id sid tid token lemma pos td96k072v3c 1 1 given give VERB td96k072v3c 1 2 a a DET td96k072v3c 1 3 complex complex ADJ td96k072v3c 1 4 semisimple semisimple ADJ td96k072v3c 1 5 lie lie NOUN td96k072v3c 1 6 bialgebra bialgebra NOUN td96k072v3c 1 7 g g PROPN td96k072v3c 1 8 , , PUNCT td96k072v3c 1 9 a a DET td96k072v3c 1 10 lie lie NOUN td96k072v3c 1 11 subalgebra subalgebra NOUN td96k072v3c 1 12 c c PROPN td96k072v3c 1 13 of of ADP td96k072v3c 1 14 g g PROPN td96k072v3c 1 15 is be AUX td96k072v3c 1 16 coisotropic coisotropic ADJ td96k072v3c 1 17 if if SCONJ td96k072v3c 1 18 the the DET td96k072v3c 1 19 annihilator annihilator NOUN td96k072v3c 1 20 of of ADP td96k072v3c 1 21 c c PROPN td96k072v3c 1 22 in in ADP td96k072v3c 1 23 g^ g^ PROPN td96k072v3c 1 24 * * PUNCT td96k072v3c 1 25 is be AUX td96k072v3c 1 26 a a DET td96k072v3c 1 27 lie lie NOUN td96k072v3c 1 28 subalgebra subalgebra NOUN td96k072v3c 1 29 of of ADP td96k072v3c 1 30 g^ g^ SPACE td96k072v3c 2 1 * * NOUN td96k072v3c 2 2 . . PUNCT td96k072v3c 3 1 kroeger kroeger PROPN td96k072v3c 3 2 shows show VERB td96k072v3c 3 3 in in ADP td96k072v3c 3 4 her her PRON td96k072v3c 3 5 paper paper NOUN td96k072v3c 3 6 that that SCONJ td96k072v3c 3 7 coisotropic coisotropic PROPN td96k072v3c 3 8 subalgebras subalgebras PROPN td96k072v3c 3 9 give give VERB td96k072v3c 3 10 rise rise NOUN td96k072v3c 3 11 to to ADP td96k072v3c 3 12 lagrangian lagrangian ADJ td96k072v3c 3 13 subalgebras subalgebra NOUN td96k072v3c 3 14 of of ADP td96k072v3c 3 15 g+g g+g SPACE td96k072v3c 3 16 . . PUNCT td96k072v3c 4 1 by by ADP td96k072v3c 4 2 studying study VERB td96k072v3c 4 3 the the DET td96k072v3c 4 4 lagrangian lagrangian ADJ td96k072v3c 4 5 subalgebras subalgebra NOUN td96k072v3c 4 6 of of ADP td96k072v3c 4 7 g+g g+g SPACE td96k072v3c 4 8 , , PUNCT td96k072v3c 4 9 she she PRON td96k072v3c 4 10 generalizes generalize VERB td96k072v3c 4 11 zambon zambon NOUN td96k072v3c 4 12 's 's PART td96k072v3c 4 13 work work NOUN td96k072v3c 4 14 by by ADP td96k072v3c 4 15 constructing construct VERB td96k072v3c 4 16 a a DET td96k072v3c 4 17 more more ADV td96k072v3c 4 18 general general ADJ td96k072v3c 4 19 class class NOUN td96k072v3c 4 20 of of ADP td96k072v3c 4 21 isolated isolated ADJ td96k072v3c 4 22 coisotropic coisotropic ADJ td96k072v3c 4 23 subalgebras subalgebra NOUN td96k072v3c 4 24 in in SCONJ td96k072v3c 4 25 g.motivated g.motivate VERB td96k072v3c 4 26 by by ADP td96k072v3c 4 27 kroeger kroeger PROPN td96k072v3c 4 28 's 's PART td96k072v3c 4 29 method method NOUN td96k072v3c 4 30 of of ADP td96k072v3c 4 31 studying study VERB td96k072v3c 4 32 coisotropic coisotropic ADJ td96k072v3c 4 33 subalgebras subalgebra NOUN td96k072v3c 4 34 , , PUNCT td96k072v3c 4 35 in in ADP td96k072v3c 4 36 this this DET td96k072v3c 4 37 dissertation dissertation NOUN td96k072v3c 4 38 , , PUNCT td96k072v3c 4 39 we we PRON td96k072v3c 4 40 classify classify VERB td96k072v3c 4 41 coisotropic coisotropic ADJ td96k072v3c 4 42 subalgebras subalgebra NOUN td96k072v3c 4 43 in in ADP td96k072v3c 4 44 the the DET td96k072v3c 4 45 subset subset NOUN td96k072v3c 4 46 l_{g l_{g ADJ td96k072v3c 4 47 } } PUNCT td96k072v3c 4 48 of of ADP td96k072v3c 4 49 the the DET td96k072v3c 4 50 lagrangian lagrangian ADJ td96k072v3c 4 51 subalgebras subalgebras PROPN td96k072v3c 4 52 of of ADP td96k072v3c 4 53 g+g g+g SPACE td96k072v3c 4 54 . . PUNCT td96k072v3c 5 1 these these PRON td96k072v3c 5 2 are be AUX td96k072v3c 5 3 the the DET td96k072v3c 5 4 first first ADJ td96k072v3c 5 5 examples example NOUN td96k072v3c 5 6 of of ADP td96k072v3c 5 7 non non ADJ td96k072v3c 5 8 - - ADJ td96k072v3c 5 9 isolated isolated ADJ td96k072v3c 5 10 coisotropic coisotropic ADJ td96k072v3c 5 11 subalgebras.we subalgebras.we PROPN td96k072v3c 5 12 also also ADV td96k072v3c 5 13 give give VERB td96k072v3c 5 14 the the DET td96k072v3c 5 15 complete complete ADJ td96k072v3c 5 16 list list NOUN td96k072v3c 5 17 of of ADP td96k072v3c 5 18 coisotropic coisotropic ADJ td96k072v3c 5 19 subalgebras subalgebras PROPN td96k072v3c 5 20 in in ADP td96k072v3c 5 21 the the DET td96k072v3c 5 22 sl(2,c sl(2,c NOUN td96k072v3c 5 23 ) ) PUNCT td96k072v3c 5 24 case case NOUN td96k072v3c 5 25 . . PUNCT td96k072v3c 6 1 lastly lastly ADV td96k072v3c 6 2 , , PUNCT td96k072v3c 6 3 we we PRON td96k072v3c 6 4 study study VERB td96k072v3c 6 5 the the DET td96k072v3c 6 6 lagrangian lagrangian ADJ td96k072v3c 6 7 subalgebras subalgebra NOUN td96k072v3c 6 8 of of ADP td96k072v3c 6 9 the the DET td96k072v3c 6 10 standard standard ADJ td96k072v3c 6 11 parabolic parabolic ADJ td96k072v3c 6 12 subalgebras subalgebra NOUN td96k072v3c 6 13 and and CCONJ td96k072v3c 6 14 produce produce VERB td96k072v3c 6 15 a a DET td96k072v3c 6 16 class class NOUN td96k072v3c 6 17 of of ADP td96k072v3c 6 18 coisotropic coisotropic PROPN td96k072v3c 6 19 subalgebras subalgebras PROPN td96k072v3c 6 20 . . PUNCT td96k072v3c 7 1 the the DET td96k072v3c 7 2 result result NOUN td96k072v3c 7 3 generalizes generalize VERB td96k072v3c 7 4 a a DET td96k072v3c 7 5 basic basic ADJ td96k072v3c 7 6 theorem theorem NOUN td96k072v3c 7 7 of of ADP td96k072v3c 7 8 kroeger kroeger PROPN td96k072v3c 7 9 . . PUNCT