id sid tid token lemma pos v979v12176z 1 1 the the DET v979v12176z 1 2 class class NOUN v979v12176z 1 3 of of ADP v979v12176z 1 4 real real ADJ v979v12176z 1 5 closed closed ADJ v979v12176z 1 6 fields field NOUN v979v12176z 1 7 ( ( PUNCT v979v12176z 1 8 rcf rcf PROPN v979v12176z 1 9 ) ) PUNCT v979v12176z 1 10 has have VERB v979v12176z 1 11 nice nice ADJ v979v12176z 1 12 model model NOUN v979v12176z 1 13 theoretic theoretic ADJ v979v12176z 1 14 properties property NOUN v979v12176z 1 15 , , PUNCT v979v12176z 1 16 among among ADP v979v12176z 1 17 them they PRON v979v12176z 1 18 o o NOUN v979v12176z 1 19 - - NOUN v979v12176z 1 20 minimality minimality NOUN v979v12176z 1 21 and and CCONJ v979v12176z 1 22 quantifier quantifier NOUN v979v12176z 1 23 elimination elimination NOUN v979v12176z 1 24 . . PUNCT v979v12176z 2 1 we we PRON v979v12176z 2 2 examine examine VERB v979v12176z 2 3 rcf rcf PROPN v979v12176z 2 4 and and CCONJ v979v12176z 2 5 the the DET v979v12176z 2 6 non non ADJ v979v12176z 2 7 - - ADJ v979v12176z 2 8 elementary elementary ADJ v979v12176z 2 9 subclass subclass NOUN v979v12176z 2 10 of of ADP v979v12176z 2 11 rcf rcf PROPN v979v12176z 2 12 composed compose VERB v979v12176z 2 13 of of ADP v979v12176z 2 14 archimedean archimedean ADJ v979v12176z 2 15 real real ADJ v979v12176z 2 16 closed closed ADJ v979v12176z 2 17 fields field NOUN v979v12176z 2 18 , , PUNCT v979v12176z 2 19 arcf arcf ADV v979v12176z 2 20 , , PUNCT v979v12176z 2 21 from from ADP v979v12176z 2 22 a a DET v979v12176z 2 23 computable computable ADJ v979v12176z 2 24 structure structure NOUN v979v12176z 2 25 theory theory NOUN v979v12176z 2 26 perspective perspective NOUN v979v12176z 2 27 . . PUNCT v979v12176z 3 1 also also ADV v979v12176z 3 2 , , PUNCT v979v12176z 3 3 we we PRON v979v12176z 3 4 explore explore VERB v979v12176z 3 5 connections connection NOUN v979v12176z 3 6 with with ADP v979v12176z 3 7 the the DET v979v12176z 3 8 class class NOUN v979v12176z 3 9 of of ADP v979v12176z 3 10 linear linear ADJ v979v12176z 3 11 orders order NOUN v979v12176z 3 12 ( ( PUNCT v979v12176z 3 13 lo lo INTJ v979v12176z 3 14 ) ) PUNCT v979v12176z 3 15 . . PUNCT v979v12176z 4 1 we we PRON v979v12176z 4 2 focus focus VERB v979v12176z 4 3 on on ADP v979v12176z 4 4 two two NUM v979v12176z 4 5 main main ADJ v979v12176z 4 6 notions notion NOUN v979v12176z 4 7 : : PUNCT v979v12176z 4 8 turing ture VERB v979v12176z 4 9 computable computable ADJ v979v12176z 4 10 embeddings embedding NOUN v979v12176z 4 11 and and CCONJ v979v12176z 4 12 relative relative ADJ v979v12176z 4 13 categoricity.the categoricity.the DET v979v12176z 4 14 notion notion NOUN v979v12176z 4 15 of of ADP v979v12176z 4 16 turing ture VERB v979v12176z 4 17 computable computable NOUN v979v12176z 4 18 embedding embedding NOUN v979v12176z 4 19 ( ( PUNCT v979v12176z 4 20 tce tce PROPN v979v12176z 4 21 ) ) PUNCT v979v12176z 4 22 is be AUX v979v12176z 4 23 an an DET v979v12176z 4 24 effective effective ADJ v979v12176z 4 25 version version NOUN v979v12176z 4 26 of of ADP v979v12176z 4 27 the the DET v979v12176z 4 28 borel borel PROPN v979v12176z 4 29 embedding embedding NOUN v979v12176z 4 30 defined define VERB v979v12176z 4 31 by by ADP v979v12176z 4 32 friedman friedman PROPN v979v12176z 4 33 and and CCONJ v979v12176z 4 34 stanley stanley PROPN v979v12176z 4 35 in in ADP v979v12176z 4 36 1989 1989 NUM v979v12176z 5 1 [ [ X v979v12176z 5 2 1 1 NUM v979v12176z 5 3 ] ] PUNCT v979v12176z 5 4 . . PUNCT v979v12176z 6 1 in in ADP v979v12176z 6 2 fact fact NOUN v979v12176z 6 3 , , PUNCT v979v12176z 6 4 many many ADJ v979v12176z 6 5 borel borel ADJ v979v12176z 6 6 embeddings embedding NOUN v979v12176z 6 7 are be AUX v979v12176z 6 8 computable computable ADJ v979v12176z 6 9 . . PUNCT v979v12176z 7 1 the the DET v979v12176z 7 2 relation relation NOUN v979v12176z 7 3 < < X v979v12176z 7 4 is be AUX v979v12176z 7 5 a a DET v979v12176z 7 6 preordering preordering NOUN v979v12176z 7 7 on on ADP v979v12176z 7 8 classes class NOUN v979v12176z 7 9 of of ADP v979v12176z 7 10 structures structure NOUN v979v12176z 7 11 . . PUNCT v979v12176z 8 1 in in ADP v979v12176z 8 2 [ [ X v979v12176z 8 3 1 1 NUM v979v12176z 8 4 ] ] PUNCT v979v12176z 8 5 , , PUNCT v979v12176z 8 6 the the DET v979v12176z 8 7 authors author NOUN v979v12176z 8 8 provide provide VERB v979v12176z 8 9 a a DET v979v12176z 8 10 computable computable ADJ v979v12176z 8 11 borel borel NOUN v979v12176z 8 12 reduction reduction NOUN v979v12176z 8 13 showing show VERB v979v12176z 8 14 that that SCONJ v979v12176z 8 15 lo lo PROPN v979v12176z 8 16 is be AUX v979v12176z 8 17 a a DET v979v12176z 8 18 maximal maximal ADJ v979v12176z 8 19 element element NOUN v979v12176z 8 20 of of ADP v979v12176z 8 21 the the DET v979v12176z 8 22 preordering preordering NOUN v979v12176z 8 23 defined define VERB v979v12176z 8 24 by by ADP v979v12176z 8 25 tce tce PROPN v979v12176z 8 26 's 's PART v979v12176z 8 27 . . PUNCT v979v12176z 9 1 an an DET v979v12176z 9 2 embedding embedding NOUN v979v12176z 9 3 , , PUNCT v979v12176z 9 4 due due ADP v979v12176z 9 5 to to ADP v979v12176z 9 6 marker marker NOUN v979v12176z 9 7 and and CCONJ v979v12176z 9 8 discussed discuss VERB v979v12176z 9 9 by by ADP v979v12176z 9 10 levin levin PROPN v979v12176z 9 11 in in ADP v979v12176z 9 12 his his PRON v979v12176z 9 13 thesis thesis NOUN v979v12176z 9 14 , , PUNCT v979v12176z 9 15 shows show VERB v979v12176z 9 16 that that SCONJ v979v12176z 9 17 lo lo PROPN v979v12176z 9 18 < < X v979v12176z 9 19 rcf rcf PROPN v979v12176z 9 20 , , PUNCT v979v12176z 9 21 hence hence ADV v979v12176z 9 22 rcf rcf ADV v979v12176z 9 23 is be AUX v979v12176z 9 24 also also ADV v979v12176z 9 25 maximal.we maximal.we X v979v12176z 9 26 consider consider VERB v979v12176z 9 27 the the DET v979v12176z 9 28 class class NOUN v979v12176z 9 29 dg dg NOUN v979v12176z 9 30 , , PUNCT v979v12176z 9 31 of of ADP v979v12176z 9 32 daisy daisy NOUN v979v12176z 9 33 graphs graph NOUN v979v12176z 9 34 , , PUNCT v979v12176z 9 35 a a DET v979v12176z 9 36 non non ADJ v979v12176z 9 37 - - ADJ v979v12176z 9 38 elementary elementary ADJ v979v12176z 9 39 subclass subclass NOUN v979v12176z 9 40 of of ADP v979v12176z 9 41 the the DET v979v12176z 9 42 class class NOUN v979v12176z 9 43 of of ADP v979v12176z 9 44 undirected undirected ADJ v979v12176z 9 45 graphs graph NOUN v979v12176z 9 46 . . PUNCT v979v12176z 10 1 each each DET v979v12176z 10 2 structure structure NOUN v979v12176z 10 3 a a PRON v979v12176z 10 4 in in ADP v979v12176z 10 5 dg dg PROPN v979v12176z 10 6 codes code VERB v979v12176z 10 7 a a DET v979v12176z 10 8 family family NOUN v979v12176z 10 9 s s VERB v979v12176z 10 10 of of ADP v979v12176z 10 11 subsets subset NOUN v979v12176z 10 12 of of ADP v979v12176z 10 13 the the DET v979v12176z 10 14 natural natural ADJ v979v12176z 10 15 numbers number NOUN v979v12176z 10 16 n. n. INTJ v979v12176z 11 1 we we PRON v979v12176z 11 2 show show VERB v979v12176z 11 3 that that SCONJ v979v12176z 11 4 each each PRON v979v12176z 11 5 of of ADP v979v12176z 11 6 dg dg PROPN v979v12176z 11 7 and and CCONJ v979v12176z 11 8 arcf arcf ADP v979v12176z 11 9 is be AUX v979v12176z 11 10 tc tc NOUN v979v12176z 11 11 embeddable embeddable ADJ v979v12176z 11 12 into into ADP v979v12176z 11 13 the the DET v979v12176z 11 14 other other ADJ v979v12176z 11 15 . . PUNCT v979v12176z 12 1 we we PRON v979v12176z 12 2 use use VERB v979v12176z 12 3 = = PUNCT v979v12176z 12 4 to to PART v979v12176z 12 5 denote denote VERB v979v12176z 12 6 this.theorem this.theorem PROPN v979v12176z 12 7 1 1 NUM v979v12176z 12 8 : : PUNCT v979v12176z 12 9 dg dg PROPN v979v12176z 12 10 = = X v979v12176z 12 11 arcf.to arcf.to X v979v12176z 12 12 prove prove VERB v979v12176z 12 13 theorem theorem NOUN v979v12176z 12 14 1 1 NUM v979v12176z 13 1 we we PRON v979v12176z 13 2 construct construct VERB v979v12176z 13 3 a a DET v979v12176z 13 4 computable computable ADJ v979v12176z 13 5 perfect perfect ADJ v979v12176z 13 6 tree tree NOUN v979v12176z 13 7 t t PROPN v979v12176z 13 8 whose whose DET v979v12176z 13 9 paths path NOUN v979v12176z 13 10 represent represent VERB v979v12176z 13 11 algebraically algebraically ADV v979v12176z 13 12 independent independent ADJ v979v12176z 13 13 reals real NOUN v979v12176z 13 14 . . PUNCT v979v12176z 14 1 we we PRON v979v12176z 14 2 pass pass VERB v979v12176z 14 3 from from ADP v979v12176z 14 4 an an DET v979v12176z 14 5 element element NOUN v979v12176z 14 6 of of ADP v979v12176z 14 7 dg dg PROPN v979v12176z 14 8 to to ADP v979v12176z 14 9 a a DET v979v12176z 14 10 family family NOUN v979v12176z 14 11 of of ADP v979v12176z 14 12 paths path NOUN v979v12176z 14 13 through through ADP v979v12176z 14 14 t t PROPN v979v12176z 14 15 , , PUNCT v979v12176z 14 16 and and CCONJ v979v12176z 14 17 from from ADP v979v12176z 14 18 there there ADV v979v12176z 14 19 to to ADP v979v12176z 14 20 a a DET v979v12176z 14 21 real real ADV v979v12176z 14 22 closed closed ADJ v979v12176z 14 23 field field NOUN v979v12176z 14 24 which which PRON v979v12176z 14 25 is be AUX v979v12176z 14 26 the the DET v979v12176z 14 27 real real ADJ v979v12176z 14 28 closure closure NOUN v979v12176z 14 29 of of ADP v979v12176z 14 30 this this DET v979v12176z 14 31 family family NOUN v979v12176z 14 32 of of ADP v979v12176z 14 33 reals.we reals.we X v979v12176z 14 34 generalize generalize NOUN v979v12176z 14 35 theorem theorem NOUN v979v12176z 14 36 1 1 NUM v979v12176z 14 37 and and CCONJ v979v12176z 14 38 obtain obtain VERB v979v12176z 14 39 the the DET v979v12176z 14 40 following.theorem following.theorem ADJ v979v12176z 14 41 2 2 NUM v979v12176z 14 42 : : PUNCT v979v12176z 14 43 let let VERB v979v12176z 14 44 k k PROPN v979v12176z 14 45 be be AUX v979v12176z 14 46 a a DET v979v12176z 14 47 class class NOUN v979v12176z 14 48 of of ADP v979v12176z 14 49 structures structure NOUN v979v12176z 14 50 such such ADJ v979v12176z 14 51 that that SCONJ v979v12176z 14 52 any any DET v979v12176z 14 53 a a DET v979v12176z 14 54 , , PUNCT v979v12176z 14 55 b b NOUN v979v12176z 14 56 satisfying satisfy VERB v979v12176z 14 57 the the DET v979v12176z 14 58 same same ADJ v979v12176z 14 59 quantifier quantifier NOUN v979v12176z 14 60 - - PUNCT v979v12176z 14 61 free free ADJ v979v12176z 14 62 types type NOUN v979v12176z 14 63 are be AUX v979v12176z 14 64 isomorphic isomorphic ADJ v979v12176z 14 65 . . PUNCT v979v12176z 15 1 then then ADV v979v12176z 15 2 k k PROPN v979v12176z 15 3 < < X v979v12176z 15 4 arcf.a arcf.a PROPN v979v12176z 15 5 computable computable NOUN v979v12176z 15 6 structure structure NOUN v979v12176z 15 7 a a PRON v979v12176z 15 8 is be AUX v979v12176z 15 9 relatively relatively ADV v979v12176z 15 10 delta delta ADJ v979v12176z 15 11 - - PUNCT v979v12176z 15 12 alpha alpha NOUN v979v12176z 15 13 categorical categorical ADJ v979v12176z 15 14 if if SCONJ v979v12176z 15 15 for for ADP v979v12176z 15 16 any any DET v979v12176z 15 17 copy copy NOUN v979v12176z 15 18 b b PROPN v979v12176z 15 19 , , PUNCT v979v12176z 15 20 isomorphicto isomorphicto PROPN v979v12176z 15 21 a a PRON v979v12176z 15 22 there there PRON v979v12176z 15 23 is be VERB v979v12176z 15 24 a a DET v979v12176z 15 25 delta delta NOUN v979v12176z 15 26 - - PUNCT v979v12176z 15 27 alpha alpha NOUN v979v12176z 15 28 relative relative ADJ v979v12176z 15 29 to to ADP v979v12176z 15 30 b b PROPN v979v12176z 15 31 isomorphism isomorphism NOUN v979v12176z 15 32 between between ADP v979v12176z 15 33 a a PRON v979v12176z 15 34 and and CCONJ v979v12176z 15 35 b b NOUN v979v12176z 15 36 , , PUNCT v979v12176z 15 37 here here ADV v979v12176z 15 38 ' ' PUNCT v979v12176z 15 39 alpha alpha NOUN v979v12176z 15 40 ' ' PUNCT v979v12176z 15 41 stands stand VERB v979v12176z 15 42 for for ADP v979v12176z 15 43 a a DET v979v12176z 15 44 computable computable ADJ v979v12176z 15 45 ordinal ordinal NOUN v979v12176z 15 46 . . PUNCT v979v12176z 16 1 ash ash PROPN v979v12176z 16 2 , , PUNCT v979v12176z 16 3 knight knight NOUN v979v12176z 16 4 , , PUNCT v979v12176z 16 5 manasse manasse ADJ v979v12176z 16 6 , , PUNCT v979v12176z 16 7 and and CCONJ v979v12176z 16 8 slaman slaman NOUN v979v12176z 16 9 , , PUNCT v979v12176z 16 10 and and CCONJ v979v12176z 16 11 independently independently ADV v979v12176z 16 12 chisholm chisholm ADJ v979v12176z 16 13 , , PUNCT v979v12176z 16 14 showed show VERB v979v12176z 16 15 that that SCONJ v979v12176z 16 16 a a DET v979v12176z 16 17 structure structure NOUN v979v12176z 16 18 is be AUX v979v12176z 16 19 relatively relatively ADV v979v12176z 16 20 delta delta ADJ v979v12176z 16 21 - - PUNCT v979v12176z 16 22 alpha alpha NOUN v979v12176z 16 23 categorical categorical ADJ v979v12176z 16 24 if if SCONJ v979v12176z 16 25 it it PRON v979v12176z 16 26 has have VERB v979v12176z 16 27 a a DET v979v12176z 16 28 formally formally ADV v979v12176z 16 29 sigma sigma PROPN v979v12176z 16 30 - - PUNCT v979v12176z 16 31 alpha alpha NOUN v979v12176z 16 32 scott scott PROPN v979v12176z 16 33 family family NOUN v979v12176z 16 34 of of ADP v979v12176z 16 35 formulas formula NOUN v979v12176z 16 36 . . PUNCT v979v12176z 17 1 results result NOUN v979v12176z 17 2 by by ADP v979v12176z 17 3 nurtazin nurtazin PROPN v979v12176z 17 4 imply imply VERB v979v12176z 17 5 that that SCONJ v979v12176z 17 6 a a DET v979v12176z 17 7 real real ADJ v979v12176z 17 8 closed closed ADJ v979v12176z 17 9 field field NOUN v979v12176z 17 10 is be AUX v979v12176z 17 11 relatively relatively ADV v979v12176z 17 12 computably computably ADV v979v12176z 17 13 categorical categorical ADJ v979v12176z 17 14 if if SCONJ v979v12176z 17 15 it it PRON v979v12176z 17 16 has have VERB v979v12176z 17 17 finite finite ADJ v979v12176z 17 18 transcendence transcendence NOUN v979v12176z 17 19 degree degree NOUN v979v12176z 17 20 . . PUNCT v979v12176z 18 1 later later ADV v979v12176z 18 2 work work NOUN v979v12176z 18 3 by by ADP v979v12176z 18 4 calvert calvert NOUN v979v12176z 18 5 shows show VERB v979v12176z 18 6 that that SCONJ v979v12176z 18 7 if if SCONJ v979v12176z 18 8 a a DET v979v12176z 18 9 real real ADV v979v12176z 18 10 closed closed ADJ v979v12176z 18 11 field field NOUN v979v12176z 18 12 is be AUX v979v12176z 18 13 archimedean archimedean ADJ v979v12176z 18 14 then then ADV v979v12176z 18 15 it it PRON v979v12176z 18 16 is be AUX v979v12176z 18 17 relatively relatively ADV v979v12176z 18 18 delta-2 delta-2 ADJ v979v12176z 18 19 categorical.marker categorical.marker NOUN v979v12176z 18 20 's 's PART v979v12176z 18 21 embedding embedding NOUN v979v12176z 18 22 takes take VERB v979v12176z 18 23 a a DET v979v12176z 18 24 linear linear ADJ v979v12176z 18 25 order order NOUN v979v12176z 18 26 l l NOUN v979v12176z 18 27 to to ADP v979v12176z 18 28 a a DET v979v12176z 18 29 real real ADV v979v12176z 18 30 closed closed ADJ v979v12176z 18 31 field field NOUN v979v12176z 18 32 we we PRON v979v12176z 18 33 denote denote VERB v979v12176z 18 34 by by ADP v979v12176z 18 35 rl rl PROPN v979v12176z 18 36 . . PUNCT v979v12176z 19 1 essentially essentially ADV v979v12176z 19 2 rl rl PROPN v979v12176z 19 3 is be AUX v979v12176z 19 4 the the DET v979v12176z 19 5 real real ADJ v979v12176z 19 6 closure closure NOUN v979v12176z 19 7 of of ADP v979v12176z 19 8 l l PROPN v979v12176z 19 9 , , PUNCT v979v12176z 19 10 where where SCONJ v979v12176z 19 11 the the DET v979v12176z 19 12 elements element NOUN v979v12176z 19 13 of of ADP v979v12176z 19 14 l l PRON v979v12176z 19 15 are be AUX v979v12176z 19 16 positive positive ADJ v979v12176z 19 17 and and CCONJ v979v12176z 19 18 infinite infinite ADJ v979v12176z 19 19 in in ADP v979v12176z 19 20 rl rl PROPN v979v12176z 19 21 , , PUNCT v979v12176z 19 22 and and CCONJ v979v12176z 19 23 if if SCONJ v979v12176z 19 24 l l PRON v979v12176z 19 25 is be AUX v979v12176z 19 26 less less ADJ v979v12176z 19 27 than than SCONJ v979v12176z 19 28 s s VERB v979v12176z 19 29 in in ADP v979v12176z 19 30 l l PROPN v979v12176z 19 31 , , PUNCT v979v12176z 19 32 then then ADV v979v12176z 19 33 all all DET v979v12176z 19 34 positive positive ADJ v979v12176z 19 35 powers power NOUN v979v12176z 19 36 of of ADP v979v12176z 19 37 l l PRON v979v12176z 19 38 are be AUX v979v12176z 19 39 less less ADJ v979v12176z 19 40 than than SCONJ v979v12176z 19 41 s s VERB v979v12176z 19 42 in in ADP v979v12176z 19 43 rl.theorem rl.theorem VERB v979v12176z 19 44 3 3 NUM v979v12176z 19 45 : : PUNCT v979v12176z 19 46 if if SCONJ v979v12176z 19 47 a a DET v979v12176z 19 48 computable computable ADJ v979v12176z 19 49 linear linear NOUN v979v12176z 19 50 order order NOUN v979v12176z 19 51 l l PRON v979v12176z 19 52 is be AUX v979v12176z 19 53 relatively relatively ADV v979v12176z 19 54 delta delta ADJ v979v12176z 19 55 - - PUNCT v979v12176z 19 56 alpha alpha NOUN v979v12176z 19 57 categorical categorical ADJ v979v12176z 19 58 , , PUNCT v979v12176z 19 59 then then ADV v979v12176z 19 60 rl rl PROPN v979v12176z 19 61 isrelatively isrelatively ADV v979v12176z 19 62 delta-(1+alpha delta-(1+alpha SPACE v979v12176z 19 63 ) ) PUNCT v979v12176z 19 64 categorical.the categorical.the DET v979v12176z 19 65 converse converse NOUN v979v12176z 19 66 of of ADP v979v12176z 19 67 theorem theorem NOUN v979v12176z 19 68 3 3 NUM v979v12176z 19 69 holds hold VERB v979v12176z 19 70 for for ADP v979v12176z 19 71 alpha alpha NOUN v979v12176z 19 72 = = NOUN v979v12176z 19 73 1 1 NUM v979v12176z 19 74 . . PUNCT v979v12176z 20 1 we we PRON v979v12176z 20 2 show show VERB v979v12176z 20 3 it it PRON v979v12176z 20 4 also also ADV v979v12176z 20 5 holds hold VERB v979v12176z 20 6 for for ADP v979v12176z 20 7 alpha alpha NOUN v979v12176z 20 8 a a DET v979v12176z 20 9 natural natural ADJ v979v12176z 20 10 number number NOUN v979v12176z 20 11 , , PUNCT v979v12176z 20 12 assuming assume VERB v979v12176z 20 13 further further ADJ v979v12176z 20 14 computability computability NOUN v979v12176z 20 15 properties property NOUN v979v12176z 20 16 on on ADP v979v12176z 20 17 one one NUM v979v12176z 20 18 copy copy NOUN v979v12176z 20 19 of of ADP v979v12176z 20 20 l. l. PROPN v979v12176z 20 21 we we PRON v979v12176z 20 22 are be AUX v979v12176z 20 23 able able ADJ v979v12176z 20 24 then then ADV v979v12176z 20 25 to to PART v979v12176z 20 26 show show VERB v979v12176z 20 27 the the DET v979v12176z 20 28 following.theorem following.theorem ADJ v979v12176z 20 29 4 4 NUM v979v12176z 20 30 : : PUNCT v979v12176z 20 31 for for ADP v979v12176z 20 32 arbitrarily arbitrarily ADV v979v12176z 20 33 large large ADJ v979v12176z 20 34 computable computable ADJ v979v12176z 20 35 ordinals ordinal NOUN v979v12176z 20 36 , , PUNCT v979v12176z 20 37 there there PRON v979v12176z 20 38 is be VERB v979v12176z 20 39 a a DET v979v12176z 20 40 real real ADV v979v12176z 20 41 closed closed ADJ v979v12176z 20 42 field field NOUN v979v12176z 20 43 that that PRON v979v12176z 20 44 is be AUX v979v12176z 20 45 relatively relatively ADV v979v12176z 20 46 delta delta ADJ v979v12176z 20 47 - - PUNCT v979v12176z 20 48 alpha alpha NOUN v979v12176z 20 49 categorical categorical ADJ v979v12176z 20 50 and and CCONJ v979v12176z 20 51 not not PART v979v12176z 20 52 relatively relatively ADV v979v12176z 20 53 delta delta ADJ v979v12176z 20 54 - - PUNCT v979v12176z 20 55 beta beta NOUN v979v12176z 20 56 categorical categorical NOUN v979v12176z 20 57 for for ADP v979v12176z 20 58 any any DET v979v12176z 20 59 ordinal ordinal ADJ v979v12176z 20 60 beta beta NOUN v979v12176z 20 61 less less ADJ v979v12176z 20 62 than than ADP v979v12176z 20 63 alpha alpha NOUN v979v12176z 20 64 . . PUNCT