id sid tid token lemma pos xd07gq7038v 1 1 in in ADP xd07gq7038v 1 2 mathematics mathematic NOUN xd07gq7038v 1 3 , , PUNCT xd07gq7038v 1 4 one one NUM xd07gq7038v 1 5 often often ADV xd07gq7038v 1 6 tries try VERB xd07gq7038v 1 7 to to PART xd07gq7038v 1 8 classify classify VERB xd07gq7038v 1 9 some some DET xd07gq7038v 1 10 collection collection NOUN xd07gq7038v 1 11 of of ADP xd07gq7038v 1 12 objects object NOUN xd07gq7038v 1 13 up up ADP xd07gq7038v 1 14 to to ADP xd07gq7038v 1 15 isomorphism isomorphism NOUN xd07gq7038v 1 16 . . PUNCT xd07gq7038v 2 1 in in ADP xd07gq7038v 2 2 mathematical mathematical ADJ xd07gq7038v 2 3 logic logic NOUN xd07gq7038v 2 4 , , PUNCT xd07gq7038v 2 5 we we PRON xd07gq7038v 2 6 can can AUX xd07gq7038v 2 7 explore explore VERB xd07gq7038v 2 8 the the DET xd07gq7038v 2 9 complexity complexity NOUN xd07gq7038v 2 10 of of ADP xd07gq7038v 2 11 that that DET xd07gq7038v 2 12 classification classification NOUN xd07gq7038v 2 13 . . PUNCT xd07gq7038v 3 1 a a DET xd07gq7038v 3 2 structure structure NOUN xd07gq7038v 3 3 consists consist VERB xd07gq7038v 3 4 of of ADP xd07gq7038v 3 5 a a DET xd07gq7038v 3 6 universe universe NOUN xd07gq7038v 3 7 and and CCONJ xd07gq7038v 3 8 an an DET xd07gq7038v 3 9 interpretation interpretation NOUN xd07gq7038v 3 10 of of ADP xd07gq7038v 3 11 a a DET xd07gq7038v 3 12 language language NOUN xd07gq7038v 3 13 , , PUNCT xd07gq7038v 3 14 where where SCONJ xd07gq7038v 3 15 the the DET xd07gq7038v 3 16 language language NOUN xd07gq7038v 3 17 has have VERB xd07gq7038v 3 18 symbols symbol NOUN xd07gq7038v 3 19 representing represent VERB xd07gq7038v 3 20 constants constant NOUN xd07gq7038v 3 21 , , PUNCT xd07gq7038v 3 22 operations operation NOUN xd07gq7038v 3 23 , , PUNCT xd07gq7038v 3 24 and and CCONJ xd07gq7038v 3 25 relations relation NOUN xd07gq7038v 3 26 . . PUNCT xd07gq7038v 4 1 we we PRON xd07gq7038v 4 2 consider consider VERB xd07gq7038v 4 3 only only ADV xd07gq7038v 4 4 structures structure NOUN xd07gq7038v 4 5 whose whose DET xd07gq7038v 4 6 universe universe NOUN xd07gq7038v 4 7 is be AUX xd07gq7038v 4 8 a a DET xd07gq7038v 4 9 subset subset NOUN xd07gq7038v 4 10 of of ADP xd07gq7038v 4 11 $ $ SYM xd07gq7038v 4 12 omega$ omega$ NOUN xd07gq7038v 4 13 , , PUNCT xd07gq7038v 4 14 and and CCONJ xd07gq7038v 4 15 we we PRON xd07gq7038v 4 16 define define VERB xd07gq7038v 4 17 a a DET xd07gq7038v 4 18 class class NOUN xd07gq7038v 4 19 as as ADP xd07gq7038v 4 20 a a DET xd07gq7038v 4 21 collection collection NOUN xd07gq7038v 4 22 of of ADP xd07gq7038v 4 23 structures structure NOUN xd07gq7038v 4 24 all all PRON xd07gq7038v 4 25 with with ADP xd07gq7038v 4 26 the the DET xd07gq7038v 4 27 same same ADJ xd07gq7038v 4 28 language language NOUN xd07gq7038v 4 29 and and CCONJ xd07gq7038v 4 30 closed close VERB xd07gq7038v 4 31 under under ADP xd07gq7038v 4 32 isomorphism isomorphism NOUN xd07gq7038v 4 33 . . PUNCT xd07gq7038v 5 1 one one NUM xd07gq7038v 5 2 way way NOUN xd07gq7038v 5 3 that that PRON xd07gq7038v 5 4 the the DET xd07gq7038v 5 5 complexity complexity NOUN xd07gq7038v 5 6 of of ADP xd07gq7038v 5 7 the the DET xd07gq7038v 5 8 classification classification NOUN xd07gq7038v 5 9 problem problem NOUN xd07gq7038v 5 10 can can AUX xd07gq7038v 5 11 be be AUX xd07gq7038v 5 12 explored explore VERB xd07gq7038v 5 13 is be AUX xd07gq7038v 5 14 by by ADP xd07gq7038v 5 15 looking look VERB xd07gq7038v 5 16 at at ADP xd07gq7038v 5 17 the the DET xd07gq7038v 5 18 index index NOUN xd07gq7038v 5 19 set set VERB xd07gq7038v 5 20 for for ADP xd07gq7038v 5 21 a a DET xd07gq7038v 5 22 computable computable ADJ xd07gq7038v 5 23 structure structure NOUN xd07gq7038v 5 24 . . PUNCT xd07gq7038v 6 1 we we PRON xd07gq7038v 6 2 consider consider VERB xd07gq7038v 6 3 indices index NOUN xd07gq7038v 6 4 for for ADP xd07gq7038v 6 5 computable computable ADJ xd07gq7038v 6 6 structures structure NOUN xd07gq7038v 6 7 , , PUNCT xd07gq7038v 6 8 and and CCONJ xd07gq7038v 6 9 write write VERB xd07gq7038v 6 10 $ $ SYM xd07gq7038v 6 11 mathcal{a}e$ mathcal{a}e$ NOUN xd07gq7038v 6 12 where where SCONJ xd07gq7038v 6 13 $ $ SYM xd07gq7038v 6 14 varphi_e varphi_e NOUN xd07gq7038v 6 15 = = SYM xd07gq7038v 6 16 chi{d(mathcal{a})}$. chi{d(mathcal{a})}$. VERB xd07gq7038v 6 17 the the DET xd07gq7038v 6 18 index index NOUN xd07gq7038v 6 19 set set VERB xd07gq7038v 6 20 for for ADP xd07gq7038v 6 21 $ $ SYM xd07gq7038v 6 22 mathcal{a}$ mathcal{a}$ PROPN xd07gq7038v 6 23 is be AUX xd07gq7038v 6 24 the the DET xd07gq7038v 6 25 set set NOUN xd07gq7038v 6 26 of of ADP xd07gq7038v 6 27 all all DET xd07gq7038v 6 28 indices index NOUN xd07gq7038v 6 29 for for ADP xd07gq7038v 6 30 computable computable ADJ xd07gq7038v 6 31 isomorphic isomorphic ADJ xd07gq7038v 6 32 copies copy NOUN xd07gq7038v 6 33 of of ADP xd07gq7038v 6 34 $ $ SYM xd07gq7038v 6 35 mathcal{a}$. mathcal{a}$. VERB xd07gq7038v 6 36 we we PRON xd07gq7038v 6 37 write[i(mathcal{a write[i(mathcal{a X xd07gq7038v 6 38 } } PUNCT xd07gq7038v 6 39 ) ) PUNCT xd07gq7038v 6 40 = = PUNCT xd07gq7038v 6 41 { { PUNCT xd07gq7038v 6 42 e e NOUN xd07gq7038v 6 43 : : PUNCT xd07gq7038v 6 44 mathcal{a}e mathcal{a}e PROPN xd07gq7038v 6 45 cong cong PROPN xd07gq7038v 6 46 mathcal{a}}.]in mathcal{a}}.]in PROPN xd07gq7038v 6 47 the the DET xd07gq7038v 6 48 present present ADJ xd07gq7038v 6 49 work work NOUN xd07gq7038v 6 50 , , PUNCT xd07gq7038v 6 51 the the DET xd07gq7038v 6 52 relationship relationship NOUN xd07gq7038v 6 53 between between ADP xd07gq7038v 6 54 the the DET xd07gq7038v 6 55 complexity complexity NOUN xd07gq7038v 6 56 of of ADP xd07gq7038v 6 57 the the DET xd07gq7038v 6 58 index index NOUN xd07gq7038v 6 59 set set VERB xd07gq7038v 6 60 for for ADP xd07gq7038v 6 61 a a DET xd07gq7038v 6 62 structure structure NOUN xd07gq7038v 6 63 and and CCONJ xd07gq7038v 6 64 the the DET xd07gq7038v 6 65 complexity complexity NOUN xd07gq7038v 6 66 of of ADP xd07gq7038v 6 67 a a DET xd07gq7038v 6 68 sentence sentence NOUN xd07gq7038v 6 69 describing describe VERB xd07gq7038v 6 70 the the DET xd07gq7038v 6 71 structure structure NOUN xd07gq7038v 6 72 ( ( PUNCT xd07gq7038v 6 73 called call VERB xd07gq7038v 6 74 a a DET xd07gq7038v 6 75 scott scott PROPN xd07gq7038v 6 76 sentence sentence NOUN xd07gq7038v 6 77 ) ) PUNCT xd07gq7038v 6 78 is be AUX xd07gq7038v 6 79 explored explore VERB xd07gq7038v 6 80 . . PUNCT xd07gq7038v 7 1 we we PRON xd07gq7038v 7 2 find find VERB xd07gq7038v 7 3 an an DET xd07gq7038v 7 4 example example NOUN xd07gq7038v 7 5 of of ADP xd07gq7038v 7 6 a a DET xd07gq7038v 7 7 structure structure NOUN xd07gq7038v 7 8 for for ADP xd07gq7038v 7 9 which which PRON xd07gq7038v 7 10 there there PRON xd07gq7038v 7 11 is be VERB xd07gq7038v 7 12 not not PART xd07gq7038v 7 13 a a DET xd07gq7038v 7 14 match match NOUN xd07gq7038v 7 15 between between ADP xd07gq7038v 7 16 the the DET xd07gq7038v 7 17 complexity complexity NOUN xd07gq7038v 7 18 of of ADP xd07gq7038v 7 19 the the DET xd07gq7038v 7 20 index index NOUN xd07gq7038v 7 21 set set NOUN xd07gq7038v 7 22 and and CCONJ xd07gq7038v 7 23 the the DET xd07gq7038v 7 24 complexity complexity NOUN xd07gq7038v 7 25 of of ADP xd07gq7038v 7 26 a a DET xd07gq7038v 7 27 scott scott PROPN xd07gq7038v 7 28 sentence sentence NOUN xd07gq7038v 7 29 . . PUNCT xd07gq7038v 8 1 we we PRON xd07gq7038v 8 2 also also ADV xd07gq7038v 8 3 examine examine VERB xd07gq7038v 8 4 the the DET xd07gq7038v 8 5 possible possible ADJ xd07gq7038v 8 6 complexities complexity NOUN xd07gq7038v 8 7 of of ADP xd07gq7038v 8 8 an an DET xd07gq7038v 8 9 index index NOUN xd07gq7038v 8 10 set set NOUN xd07gq7038v 8 11 , , PUNCT xd07gq7038v 8 12 and and CCONJ xd07gq7038v 8 13 give give VERB xd07gq7038v 8 14 results result NOUN xd07gq7038v 8 15 characterizing characterize VERB xd07gq7038v 8 16 when when SCONJ xd07gq7038v 8 17 a a DET xd07gq7038v 8 18 particular particular ADJ xd07gq7038v 8 19 class class NOUN xd07gq7038v 8 20 will will AUX xd07gq7038v 8 21 have have VERB xd07gq7038v 8 22 an an DET xd07gq7038v 8 23 index index NOUN xd07gq7038v 8 24 set set NOUN xd07gq7038v 8 25 that that PRON xd07gq7038v 8 26 is be AUX xd07gq7038v 8 27 $ $ SYM xd07gq7038v 8 28 m$-complete m$-complete ADJ xd07gq7038v 8 29 at at ADP xd07gq7038v 8 30 a a DET xd07gq7038v 8 31 certain certain ADJ xd07gq7038v 8 32 complexity complexity NOUN xd07gq7038v 8 33 level.another level.another ADJ xd07gq7038v 8 34 idea idea NOUN xd07gq7038v 8 35 explored explore VERB xd07gq7038v 8 36 in in ADP xd07gq7038v 8 37 the the DET xd07gq7038v 8 38 present present ADJ xd07gq7038v 8 39 work work NOUN xd07gq7038v 8 40 is be AUX xd07gq7038v 8 41 that that PRON xd07gq7038v 8 42 of of ADP xd07gq7038v 8 43 comparing compare VERB xd07gq7038v 8 44 the the DET xd07gq7038v 8 45 complexity complexity NOUN xd07gq7038v 8 46 of of ADP xd07gq7038v 8 47 the the DET xd07gq7038v 8 48 classification classification NOUN xd07gq7038v 8 49 problem problem NOUN xd07gq7038v 8 50 for for ADP xd07gq7038v 8 51 various various ADJ xd07gq7038v 8 52 classes class NOUN xd07gq7038v 8 53 of of ADP xd07gq7038v 8 54 structures structure NOUN xd07gq7038v 8 55 , , PUNCT xd07gq7038v 8 56 using use VERB xd07gq7038v 8 57 the the DET xd07gq7038v 8 58 notion notion NOUN xd07gq7038v 8 59 of of ADP xd07gq7038v 8 60 a a DET xd07gq7038v 8 61 turing ture VERB xd07gq7038v 8 62 computable computable NOUN xd07gq7038v 8 63 embedding.oindent embedding.oindent ADJ xd07gq7038v 8 64 extbf{definition}.a extbf{definition}.a ADJ xd07gq7038v 8 65 turing ture VERB xd07gq7038v 8 66 computable computable NOUN xd07gq7038v 8 67 embedding embedding NOUN xd07gq7038v 8 68 of of ADP xd07gq7038v 8 69 $ $ SYM xd07gq7038v 8 70 k$ k$ VERB xd07gq7038v 8 71 into into ADP xd07gq7038v 8 72 $ $ SYM xd07gq7038v 8 73 k'$ k'$ PROPN xd07gq7038v 8 74 is be AUX xd07gq7038v 8 75 an an DET xd07gq7038v 8 76 operator operator NOUN xd07gq7038v 8 77 $ $ SYM xd07gq7038v 8 78 phi phi NOUN xd07gq7038v 8 79 = = PUNCT xd07gq7038v 8 80 varphi_e$ varphi_e$ X xd07gq7038v 8 81 such such ADJ xd07gq7038v 8 82 that that SCONJ xd07gq7038v 8 83 egin{enumerate}item egin{enumerate}item PROPN xd07gq7038v 8 84 for for ADP xd07gq7038v 8 85 each each DET xd07gq7038v 8 86 $ $ SYM xd07gq7038v 8 87 mathcal{a}in mathcal{a}in PROPN xd07gq7038v 8 88 k$ k$ NOUN xd07gq7038v 8 89 , , PUNCT xd07gq7038v 8 90 there there PRON xd07gq7038v 8 91 exists exist VERB xd07gq7038v 8 92 $ $ SYM xd07gq7038v 8 93 mathcal{b}in mathcal{b}in ADJ xd07gq7038v 8 94 k'$ k'$ PROPN xd07gq7038v 8 95 such such ADJ xd07gq7038v 8 96 that that SCONJ xd07gq7038v 8 97 $ $ SYM xd07gq7038v 8 98 varphi_e^{d(mathcal{a varphi_e^{d(mathcal{a X xd07gq7038v 8 99 } } PUNCT xd07gq7038v 8 100 ) ) PUNCT xd07gq7038v 8 101 } } PUNCT xd07gq7038v 8 102 = = X xd07gq7038v 8 103 chi{d(mathcal{b})}$ chi{d(mathcal{b})}$ PROPN xd07gq7038v 8 104 , , PUNCT xd07gq7038v 8 105 anditem anditem PROPN xd07gq7038v 8 106 if if SCONJ xd07gq7038v 8 107 $ $ SYM xd07gq7038v 8 108 mathcal{a},mathcal{a}'in mathcal{a},mathcal{a}'in NOUN xd07gq7038v 8 109 k$ k$ X xd07gq7038v 8 110 correspond correspond VERB xd07gq7038v 8 111 , , PUNCT xd07gq7038v 8 112 respectively respectively ADV xd07gq7038v 8 113 , , PUNCT xd07gq7038v 8 114 to to ADP xd07gq7038v 8 115 $ $ SYM xd07gq7038v 8 116 mathcal{b},mathcal{b}'in mathcal{b},mathcal{b}'in NOUN xd07gq7038v 8 117 k'$ k'$ PROPN xd07gq7038v 8 118 , , PUNCT xd07gq7038v 8 119 then then ADV xd07gq7038v 8 120 $ $ SYM xd07gq7038v 8 121 mathcal{a}congmathcal{a}'$ mathcal{a}congmathcal{a}'$ NUM xd07gq7038v 8 122 if if SCONJ xd07gq7038v 8 123 and and CCONJ xd07gq7038v 8 124 only only ADV xd07gq7038v 8 125 if if SCONJ xd07gq7038v 8 126 $ $ SYM xd07gq7038v 8 127 mathcal{b}congmathcal{b}'$. mathcal{b}congmathcal{b}'$. VERB xd07gq7038v 8 128 end{enumerate}oindentthe end{enumerate}oindentthe PRON xd07gq7038v 8 129 ordering ordering NOUN xd07gq7038v 8 130 of of ADP xd07gq7038v 8 131 classes class NOUN xd07gq7038v 8 132 of of ADP xd07gq7038v 8 133 structures structure NOUN xd07gq7038v 8 134 that that PRON xd07gq7038v 8 135 arises arise VERB xd07gq7038v 8 136 from from ADP xd07gq7038v 8 137 this this DET xd07gq7038v 8 138 embedding embedding NOUN xd07gq7038v 8 139 allows allow VERB xd07gq7038v 8 140 us we PRON xd07gq7038v 8 141 to to PART xd07gq7038v 8 142 compare compare VERB xd07gq7038v 8 143 the the DET xd07gq7038v 8 144 complexity complexity NOUN xd07gq7038v 8 145 of of ADP xd07gq7038v 8 146 the the DET xd07gq7038v 8 147 classification classification NOUN xd07gq7038v 8 148 problem problem NOUN xd07gq7038v 8 149 for for ADP xd07gq7038v 8 150 those those PRON xd07gq7038v 8 151 classes.in classes.in NUM xd07gq7038v 8 152 the the DET xd07gq7038v 8 153 present present ADJ xd07gq7038v 8 154 work work NOUN xd07gq7038v 8 155 , , PUNCT xd07gq7038v 8 156 we we PRON xd07gq7038v 8 157 give give VERB xd07gq7038v 8 158 characterizations characterization NOUN xd07gq7038v 8 159 for for ADP xd07gq7038v 8 160 the the DET xd07gq7038v 8 161 classes class NOUN xd07gq7038v 8 162 of of ADP xd07gq7038v 8 163 structures structure NOUN xd07gq7038v 8 164 that that PRON xd07gq7038v 8 165 embed embe VERB xd07gq7038v 8 166 into into ADP xd07gq7038v 8 167 the the DET xd07gq7038v 8 168 class class NOUN xd07gq7038v 8 169 of of ADP xd07gq7038v 8 170 equivalence equivalence NOUN xd07gq7038v 8 171 structures structure NOUN xd07gq7038v 8 172 , , PUNCT xd07gq7038v 8 173 as as ADV xd07gq7038v 8 174 well well ADV xd07gq7038v 8 175 as as ADP xd07gq7038v 8 176 into into ADP xd07gq7038v 8 177 the the DET xd07gq7038v 8 178 class class NOUN xd07gq7038v 8 179 of of ADP xd07gq7038v 8 180 reduced reduce VERB xd07gq7038v 8 181 abelian abelian NOUN xd07gq7038v 8 182 $ $ SYM xd07gq7038v 8 183 p$-groups p$-group NOUN xd07gq7038v 8 184 of of ADP xd07gq7038v 8 185 various various ADJ xd07gq7038v 8 186 lengths length NOUN xd07gq7038v 8 187 . . PUNCT