id sid tid token lemma pos zk51vd69n54 1 1 the the DET zk51vd69n54 1 2 concept concept NOUN zk51vd69n54 1 3 of of ADP zk51vd69n54 1 4 root root NOUN zk51vd69n54 1 5 systems system NOUN zk51vd69n54 1 6 arises arise VERB zk51vd69n54 1 7 in in ADP zk51vd69n54 1 8 the the DET zk51vd69n54 1 9 study study NOUN zk51vd69n54 1 10 of of ADP zk51vd69n54 1 11 many many ADJ zk51vd69n54 1 12 mathematical mathematical ADJ zk51vd69n54 1 13 areas area NOUN zk51vd69n54 1 14 . . PUNCT zk51vd69n54 2 1 in in ADP zk51vd69n54 2 2 particular particular ADJ zk51vd69n54 2 3 it it PRON zk51vd69n54 2 4 is be AUX zk51vd69n54 2 5 a a DET zk51vd69n54 2 6 crucial crucial ADJ zk51vd69n54 2 7 tool tool NOUN zk51vd69n54 2 8 for for ADP zk51vd69n54 2 9 understanding understand VERB zk51vd69n54 2 10 coxeter coxeter NOUN zk51vd69n54 2 11 groups group NOUN zk51vd69n54 2 12 and and CCONJ zk51vd69n54 2 13 various various ADJ zk51vd69n54 2 14 groupoids groupoid NOUN zk51vd69n54 2 15 which which PRON zk51vd69n54 2 16 demonstrate demonstrate VERB zk51vd69n54 2 17 coxeter coxeter NOUN zk51vd69n54 2 18 like like ADP zk51vd69n54 2 19 properties.in properties.in ADP zk51vd69n54 2 20 this this DET zk51vd69n54 2 21 dissertation dissertation NOUN zk51vd69n54 2 22 we we PRON zk51vd69n54 2 23 study study VERB zk51vd69n54 2 24 matroidal matroidal ADJ zk51vd69n54 2 25 properties property NOUN zk51vd69n54 2 26 of of ADP zk51vd69n54 2 27 various various ADJ zk51vd69n54 2 28 root root NOUN zk51vd69n54 2 29 systems system NOUN zk51vd69n54 2 30 . . PUNCT zk51vd69n54 3 1 first first ADV zk51vd69n54 3 2 we we PRON zk51vd69n54 3 3 consider consider VERB zk51vd69n54 3 4 the the DET zk51vd69n54 3 5 signed sign VERB zk51vd69n54 3 6 groupoid groupoid NOUN zk51vd69n54 3 7 set set VERB zk51vd69n54 3 8 , , PUNCT zk51vd69n54 3 9 a a DET zk51vd69n54 3 10 concept concept NOUN zk51vd69n54 3 11 which which PRON zk51vd69n54 3 12 was be AUX zk51vd69n54 3 13 developed develop VERB zk51vd69n54 3 14 by by ADP zk51vd69n54 3 15 dyer dyer NOUN zk51vd69n54 3 16 and and CCONJ zk51vd69n54 3 17 generalizes generalize VERB zk51vd69n54 3 18 many many ADJ zk51vd69n54 3 19 notions notion NOUN zk51vd69n54 3 20 including include VERB zk51vd69n54 3 21 coxeter coxeter NOUN zk51vd69n54 3 22 groups group NOUN zk51vd69n54 3 23 , , PUNCT zk51vd69n54 3 24 coxeter coxeter NOUN zk51vd69n54 3 25 groupoids groupoid NOUN zk51vd69n54 3 26 and and CCONJ zk51vd69n54 3 27 coxeter coxeter PROPN zk51vd69n54 3 28 - - PUNCT zk51vd69n54 3 29 like like ADJ zk51vd69n54 3 30 groupoid groupoid NOUN zk51vd69n54 3 31 studied study VERB zk51vd69n54 3 32 by by ADP zk51vd69n54 3 33 brink brink PROPN zk51vd69n54 3 34 and and CCONJ zk51vd69n54 3 35 howlett howlett PROPN zk51vd69n54 3 36 . . PUNCT zk51vd69n54 4 1 we we PRON zk51vd69n54 4 2 show show VERB zk51vd69n54 4 3 that that SCONJ zk51vd69n54 4 4 the the DET zk51vd69n54 4 5 finite finite NOUN zk51vd69n54 4 6 , , PUNCT zk51vd69n54 4 7 connected connect VERB zk51vd69n54 4 8 , , PUNCT zk51vd69n54 4 9 simply simply ADV zk51vd69n54 4 10 connected connect VERB zk51vd69n54 4 11 , , PUNCT zk51vd69n54 4 12 real real ADJ zk51vd69n54 4 13 , , PUNCT zk51vd69n54 4 14 compressed compressed ADJ zk51vd69n54 4 15 , , PUNCT zk51vd69n54 4 16 principal principal ADJ zk51vd69n54 4 17 , , PUNCT zk51vd69n54 4 18 complete complete ADJ zk51vd69n54 4 19 and and CCONJ zk51vd69n54 4 20 rootoidal rootoidal ADJ zk51vd69n54 4 21 signed sign VERB zk51vd69n54 4 22 groupoid groupoid NOUN zk51vd69n54 4 23 sets set NOUN zk51vd69n54 4 24 correspond correspond VERB zk51vd69n54 4 25 bijectively bijectively ADV zk51vd69n54 4 26 to to ADP zk51vd69n54 4 27 the the DET zk51vd69n54 4 28 oriented orient VERB zk51vd69n54 4 29 simplicial simplicial NOUN zk51vd69n54 4 30 geometries.in geometries.in X zk51vd69n54 4 31 the the DET zk51vd69n54 4 32 second second ADJ zk51vd69n54 4 33 part part NOUN zk51vd69n54 4 34 , , PUNCT zk51vd69n54 4 35 we we PRON zk51vd69n54 4 36 studied study VERB zk51vd69n54 4 37 the the DET zk51vd69n54 4 38 closure closure NOUN zk51vd69n54 4 39 operator operator NOUN zk51vd69n54 4 40 and and CCONJ zk51vd69n54 4 41 lattice lattice NOUN zk51vd69n54 4 42 property property NOUN zk51vd69n54 4 43 of of ADP zk51vd69n54 4 44 the the DET zk51vd69n54 4 45 root root NOUN zk51vd69n54 4 46 system system NOUN zk51vd69n54 4 47 of of ADP zk51vd69n54 4 48 an an DET zk51vd69n54 4 49 infinite infinite ADJ zk51vd69n54 4 50 coxeter coxeter X zk51vd69n54 4 51 group group NOUN zk51vd69n54 4 52 . . PUNCT zk51vd69n54 5 1 we we PRON zk51vd69n54 5 2 establish establish VERB zk51vd69n54 5 3 a a DET zk51vd69n54 5 4 bijection bijection NOUN zk51vd69n54 5 5 between between ADP zk51vd69n54 5 6 the the DET zk51vd69n54 5 7 infinitely infinitely ADV zk51vd69n54 5 8 long long ADJ zk51vd69n54 5 9 words word NOUN zk51vd69n54 5 10 of of ADP zk51vd69n54 5 11 an an DET zk51vd69n54 5 12 affine affine ADJ zk51vd69n54 5 13 weyl weyl NOUN zk51vd69n54 5 14 group group NOUN zk51vd69n54 5 15 and and CCONJ zk51vd69n54 5 16 certain certain ADJ zk51vd69n54 5 17 biclosed biclosed ADJ zk51vd69n54 5 18 sets set NOUN zk51vd69n54 5 19 of of ADP zk51vd69n54 5 20 its its PRON zk51vd69n54 5 21 positive positive ADJ zk51vd69n54 5 22 system system NOUN zk51vd69n54 5 23 . . PUNCT zk51vd69n54 6 1 using use VERB zk51vd69n54 6 2 this this DET zk51vd69n54 6 3 bijection bijection NOUN zk51vd69n54 6 4 , , PUNCT zk51vd69n54 6 5 we we PRON zk51vd69n54 6 6 show show VERB zk51vd69n54 6 7 first first ADV zk51vd69n54 6 8 that that SCONJ zk51vd69n54 6 9 the the DET zk51vd69n54 6 10 biclosed biclosed ADJ zk51vd69n54 6 11 sets set NOUN zk51vd69n54 6 12 in in ADP zk51vd69n54 6 13 the the DET zk51vd69n54 6 14 standard standard ADJ zk51vd69n54 6 15 positive positive ADJ zk51vd69n54 6 16 system system NOUN zk51vd69n54 6 17 of of ADP zk51vd69n54 6 18 rank rank NOUN zk51vd69n54 6 19 3 3 NUM zk51vd69n54 6 20 affine affine NOUN zk51vd69n54 6 21 weyl weyl NOUN zk51vd69n54 6 22 groups group NOUN zk51vd69n54 6 23 when when SCONJ zk51vd69n54 6 24 ordered order VERB zk51vd69n54 6 25 by by ADP zk51vd69n54 6 26 inclusion inclusion NOUN zk51vd69n54 6 27 form form VERB zk51vd69n54 6 28 a a DET zk51vd69n54 6 29 complete complete ADJ zk51vd69n54 6 30 algebraic algebraic ADJ zk51vd69n54 6 31 ortholattice ortholattice NOUN zk51vd69n54 6 32 and and CCONJ zk51vd69n54 6 33 secondly secondly ADV zk51vd69n54 6 34 that that SCONJ zk51vd69n54 6 35 the the DET zk51vd69n54 6 36 ( ( PUNCT zk51vd69n54 6 37 generalized generalized ADJ zk51vd69n54 6 38 ) ) PUNCT zk51vd69n54 6 39 braid braid NOUN zk51vd69n54 6 40 graphs graph NOUN zk51vd69n54 6 41 of of ADP zk51vd69n54 6 42 those those DET zk51vd69n54 6 43 coxeter coxeter NOUN zk51vd69n54 6 44 groups group NOUN zk51vd69n54 6 45 are be AUX zk51vd69n54 6 46 connected connect VERB zk51vd69n54 6 47 , , PUNCT zk51vd69n54 6 48 which which PRON zk51vd69n54 6 49 can can AUX zk51vd69n54 6 50 be be AUX zk51vd69n54 6 51 thought think VERB zk51vd69n54 6 52 as as ADP zk51vd69n54 6 53 an an DET zk51vd69n54 6 54 infinite infinite ADJ zk51vd69n54 6 55 version version NOUN zk51vd69n54 6 56 of of ADP zk51vd69n54 6 57 tit tit PROPN zk51vd69n54 6 58 's 's PART zk51vd69n54 6 59 solution solution NOUN zk51vd69n54 6 60 to to ADP zk51vd69n54 6 61 the the DET zk51vd69n54 6 62 word word NOUN zk51vd69n54 6 63 problem problem NOUN zk51vd69n54 6 64 . . PUNCT zk51vd69n54 7 1 finally finally ADV zk51vd69n54 7 2 we we PRON zk51vd69n54 7 3 investigate investigate VERB zk51vd69n54 7 4 the the DET zk51vd69n54 7 5 relationship relationship NOUN zk51vd69n54 7 6 between between ADP zk51vd69n54 7 7 infinitely infinitely ADV zk51vd69n54 7 8 long long ADJ zk51vd69n54 7 9 words word NOUN zk51vd69n54 7 10 and and CCONJ zk51vd69n54 7 11 twisted twisted ADJ zk51vd69n54 7 12 weak weak ADJ zk51vd69n54 7 13 orders order NOUN zk51vd69n54 7 14 and and CCONJ zk51vd69n54 7 15 show show VERB zk51vd69n54 7 16 that that SCONJ zk51vd69n54 7 17 for for ADP zk51vd69n54 7 18 affine affine ADJ zk51vd69n54 7 19 weyl weyl NOUN zk51vd69n54 7 20 groups group NOUN zk51vd69n54 7 21 , , PUNCT zk51vd69n54 7 22 a a DET zk51vd69n54 7 23 biclosed biclosed ADJ zk51vd69n54 7 24 set set NOUN zk51vd69n54 7 25 is be AUX zk51vd69n54 7 26 an an DET zk51vd69n54 7 27 inversion inversion NOUN zk51vd69n54 7 28 set set VERB zk51vd69n54 7 29 if if SCONJ zk51vd69n54 7 30 and and CCONJ zk51vd69n54 7 31 only only ADV zk51vd69n54 7 32 if if SCONJ zk51vd69n54 7 33 the the DET zk51vd69n54 7 34 associated associate VERB zk51vd69n54 7 35 twisted twist VERB zk51vd69n54 7 36 weak weak ADJ zk51vd69n54 7 37 order order NOUN zk51vd69n54 7 38 on on ADP zk51vd69n54 7 39 the the DET zk51vd69n54 7 40 group group NOUN zk51vd69n54 7 41 is be AUX zk51vd69n54 7 42 a a DET zk51vd69n54 7 43 meet meet NOUN zk51vd69n54 7 44 semilattice semilattice NOUN zk51vd69n54 7 45 . . PUNCT zk51vd69n54 8 1 these these DET zk51vd69n54 8 2 results result NOUN zk51vd69n54 8 3 are be AUX zk51vd69n54 8 4 analogous analogous ADJ zk51vd69n54 8 5 to to ADP zk51vd69n54 8 6 the the DET zk51vd69n54 8 7 fact fact NOUN zk51vd69n54 8 8 that that SCONJ zk51vd69n54 8 9 the the DET zk51vd69n54 8 10 weak weak ADJ zk51vd69n54 8 11 order order NOUN zk51vd69n54 8 12 of of ADP zk51vd69n54 8 13 a a DET zk51vd69n54 8 14 simplicial simplicial ADJ zk51vd69n54 8 15 base base NOUN zk51vd69n54 8 16 chamber chamber NOUN zk51vd69n54 8 17 of of ADP zk51vd69n54 8 18 a a DET zk51vd69n54 8 19 finite finite ADJ zk51vd69n54 8 20 simple simple ADJ zk51vd69n54 8 21 oriented orient VERB zk51vd69n54 8 22 matroid matroid NOUN zk51vd69n54 8 23 is be AUX zk51vd69n54 8 24 a a DET zk51vd69n54 8 25 complete complete ADJ zk51vd69n54 8 26 lattice lattice NOUN zk51vd69n54 8 27 ( ( PUNCT zk51vd69n54 8 28 such such ADJ zk51vd69n54 8 29 order order NOUN zk51vd69n54 8 30 is be AUX zk51vd69n54 8 31 defined define VERB zk51vd69n54 8 32 on on ADP zk51vd69n54 8 33 the the DET zk51vd69n54 8 34 family family NOUN zk51vd69n54 8 35 of of ADP zk51vd69n54 8 36 biconvex biconvex PROPN zk51vd69n54 8 37 sets set NOUN zk51vd69n54 8 38 of of ADP zk51vd69n54 8 39 a a DET zk51vd69n54 8 40 given give VERB zk51vd69n54 8 41 hemispace hemispace NOUN zk51vd69n54 8 42 under under ADP zk51vd69n54 8 43 inclusion).finally inclusion).finally ADV zk51vd69n54 8 44 , , PUNCT zk51vd69n54 8 45 we we PRON zk51vd69n54 8 46 treat treat VERB zk51vd69n54 8 47 the the DET zk51vd69n54 8 48 root root NOUN zk51vd69n54 8 49 systems system NOUN zk51vd69n54 8 50 of of ADP zk51vd69n54 8 51 an an DET zk51vd69n54 8 52 affine affine ADJ zk51vd69n54 8 53 weyl weyl NOUN zk51vd69n54 8 54 group group NOUN zk51vd69n54 8 55 as as ADP zk51vd69n54 8 56 an an DET zk51vd69n54 8 57 infinite infinite ADJ zk51vd69n54 8 58 oriented orient VERB zk51vd69n54 8 59 matroid matroid NOUN zk51vd69n54 8 60 in in ADP zk51vd69n54 8 61 the the DET zk51vd69n54 8 62 sense sense NOUN zk51vd69n54 8 63 of of ADP zk51vd69n54 8 64 buchi buchi NOUN zk51vd69n54 8 65 and and CCONJ zk51vd69n54 8 66 fenton fenton PROPN zk51vd69n54 8 67 . . PUNCT zk51vd69n54 9 1 we we PRON zk51vd69n54 9 2 compute compute VERB zk51vd69n54 9 3 all all PRON zk51vd69n54 9 4 of of ADP zk51vd69n54 9 5 their their PRON zk51vd69n54 9 6 hemispaces hemispace NOUN zk51vd69n54 9 7 , , PUNCT zk51vd69n54 9 8 covectors covector NOUN zk51vd69n54 9 9 and and CCONJ zk51vd69n54 9 10 the the DET zk51vd69n54 9 11 stabilizers stabilizer NOUN zk51vd69n54 9 12 of of ADP zk51vd69n54 9 13 the the DET zk51vd69n54 9 14 covectors covector NOUN zk51vd69n54 9 15 . . PUNCT zk51vd69n54 10 1 also also ADV zk51vd69n54 10 2 we we PRON zk51vd69n54 10 3 describe describe VERB zk51vd69n54 10 4 a a DET zk51vd69n54 10 5 complete complete ADJ zk51vd69n54 10 6 rootoid rootoid NOUN zk51vd69n54 10 7 structure structure NOUN zk51vd69n54 10 8 from from ADP zk51vd69n54 10 9 locally locally ADV zk51vd69n54 10 10 finite finite NOUN zk51vd69n54 10 11 coxeter coxeter NOUN zk51vd69n54 10 12 groups group NOUN zk51vd69n54 10 13 which which PRON zk51vd69n54 10 14 is be AUX zk51vd69n54 10 15 analogous analogous ADJ zk51vd69n54 10 16 to to ADP zk51vd69n54 10 17 the the DET zk51vd69n54 10 18 structure structure NOUN zk51vd69n54 10 19 of of ADP zk51vd69n54 10 20 a a DET zk51vd69n54 10 21 simplicial simplicial ADJ zk51vd69n54 10 22 oriented orient VERB zk51vd69n54 10 23 geometry geometry NOUN zk51vd69n54 10 24 . . PUNCT