The field of crashworthiness design is gaining more interest and attention from automakers around the world due to increasing competition and tighter safety norms. In the last two decades, topology and topometry optimization methods from structural optimization have been widely explored to improve existing designs or conceive new designs with better crashworthiness. Although many gradient-based and heuristic methods for topology- and topometry-based crashworthiness design are available these days, most of them result in stiff structures that are suitable only for a set of vehicle components in which maximizing the energy absorption or minimizing the intrusion is the main concern. However, there are some other components in a vehicle structure that should have characteristics of both stiffness and flexibility. Moreover, the load paths within the structure and potential buckle modes also play an important role in efficient functioning of such components. For example, the front bumper, side frame rails, steering column, and occupant protection devices like the knee bolster should all exhibit controlled deformation and collapse behavior. The primary objective of this research is to develop new methodologies to design crashworthy structures with controlled behavior. The well established Hybrid Cellular Automaton (HCA) method is used as the basic framework for the new methodologies, and compliant mechanism-type (sub)structures are the highlight of this research. The ability of compliant mechanisms to efficiently transfer force and/or motion from points of application of input loads to desired points within the structure is used to design solid and tubular components that exhibit controlled deformation and collapse behavior under crash loads. In addition, a new methodology for controlling the behavior of a structure under multiple crash load scenarios by adaptively changing the contributions from individual load cases is developed. Applied to practical design problems, the results demonstrate that the methodologies provide a practical tool to aid the design engineer in generating design concepts for crashworthy structures with controlled behavior. Although developed in the HCA framework, the basic ideas behind these methods are generic and can be easily implemented with other available topology- and topometry-based optimization methods.