id sid tid token lemma pos zs25x636101 1 1 in in ADP zs25x636101 1 2 this this DET zs25x636101 1 3 thesis thesis NOUN zs25x636101 1 4 we we PRON zs25x636101 1 5 study study VERB zs25x636101 1 6 the the DET zs25x636101 1 7 geometry geometry NOUN zs25x636101 1 8 of of ADP zs25x636101 1 9 the the DET zs25x636101 1 10 group group NOUN zs25x636101 1 11 of of ADP zs25x636101 1 12 symplectic symplectic ADJ zs25x636101 1 13 diffeomorphisms diffeomorphism NOUN zs25x636101 1 14 of of ADP zs25x636101 1 15 a a DET zs25x636101 1 16 closed closed ADJ zs25x636101 1 17 symplectic symplectic ADJ zs25x636101 1 18 manifold manifold ADJ zs25x636101 1 19 m m PROPN zs25x636101 1 20 , , PUNCT zs25x636101 1 21 equipped equip VERB zs25x636101 1 22 with with ADP zs25x636101 1 23 the the DET zs25x636101 1 24 l^2 l^2 NOUN zs25x636101 1 25 weak weak ADJ zs25x636101 1 26 riemannian riemannian ADJ zs25x636101 1 27 metric metric NOUN zs25x636101 1 28 . . PUNCT zs25x636101 2 1 it it PRON zs25x636101 2 2 is be AUX zs25x636101 2 3 known know VERB zs25x636101 2 4 that that SCONJ zs25x636101 2 5 the the DET zs25x636101 2 6 group group NOUN zs25x636101 2 7 of of ADP zs25x636101 2 8 symplectic symplectic PROPN zs25x636101 2 9 diffeomorphisms diffeomorphism NOUN zs25x636101 2 10 is be AUX zs25x636101 2 11 geodesically geodesically ADV zs25x636101 2 12 complete complete ADJ zs25x636101 2 13 with with ADP zs25x636101 2 14 respect respect NOUN zs25x636101 2 15 to to ADP zs25x636101 2 16 this this DET zs25x636101 2 17 l^2 l^2 NOUN zs25x636101 2 18 metric metric ADJ zs25x636101 2 19 and and CCONJ zs25x636101 2 20 admits admit VERB zs25x636101 2 21 an an DET zs25x636101 2 22 exponential exponential ADJ zs25x636101 2 23 mapping mapping NOUN zs25x636101 2 24 which which PRON zs25x636101 2 25 is be AUX zs25x636101 2 26 defined define VERB zs25x636101 2 27 on on ADP zs25x636101 2 28 the the DET zs25x636101 2 29 whole whole ADJ zs25x636101 2 30 tangent tangent ADJ zs25x636101 2 31 space space NOUN zs25x636101 2 32 . . PUNCT zs25x636101 3 1 our our PRON zs25x636101 3 2 primary primary ADJ zs25x636101 3 3 objective objective NOUN zs25x636101 3 4 is be AUX zs25x636101 3 5 to to PART zs25x636101 3 6 describe describe VERB zs25x636101 3 7 the the DET zs25x636101 3 8 structure structure NOUN zs25x636101 3 9 of of ADP zs25x636101 3 10 the the DET zs25x636101 3 11 set set NOUN zs25x636101 3 12 of of ADP zs25x636101 3 13 singularities singularity NOUN zs25x636101 3 14 of of ADP zs25x636101 3 15 associated associated ADJ zs25x636101 3 16 weak weak ADJ zs25x636101 3 17 riemannian riemannian ADJ zs25x636101 3 18 exponential exponential ADJ zs25x636101 3 19 mapping mapping NOUN zs25x636101 3 20 , , PUNCT zs25x636101 3 21 which which PRON zs25x636101 3 22 are be AUX zs25x636101 3 23 known know VERB zs25x636101 3 24 as as ADP zs25x636101 3 25 conjugate conjugate NOUN zs25x636101 3 26 points point NOUN zs25x636101 3 27 . . PUNCT zs25x636101 4 1 we we PRON zs25x636101 4 2 construct construct VERB zs25x636101 4 3 examples example NOUN zs25x636101 4 4 of of ADP zs25x636101 4 5 conjugate conjugate NOUN zs25x636101 4 6 points point NOUN zs25x636101 4 7 on on ADP zs25x636101 4 8 the the DET zs25x636101 4 9 symplectomorphism symplectomorphism NOUN zs25x636101 4 10 group group NOUN zs25x636101 4 11 and and CCONJ zs25x636101 4 12 solve solve VERB zs25x636101 4 13 the the DET zs25x636101 4 14 jacobi jacobi NOUN zs25x636101 4 15 equation equation NOUN zs25x636101 4 16 explicitly explicitly ADV zs25x636101 4 17 along along ADP zs25x636101 4 18 geodesics geodesic NOUN zs25x636101 4 19 consisting consist VERB zs25x636101 4 20 of of ADP zs25x636101 4 21 isometries isometry NOUN zs25x636101 4 22 of of ADP zs25x636101 4 23 m. m. NOUN zs25x636101 4 24 using use VERB zs25x636101 4 25 the the DET zs25x636101 4 26 functional functional ADJ zs25x636101 4 27 calculus calculus NOUN zs25x636101 4 28 and and CCONJ zs25x636101 4 29 spectral spectral ADJ zs25x636101 4 30 theory theory NOUN zs25x636101 4 31 , , PUNCT zs25x636101 4 32 we we PRON zs25x636101 4 33 show show VERB zs25x636101 4 34 that that SCONJ zs25x636101 4 35 every every DET zs25x636101 4 36 such such ADJ zs25x636101 4 37 geodesic geodesic NOUN zs25x636101 4 38 contains contain VERB zs25x636101 4 39 conjugate conjugate NOUN zs25x636101 4 40 points point NOUN zs25x636101 4 41 , , PUNCT zs25x636101 4 42 all all PRON zs25x636101 4 43 of of ADP zs25x636101 4 44 which which PRON zs25x636101 4 45 have have VERB zs25x636101 4 46 even even ADV zs25x636101 4 47 multiplicity multiplicity NOUN zs25x636101 4 48 . . PUNCT zs25x636101 5 1 a a DET zs25x636101 5 2 macroscopic macroscopic ADJ zs25x636101 5 3 view view NOUN zs25x636101 5 4 of of ADP zs25x636101 5 5 conjugate conjugate NOUN zs25x636101 5 6 points point NOUN zs25x636101 5 7 is be AUX zs25x636101 5 8 then then ADV zs25x636101 5 9 given give VERB zs25x636101 5 10 by by ADP zs25x636101 5 11 showing show VERB zs25x636101 5 12 that that SCONJ zs25x636101 5 13 the the DET zs25x636101 5 14 exponential exponential ADJ zs25x636101 5 15 mapping mapping NOUN zs25x636101 5 16 of of ADP zs25x636101 5 17 the the DET zs25x636101 5 18 l^2 l^2 NOUN zs25x636101 5 19 metric metric NOUN zs25x636101 5 20 is be AUX zs25x636101 5 21 a a DET zs25x636101 5 22 non non ADJ zs25x636101 5 23 - - ADJ zs25x636101 5 24 linear linear ADJ zs25x636101 5 25 fredholm fredholm PROPN zs25x636101 5 26 map map NOUN zs25x636101 5 27 of of ADP zs25x636101 5 28 index index NOUN zs25x636101 5 29 zero zero NUM zs25x636101 5 30 , , PUNCT zs25x636101 5 31 from from ADP zs25x636101 5 32 which which PRON zs25x636101 5 33 we we PRON zs25x636101 5 34 deduce deduce VERB zs25x636101 5 35 that that DET zs25x636101 5 36 conjugate conjugate NOUN zs25x636101 5 37 points point NOUN zs25x636101 5 38 constitute constitute VERB zs25x636101 5 39 a a DET zs25x636101 5 40 set set NOUN zs25x636101 5 41 of of ADP zs25x636101 5 42 first first ADJ zs25x636101 5 43 baire baire NOUN zs25x636101 5 44 category category NOUN zs25x636101 5 45 in in ADP zs25x636101 5 46 the the DET zs25x636101 5 47 symplectic symplectic ADJ zs25x636101 5 48 diffeomorphism diffeomorphism NOUN zs25x636101 5 49 group group NOUN zs25x636101 5 50 . . PUNCT zs25x636101 6 1 finally finally ADV zs25x636101 6 2 , , PUNCT zs25x636101 6 3 using use VERB zs25x636101 6 4 the the DET zs25x636101 6 5 fredholm fredholm ADJ zs25x636101 6 6 properties property NOUN zs25x636101 6 7 of of ADP zs25x636101 6 8 the the DET zs25x636101 6 9 exponential exponential ADJ zs25x636101 6 10 mapping mapping NOUN zs25x636101 6 11 , , PUNCT zs25x636101 6 12 we we PRON zs25x636101 6 13 give give VERB zs25x636101 6 14 a a DET zs25x636101 6 15 new new ADJ zs25x636101 6 16 characterization characterization NOUN zs25x636101 6 17 of of ADP zs25x636101 6 18 conjugate conjugate NOUN zs25x636101 6 19 points point NOUN zs25x636101 6 20 along along ADP zs25x636101 6 21 stationary stationary ADJ zs25x636101 6 22 geodesics geodesic NOUN zs25x636101 6 23 in in ADP zs25x636101 6 24 terms term NOUN zs25x636101 6 25 of of ADP zs25x636101 6 26 the the DET zs25x636101 6 27 linearized linearized ADJ zs25x636101 6 28 geodesic geodesic ADJ zs25x636101 6 29 equation equation NOUN zs25x636101 6 30 and and CCONJ zs25x636101 6 31 coadjoint coadjoint NOUN zs25x636101 6 32 orbits orbit NOUN zs25x636101 6 33 . . PUNCT