suffi cient tissue specimens available for DNA extraction and constitute the analytic dataset for this study. Fatal infl uenza cases were considered laboratory confi rmed if a positive test result for infl uenza by viral culture, immunohistochemical analysis, or reverse transcription PCR (RT-PCR) had been documented. These represented 1) fatal pediatric cases reported to CDC during the 2003-04 infl uenza season when CDC conducted surveillance for infl uenza-associated pediatric deaths as part of an emergency response effort; 2) fatal pediatric cases identifi ed through national surveillance since 2004 when pediatric infl uenza-associated death was made nationally notifi able in the United States; or 3) fatal cases of infl uenza among young adults at any point in time or among children before 2003 whose case reports and specimens were received by the CDC Infectious Diseases Pathology Branch on a case-by-case basis. To obtain DNA for genotyping, a 10-μm section from blocks containing formalin-fi xed, paraffi n-embedded tissues was deparaffi nized with xylene and washed twice with absolute ethanol. After residual ethanol evaporated, tissues were digested overnight at 56°C in 200 μL Buffer PKD with 20 μL proteinase K (QIAGEN, Valencia, CA, USA). Extraction of the supernatant was completed with an EZ1 DNA Tissue Kit or a MagAttract DNA Mini M48 Kit (QIAGEN), with DNA eluted into a fi nal 100-μL volume. DNA quality was assessed with a human RNase P real-time PCR in 25-μL volumes by using Agilent Brilliant II QPCR Master Mix as described (4) . Validated TaqMan assays were used to genotype each SNP (protocols, primers, and probes available at http://snp500cancer.nci.nih.gov). Each 25-μL real-time PCR consisted of 12.5 μL of TaqMan Universal PCR Master Mix (Applied Biosystems, Foster City, CA, USA), 900 nmol of assay-specifi c primer, 200 nmol of assay-specifi c probe, and 5 μL of DNA. All controls (extraction blanks, no template controls, and positive controls for each genotype used at 5 ng per PCR; Coriell Institute for Medical Research, Camden, NJ, USA) and unknown samples were assayed in duplicate. Thermal cycling conditions consisted of 1 cycle at 50°C for 2 min, 1 cycle at 95°C for 10 min, and 50 cycles of 92°C for 30 s and 60°C for 1 min. Data were collected during the annealing plateau. For TNF, we examined 3 promoter SNPs: −308G>A (rs1800629), −238G>A (rs361525), and −555G>A (rs1800750) (5,6); we were unable to infer TNF haplotypes. For MBL2, we examined 5 SNPS, 3 in the coding region of exon 1 and 2 in the promoter region. The 3 structural SNPs in MBL2 that we examined encode variant alleles known as D (codon 52, rs5030737), B (codon 54, rs1800450), and C (codon 57, rs1800451); the wild-type is A (7, 8) . These variants are typically pooled and designated as the O allele. The MBL2 genotype A/A refers to wild-type homozygotes, A/O refers to heterozygotes, and O/O refers to homozygotes or compound heterozygotes. Promoter polymorphisms at positions −550 (H/L variant, rs11003125) and −221 (X/Y variant, rs7096206) encode variants that mediate MBL2 expression. Case-patients were classifi ed as low, intermediate, or high producers of MBL on the basis of their structural and promoter variants (referred to as a "truncated haplotype") (7). Case-patients homozygous or compound heterozygous for any of the 3 variant structural alleles and case-patients with a variant structural allele on 1 chromosome and the X variant on the other were categorized as low MBL producers. Case-patients homozygous for the wild-type structural allele were categorized as high MBL producers except for those also homozygous for the X variant, who were classifi ed as intermediate MBL producers on the basis of evidence that possession of the X/X promoter genotype signifi cantly down-regulates MBL production (9) . Case-patients with the YA/O genotype were classifi ed as intermediate MBL producers on the basis of analyses indicating that this genotype confers intermediate levels of functional MBL (9) . For some analyses, the intermediate and high producers were combined into 1 group and compared with MBL low-producers. The prevalence of genetic variants among cases was compared with population-based prevalence estimates for the same genetic variants for the 12-19-year age group available from the National Health and Nutrition Examination Survey (NHANES) III CDC-National Cancer Institute Collaborative Genomics Project databank (10) . NHANES is a nationally representative survey of the US population conducted by the CDC National Center for Health Statistics. During the second phase of NHANES III (1991-1994), leukocytes from participants were used to create a DNA bank maintained by CDC's National Center for Environmental Health that contains specimens from >7,000 participants, including ≈1,200 children. To our knowledge, the NHANES DNA bank is the only currently available source of nationally representative prevalence estimates for genetic variants among US residents. The 12-19-year age group is the youngest age group available in the NHANES DNA bank. Cases were stratifi ed by presence or absence of any chronic medical conditions in the patients known to increase the risk for infl uenza-associated complications (including moderate to severe developmental delay; hemoglobinopathy, immunosuppressive disorders, asthma or reactive airway disease, diabetes mellitus, history of febrile seizures, seizure disorder, cystic fi brosis, or cardiac, renal, chronic pulmonary, metabolic, or neuromuscular disorders) (11) . Case-patients without chronic medical conditions were classifi ed as "previously healthy." Casepatients who were admitted to an inpatient ward or intensive care unit were classifi ed as "hospitalized." Length of illness was defi ned as the duration of time between the reported date of illness onset and death. Case-patients with length of illness <3 days were classifi ed as having "sudden death." Bacterial co-infection was defi ned as at least 1 positive culture for a bacterial pathogen from a normally sterile site (e.g., blood, cerebrospinal fl uid). Minor allele frequencies between groups were compared with a test of binomial proportions. The null hypothesis was that there was no difference in minor allele frequency between the cases and the reference sample. A priori groups examined in subgroup analyses included previously healthy case-patients, case-patients <5 years old, case-patients with invasive bacterial co-infection, and case-patients with sudden death. Differences in length of illness were evaluated with the Kaplan-Meier estimator with differences tested with the log-rank statistic. Tests of signifi cance were based on a 2-sided test with α = 0.05. Tests of departure from Hardy-Weinberg equilibrium for the reference sample have been published (10) . Analyses were conducted in SAS version 9.2 (SAS Institute, Cary, NC, USA). This study was exempted from institutional review board review for approval of human subjects research. Data were obtained only from deceased case-patients, and reference sample data were used only in a de-identifi ed and aggregate manner. Of 442 cases of fatal infl uenza in children and young adults reported to CDC during the 1998-99 through 2007-08 infl uenza seasons, 105 (24%) cases had available autopsy specimens with suffi cient DNA for genotyping. Case-patient characteristics are summarized in Table 1 . Genotyped casepatients had a median age of 6.0 years (range 1 month-40 years) and 52% were female. Sixty-one percent of casepatients were white, and 17% were black. Seventy-four percent of cases occurred during 3 infl uenza seasons: 2003-04 (31%), 2006-07 (21%), and 2007-08 (22%). Eighty-one (77%) of 105 case-patients were infected with infl uenza A and 24 (23%) with infl uenza B. There were no signifi cant differences in the distribution of infl uenza types by season between cases and the national pattern of types found in the US viral surveillance system (data not shown). Compared with case-patients who were not genotyped, the 105 case-patients with DNA available for genotyping were slightly older (median age 6 years vs. 4 years; p<0.05), less likely to have had a preexisting medical condition (28% vs. 61%; p<0.001), and less likely to have been vaccinated for infl uenza during the season of death (7% vs. 16%; p<0.01). Case-patients genotyped were more likely to have experienced sudden death (31% vs. 22%; p<0.05) and to have died before reaching medical care (34% vs. 22%; p<0.001). It is not surprising that case-patients with sudden death were more likely to have undergone autopsy and, hence, to have had tissues available for DNA extraction. Genotyped case-patients were less likely to have had pneumonia evident on chest radiograph (22% vs. 46%; p<0.05) and about equally likely to have had invasive bacterial co-infection (21% vs. 23%; not signifi cant), but differences in these characteristics are diffi cult to interpret because genotyped case-patients were less likely to have received medical care for their illnesses (presumably because of a greater frequency of sudden death). Genotype and minor allele frequencies among casepatients are summarized in Table 2 . Minor allele frequencies comparing case-patients to the NHANES reference sample are shown in Figure 1 . No statistically signifi cant differences were observed in minor allele frequencies or genotype prevalence between the case-patients and the NHANES reference sample for the 3 TNF variants with all case-patients examined together or with black and white racial groups examined separately. No statistically signifi cant differences were observed in minor allele frequencies for the 5 MBL2 SNPs examined (Figure 1 ) or the prevalence of pooled MBL2 genotypes (Figure 2 ) between the case-patients and the NHANES reference sample with all case-patients examined together or with black and white racial groups examined separately. In a subgroup analysis, the minor allele frequency of rs5030737 was signifi cantly less common among case-patients <5 years old than in the reference sample (2% vs. 7.2%; p = 0.02). Among low producers of MBL, we observed an estimated odds ratio of 7. Table 3 ). Low-producing MBL2 genotypes were also associated with an approximate 3-fold increased risk for bacterial coinfection in general and with S. aureus infection overall, but these associations did not reach statistical signifi cance. Characteristics of case-patients with invasive MRSA coinfection are shown in Table 4 . We found no signifi cant differences in allele frequencies or genotype prevalence for variants in the TNF and MBL2 genes between fatal infl uenza cases in patients <40 years old and a nationally representative reference sample. However, among the case-patients who died, most of whom died in childhood, variants of MBL2 responsible for low production of MBL were associated with MRSA co-infection. This observation should be viewed cautiously as a hypothesis for further exploration, given the small number of case-patients with MRSA in our study (n = 8). This fi nding is consistent with results from previous studies that found associations between MBL insuffi ciency (defi ned by genotype) and respiratory infection in children (12) (13) (14) , severe and fatal sepsis (9, (15) (16) (17) , and systemic infl ammatory response syndrome in children (18) . TNF is a potent proinfl ammatory cytokine produced early in the innate immune response to infection that promotes a wide range of immunologic responses. Excessive systemic TNF is responsible for many symptoms of clinical infection and may lead to fatal complications. Studies have demonstrated a signifi cant genetic contribution to circulating TNF levels, with 50%-60% of variance in TNF levels genetically determined (19) (20) (21) . The most studied SNP is at position −308 (rs1800629), with the A allele associated with 20%-40% greater TNF production (22) (23) (24) and with susceptibility to and severity of numerous infectious diseases (20, 22, 25, 26) . Carriage of the A allele at the −238 position (rs361525) also has been associated with a variety of diseases (20, 22) . MBL, another key component of the innate immune system, is a soluble protein of the collectin family that binds to microbial surfaces and promotes phago-opsonization directly and indirectly by activating the lectin complement pathway. Low serum MBL levels are common and associated with an increased risk for a variety of infections and autoimmune diseases (15, (27) (28) (29) , including acute respiratory infection in young children (12) . MBL levels are strongly infl uenced by genetic factors, with >75% of variation in MBL levels explained by a small number of polymorphisms in the MBL2 gene (30) . Variant proteins are unstable and of lower oligomeric form, which decreases affi nity for microbial ligands and complement-activating ability. Each variant produces signifi cantly reduced serum MBL levels. MBL has been shown to strongly bind S. aureus (31) and susceptibility to fatal S. aureus infection due to MBL defi ciency has been convincingly demonstrated in murine models (32) . Phase I clinical trials of MBL replacement therapy indicate that this therapy is well tolerated and effective at improving MBL defi ciency in healthy persons (33) . Reports of MBL replacement therapy administered to severely ill persons (34) (35) (36) or to patients with S. aureus sepsis (37) suggest that therapy can improve clinical conditions, although results of these studies were mixed, and in some cases, clinical improvements were temporary. The clinical implications of MBL replacement therapy for infl uenza treatment or prevention are unknown. Among persons with fatal cases, we observed an increased risk for sudden death in carriers of the variant allele of TNF rs1800750. We are unaware of previous literature reporting a similar association; there is no obvious biologic mechanism to explain the fi nding. The TNF rs1800750 variant is in linkage disequilibrium with other TNF variants (http://pga.gs.washington.edu), some of which (including TNF rs361525) have been associated with increased TNF serum levels. Therefore, it is possible that the observed association may be due to linkage disequilibrium with unmeasured polymorphisms that are the causal variants, and more exhaustive analysis of TNF variants is worthy of future study. A strength of this study is its use of a cohort of case-patients particularly well-suited for investigation of potential host genetic risk factors-these case-patients died with active infl uenza infections, yet were predominantly children and young adults without severe preexisting medical conditions. In such a group, other factors associated with severe infl uenza are less likely to obscure possible genetic associations. An additional strength was access to postmortem lung tissue for immunohistochemistry and/or RT-PCR confi rmation of infl uenza infection. We recognize that this study has several limitations. Although the study cohort is, to our knowledge, the largest sample of fatal infl uenza cases in children and young adults, the analysis has limited statistical power to detect associations because of small sample sizes, especially when examining subsamples. We had access to limited information about racial and ethnic background of casepatients. Clinical data were obtained primarily from a US surveillance system and were not validated with medical chart review. Although we were able to infer truncated haplotypes for MBL2, haplotype information for TNF was unavailable. Despite these shortcomings, the possibility that specifi c variants of the MBL2 gene known to infl uence serum MBL levels appear to be associated with severe bacterial co-infection is an intriguing fi nding deserving of additional study, especially given the prevalence of co-infection among case-patients who died of pandemic (H1N1) 2009 virus infection (38) and observations that children co-infected with infl uenza and S. aureus may have higher case-fatality rates (39) . That we observed a stronger relationship between low-producing MBL genotypes and MRSA infection than between those genotypes and S. aureus infection in general is puzzling. We are unaware of an obvious physiologic explanation for why low MBL would predispose more strongly to infection with methicillin-resistant versus methicillin-sensitive S. aureus. One possibility is that MRSA is a marker for other strain characteristics. For example, such an association could arise if MRSA infections were predominantly the USA300 strain while other S. aureus infections were predominantly the USA100 strain. Unfortunately, we do not have data on S. aureus genetic strain types. We also found that of the 4 fatal infl uenza cases in which patients had both MRSA co-infection and low-producing MBL genotypes, 2 patients reportedly also had asthma. It is well-established that asthma increases the risk for serious complications of infl uenza, and although we know of no evidence suggesting that low-producing MBL genotypes are associated with increased risk for asthma (40) , this fi nding may be worth further exploration in future studies. Our fi ndings suggest several opportunities for additional infl uenza-related research. An obvious next step is examination of all functional variants of the MBL2 gene in conjunction with gene expression and functional assays in a larger group of severely ill infl uenza case-patients with suffi ciently detailed clinical data to defi ne important phenotypes (e.g., MRSA co-infection). Interest in association studies of rare variants, the availability of new sequencing technologies that dramatically decrease the cost of sequencing, and access to reference human sequence data suggest that investigating rare variants in candidate genes (including MBL2 and TNF) and their functional effects may be a promising avenue of research. Large-scale genotyping of a sample of case-patients to look for common variants by using methods such as genomewide association studies may be possible if a network of collaborators capable of pooling a suffi cient number of case-patients is developed. Recent initiatives such as the Genome-based Research and Population Health International Network (www.graphint. org/ver2) are aimed at encouraging such networks. Given the rapid acceleration in laboratory technologies, enhancement in bioinformatics methods and capacity, and trends toward collaborative research within large consortia, exploration of the role of host genomic factors in serious illness associated with infl uenza and other viral pathogens is increasingly feasible. We believe that host genomics is a promising area for future research regarding who is at risk for severe complications of acute infectious diseases, including infl uenza. Infl uenza-associated deaths among children in the United States Genetic and environmental infl uences on premature death in adult adoptees Evidence for a heritable predisposition to death due to infl uenza Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus Inherited variability of tumor necrosis factor production and susceptibility to infectious disease Is there a future for TNF promoter polymorphisms? Mannose-binding lectin genetics: from A to Z Low serum mannose-binding lectin level increases risk of death due to pneumococcal infection Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic infl ammatory response syndrome Prevalence in the United States of selected candidate gene variants: Third National Health and Nutrition Examination Survey, 1991-1994 Prevention and control of infl uenza: recommendations of the Advisory Committee on Immunization Practices (ACIP) Acute respiratory tract infections and mannose-binding lectin insuffi ciency during early childhood Mannose-binding lectin polymorphisms and recurrent respiratory tract infection in Chinese children Low mannose-binding lectin (MBL) levels in neonates with pneumonia and sepsis Impact of mannose-binding lectin on susceptibility to infectious diseases Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults MBL genotype and risk of invasive pneumococcal disease: a casecontrol study Increased incidence and severity of the systemic infl ammatory response syndrome in patients defi cient in mannose-binding lectin Heritability estimates of innate immunity: an extended twin study Inherited variability of tumor necrosis factor production and susceptibility to infectious disease Genetic infl uence on cytokine production and fatal meningoccal disease Polymorphism of the human TNF-alpha promoter-random variation or functional diversity? Is there a future for TNF promoter polymorphisms? Regulatory polymorphisms underlying complex disease traits Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? Genetic susceptibility to sepsis: a possible role for mannose-binding lectin Clinical manifestations of mannan-binding lectin defi ciency The role of mannose-binding lectin in health and disease Heritability estimates for the constitutional levels of the collectins mannan-binding lectin and lung surfactant protein D Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition Mannose-binding lectin-defi cient mice are susceptible to infection with Staphylococcus aureus Phase I safety, tolerability, and pharmacokinetic study of recombinant human mannan-binding lectin Safety and pharmacokinetics of plasma-derived mannose-binding lectin (MBL) substitution in children with chemotherapy-induced neutropaenia Mannose-binding lectin (MBL) therapy in an MBL-defi cient patient with severe cystic fi brosis lung disease Infusion of plasma-derived mannan-binding lectin (MBL) into MBL-defi cient humans The pharmacokinetic profi le of plasma-derived mannanbinding lectin in healthy adult volunteers and patients with Staphylococcus aureus septicaemia Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic infl uenza A(H1N1)-United States Infection with community-onset Staphylococcus aureus and infl uenza virus in hospitalized children The state of genome-wide association studies in pulmonary disease: a new perspective We thank Muin Khoury, Nancy Cox, Venkatachalam Udhayakumar, Rosaline Dhara, Man-Huei Chang, Lyna Zhang, Ajay Yesupriya, Tara Jones, and Eric Shattuck for their assistance. All material published in Emerging Infectious Diseases is in the public domain and may be used and reprinted without special permission; proper citation, however, is required.