id sid tid token lemma pos v692t437z14 1 1 in in ADP v692t437z14 1 2 this this DET v692t437z14 1 3 dissertation dissertation NOUN v692t437z14 1 4 we we PRON v692t437z14 1 5 consider consider VERB v692t437z14 1 6 certain certain ADJ v692t437z14 1 7 closed closed ADJ v692t437z14 1 8 subvarieties subvarietie NOUN v692t437z14 1 9 of of ADP v692t437z14 1 10 the the DET v692t437z14 1 11 flag flag NOUN v692t437z14 1 12 variety variety NOUN v692t437z14 1 13 , , PUNCT v692t437z14 1 14 known know VERB v692t437z14 1 15 as as ADP v692t437z14 1 16 hessenberg hessenberg NOUN v692t437z14 1 17 varieties variety NOUN v692t437z14 1 18 . . PUNCT v692t437z14 2 1 we we PRON v692t437z14 2 2 prove prove VERB v692t437z14 2 3 that that SCONJ v692t437z14 2 4 hessenberg hessenberg NOUN v692t437z14 2 5 varieties variety NOUN v692t437z14 2 6 corresponding correspond VERB v692t437z14 2 7 to to ADP v692t437z14 2 8 nilpotent nilpotent ADJ v692t437z14 2 9 elements element NOUN v692t437z14 2 10 which which PRON v692t437z14 2 11 are be AUX v692t437z14 2 12 regular regular ADJ v692t437z14 2 13 in in ADP v692t437z14 2 14 a a DET v692t437z14 2 15 levi levi ADJ v692t437z14 2 16 factor factor NOUN v692t437z14 2 17 are be AUX v692t437z14 2 18 paved pave VERB v692t437z14 2 19 by by ADP v692t437z14 2 20 affines affine NOUN v692t437z14 2 21 . . PUNCT v692t437z14 3 1 we we PRON v692t437z14 3 2 provide provide VERB v692t437z14 3 3 a a DET v692t437z14 3 4 partial partial ADJ v692t437z14 3 5 reduction reduction NOUN v692t437z14 3 6 from from ADP v692t437z14 3 7 paving pave VERB v692t437z14 3 8 hessenberg hessenberg NOUN v692t437z14 3 9 varieties variety NOUN v692t437z14 3 10 for for ADP v692t437z14 3 11 arbitrary arbitrary ADJ v692t437z14 3 12 elements element NOUN v692t437z14 3 13 to to ADP v692t437z14 3 14 paving pave VERB v692t437z14 3 15 those those PRON v692t437z14 3 16 corresponding correspond VERB v692t437z14 3 17 to to ADP v692t437z14 3 18 nilpotent nilpotent ADJ v692t437z14 3 19 elements element NOUN v692t437z14 3 20 . . PUNCT v692t437z14 4 1 as as ADP v692t437z14 4 2 a a DET v692t437z14 4 3 consequence consequence NOUN v692t437z14 4 4 , , PUNCT v692t437z14 4 5 we we PRON v692t437z14 4 6 generalize generalize VERB v692t437z14 4 7 results result NOUN v692t437z14 4 8 of of ADP v692t437z14 4 9 tymoczko tymoczko NOUN v692t437z14 4 10 asserting assert VERB v692t437z14 4 11 that that SCONJ v692t437z14 4 12 hessenberg hessenberg NOUN v692t437z14 4 13 varieties variety NOUN v692t437z14 4 14 for for ADP v692t437z14 4 15 regular regular ADJ v692t437z14 4 16 nilpotent nilpotent ADJ v692t437z14 4 17 elements element NOUN v692t437z14 4 18 in in ADP v692t437z14 4 19 the the DET v692t437z14 4 20 classical classical ADJ v692t437z14 4 21 cases case NOUN v692t437z14 4 22 and and CCONJ v692t437z14 4 23 arbitrary arbitrary ADJ v692t437z14 4 24 elements element NOUN v692t437z14 4 25 of of ADP v692t437z14 4 26 gl_n(c gl_n(c SPACE v692t437z14 4 27 ) ) PUNCT v692t437z14 4 28 are be AUX v692t437z14 4 29 paved pave VERB v692t437z14 4 30 by by ADP v692t437z14 4 31 affines affine NOUN v692t437z14 4 32 . . PUNCT v692t437z14 5 1 for for ADP v692t437z14 5 2 example example NOUN v692t437z14 5 3 , , PUNCT v692t437z14 5 4 our our PRON v692t437z14 5 5 results result NOUN v692t437z14 5 6 prove prove VERB v692t437z14 5 7 that that SCONJ v692t437z14 5 8 any any DET v692t437z14 5 9 hessenberg hessenberg NOUN v692t437z14 5 10 variety variety NOUN v692t437z14 5 11 corresponding correspond VERB v692t437z14 5 12 to to ADP v692t437z14 5 13 a a DET v692t437z14 5 14 regular regular ADJ v692t437z14 5 15 element element NOUN v692t437z14 5 16 is be AUX v692t437z14 5 17 paved pave VERB v692t437z14 5 18 by by ADP v692t437z14 5 19 affines affine NOUN v692t437z14 5 20 . . PUNCT v692t437z14 6 1 as as ADP v692t437z14 6 2 a a DET v692t437z14 6 3 corollary corollary NOUN v692t437z14 6 4 , , PUNCT v692t437z14 6 5 in in ADP v692t437z14 6 6 all all DET v692t437z14 6 7 these these DET v692t437z14 6 8 cases case NOUN v692t437z14 6 9 the the DET v692t437z14 6 10 hessenberg hessenberg NOUN v692t437z14 6 11 variety variety NOUN v692t437z14 6 12 has have VERB v692t437z14 6 13 no no DET v692t437z14 6 14 odd odd ADJ v692t437z14 6 15 dimensional dimensional ADJ v692t437z14 6 16 cohomology cohomology NOUN v692t437z14 6 17 . . PUNCT