id sid tid token lemma pos kw52j676c5n 1 1 this this DET kw52j676c5n 1 2 thesis thesis NOUN kw52j676c5n 1 3 analyzes analyze VERB kw52j676c5n 1 4 the the DET kw52j676c5n 1 5 effect effect NOUN kw52j676c5n 1 6 of of ADP kw52j676c5n 1 7 training training NOUN kw52j676c5n 1 8 on on ADP kw52j676c5n 1 9 the the DET kw52j676c5n 1 10 mutual mutual ADJ kw52j676c5n 1 11 information information NOUN kw52j676c5n 1 12 between between ADP kw52j676c5n 1 13 the the DET kw52j676c5n 1 14 input input NOUN kw52j676c5n 1 15 and and CCONJ kw52j676c5n 1 16 output output NOUN kw52j676c5n 1 17 of of ADP kw52j676c5n 1 18 a a DET kw52j676c5n 1 19 system system NOUN kw52j676c5n 1 20 with with ADP kw52j676c5n 1 21 unknown unknown ADJ kw52j676c5n 1 22 parameters parameter NOUN kw52j676c5n 1 23 . . PUNCT kw52j676c5n 2 1 the the DET kw52j676c5n 2 2 work work NOUN kw52j676c5n 2 3 consists consist VERB kw52j676c5n 2 4 of of ADP kw52j676c5n 2 5 two two NUM kw52j676c5n 2 6 parts part NOUN kw52j676c5n 2 7 including include VERB kw52j676c5n 2 8 a a DET kw52j676c5n 2 9 theory theory NOUN kw52j676c5n 2 10 in in ADP kw52j676c5n 2 11 the the DET kw52j676c5n 2 12 computation computation NOUN kw52j676c5n 2 13 of of ADP kw52j676c5n 2 14 mutual mutual ADJ kw52j676c5n 2 15 information information NOUN kw52j676c5n 2 16 with with ADP kw52j676c5n 2 17 training training NOUN kw52j676c5n 2 18 , , PUNCT kw52j676c5n 2 19 and and CCONJ kw52j676c5n 2 20 its its PRON kw52j676c5n 2 21 applications application NOUN kw52j676c5n 2 22 in in ADP kw52j676c5n 2 23 wireless wireless ADJ kw52j676c5n 2 24 communication communication NOUN kw52j676c5n 2 25 , , PUNCT kw52j676c5n 2 26 signal signal NOUN kw52j676c5n 2 27 processing processing NOUN kw52j676c5n 2 28 , , PUNCT kw52j676c5n 2 29 and and CCONJ kw52j676c5n 2 30 machine machine NOUN kw52j676c5n 2 31 learning learning NOUN kw52j676c5n 2 32 which which PRON kw52j676c5n 2 33 can can AUX kw52j676c5n 2 34 be be AUX kw52j676c5n 2 35 modeled model VERB kw52j676c5n 2 36 by by ADP kw52j676c5n 2 37 quantized quantize VERB kw52j676c5n 2 38 large large ADJ kw52j676c5n 2 39 - - PUNCT kw52j676c5n 2 40 scale scale NOUN kw52j676c5n 2 41 systems system NOUN kw52j676c5n 2 42 and and CCONJ kw52j676c5n 2 43 employ employ VERB kw52j676c5n 2 44 training training NOUN kw52j676c5n 2 45 as as ADP kw52j676c5n 2 46 part part NOUN kw52j676c5n 2 47 of of ADP kw52j676c5n 2 48 their their PRON kw52j676c5n 2 49 operation.in operation.in NUM kw52j676c5n 2 50 the the DET kw52j676c5n 2 51 first first ADJ kw52j676c5n 2 52 part part NOUN kw52j676c5n 2 53 , , PUNCT kw52j676c5n 2 54 we we PRON kw52j676c5n 2 55 develop develop VERB kw52j676c5n 2 56 a a DET kw52j676c5n 2 57 theory theory NOUN kw52j676c5n 2 58 in in ADP kw52j676c5n 2 59 computing compute VERB kw52j676c5n 2 60 the the DET kw52j676c5n 2 61 mutual mutual ADJ kw52j676c5n 2 62 information information NOUN kw52j676c5n 2 63 between between ADP kw52j676c5n 2 64 the the DET kw52j676c5n 2 65 input input NOUN kw52j676c5n 2 66 and and CCONJ kw52j676c5n 2 67 output output NOUN kw52j676c5n 2 68 conditioned condition VERB kw52j676c5n 2 69 on on ADP kw52j676c5n 2 70 training training NOUN kw52j676c5n 2 71 for for ADP kw52j676c5n 2 72 large large ADJ kw52j676c5n 2 73 - - PUNCT kw52j676c5n 2 74 scale scale NOUN kw52j676c5n 2 75 systems system NOUN kw52j676c5n 2 76 that that PRON kw52j676c5n 2 77 do do AUX kw52j676c5n 2 78 not not PART kw52j676c5n 2 79 necessarily necessarily ADV kw52j676c5n 2 80 have have VERB kw52j676c5n 2 81 gaussianity gaussianity NOUN kw52j676c5n 2 82 or or CCONJ kw52j676c5n 2 83 linearity linearity NOUN kw52j676c5n 2 84 in in ADP kw52j676c5n 2 85 the the DET kw52j676c5n 2 86 model model NOUN kw52j676c5n 2 87 , , PUNCT kw52j676c5n 2 88 without without ADP kw52j676c5n 2 89 considering consider VERB kw52j676c5n 2 90 any any DET kw52j676c5n 2 91 particular particular ADJ kw52j676c5n 2 92 parameter parameter NOUN kw52j676c5n 2 93 estimate estimate NOUN kw52j676c5n 2 94 , , PUNCT kw52j676c5n 2 95 and and CCONJ kw52j676c5n 2 96 without without ADP kw52j676c5n 2 97 resorting resort VERB kw52j676c5n 2 98 to to ADP kw52j676c5n 2 99 linearization linearization NOUN kw52j676c5n 2 100 or or CCONJ kw52j676c5n 2 101 any any DET kw52j676c5n 2 102 worst bad ADJ kw52j676c5n 2 103 - - PUNCT kw52j676c5n 2 104 case case NOUN kw52j676c5n 2 105 noise noise NOUN kw52j676c5n 2 106 analysis analysis NOUN kw52j676c5n 2 107 . . PUNCT kw52j676c5n 3 1 such such ADJ kw52j676c5n 3 2 mutual mutual ADJ kw52j676c5n 3 3 information information NOUN kw52j676c5n 3 4 can can AUX kw52j676c5n 3 5 be be AUX kw52j676c5n 3 6 computed compute VERB kw52j676c5n 3 7 as as ADP kw52j676c5n 3 8 the the DET kw52j676c5n 3 9 difference difference NOUN kw52j676c5n 3 10 between between ADP kw52j676c5n 3 11 two two NUM kw52j676c5n 3 12 derivatives derivative NOUN kw52j676c5n 3 13 of of ADP kw52j676c5n 3 14 a a DET kw52j676c5n 3 15 single single ADJ kw52j676c5n 3 16 function function NOUN kw52j676c5n 3 17 . . PUNCT kw52j676c5n 4 1 in in ADP kw52j676c5n 4 2 the the DET kw52j676c5n 4 3 second second ADJ kw52j676c5n 4 4 part part NOUN kw52j676c5n 4 5 , , PUNCT kw52j676c5n 4 6 we we PRON kw52j676c5n 4 7 show show VERB kw52j676c5n 4 8 that that SCONJ kw52j676c5n 4 9 a a DET kw52j676c5n 4 10 quantized quantize VERB kw52j676c5n 4 11 large large ADJ kw52j676c5n 4 12 - - PUNCT kw52j676c5n 4 13 scale scale NOUN kw52j676c5n 4 14 system system NOUN kw52j676c5n 4 15 with with ADP kw52j676c5n 4 16 unknown unknown ADJ kw52j676c5n 4 17 parameters parameter NOUN kw52j676c5n 4 18 and and CCONJ kw52j676c5n 4 19 training training NOUN kw52j676c5n 4 20 signals signal NOUN kw52j676c5n 4 21 can can AUX kw52j676c5n 4 22 be be AUX kw52j676c5n 4 23 analyzed analyze VERB kw52j676c5n 4 24 by by ADP kw52j676c5n 4 25 examining examine VERB kw52j676c5n 4 26 an an DET kw52j676c5n 4 27 equivalent equivalent ADJ kw52j676c5n 4 28 system system NOUN kw52j676c5n 4 29 with with ADP kw52j676c5n 4 30 known know VERB kw52j676c5n 4 31 parameters parameter NOUN kw52j676c5n 4 32 by by ADP kw52j676c5n 4 33 modifying modify VERB kw52j676c5n 4 34 the the DET kw52j676c5n 4 35 signal signal NOUN kw52j676c5n 4 36 power power NOUN kw52j676c5n 4 37 and and CCONJ kw52j676c5n 4 38 noise noise NOUN kw52j676c5n 4 39 variance variance NOUN kw52j676c5n 4 40 in in ADP kw52j676c5n 4 41 a a DET kw52j676c5n 4 42 prescribed prescribed ADJ kw52j676c5n 4 43 manner manner NOUN kw52j676c5n 4 44 . . PUNCT kw52j676c5n 5 1 applications application NOUN kw52j676c5n 5 2 to to ADP kw52j676c5n 5 3 training training NOUN kw52j676c5n 5 4 in in ADP kw52j676c5n 5 5 wireless wireless ADJ kw52j676c5n 5 6 communications communication NOUN kw52j676c5n 5 7 , , PUNCT kw52j676c5n 5 8 signal signal NOUN kw52j676c5n 5 9 processing processing NOUN kw52j676c5n 5 10 , , PUNCT kw52j676c5n 5 11 and and CCONJ kw52j676c5n 5 12 machine machine NOUN kw52j676c5n 5 13 learning learning NOUN kw52j676c5n 5 14 are be AUX kw52j676c5n 5 15 shown show VERB kw52j676c5n 5 16 . . PUNCT kw52j676c5n 6 1 in in ADP kw52j676c5n 6 2 wireless wireless ADJ kw52j676c5n 6 3 communications communication NOUN kw52j676c5n 6 4 , , PUNCT kw52j676c5n 6 5 we we PRON kw52j676c5n 6 6 show show VERB kw52j676c5n 6 7 that that SCONJ kw52j676c5n 6 8 the the DET kw52j676c5n 6 9 number number NOUN kw52j676c5n 6 10 of of ADP kw52j676c5n 6 11 training training NOUN kw52j676c5n 6 12 signals signal NOUN kw52j676c5n 6 13 can can AUX kw52j676c5n 6 14 be be AUX kw52j676c5n 6 15 significantly significantly ADV kw52j676c5n 6 16 smaller small ADJ kw52j676c5n 6 17 than than ADP kw52j676c5n 6 18 the the DET kw52j676c5n 6 19 number number NOUN kw52j676c5n 6 20 of of ADP kw52j676c5n 6 21 transmitting transmitting NOUN kw52j676c5n 6 22 elements element NOUN kw52j676c5n 6 23 . . PUNCT kw52j676c5n 7 1 similar similar ADJ kw52j676c5n 7 2 conclusions conclusion NOUN kw52j676c5n 7 3 can can AUX kw52j676c5n 7 4 be be AUX kw52j676c5n 7 5 drawn draw VERB kw52j676c5n 7 6 when when SCONJ kw52j676c5n 7 7 considering consider VERB kw52j676c5n 7 8 the the DET kw52j676c5n 7 9 symbol symbol NOUN kw52j676c5n 7 10 error error NOUN kw52j676c5n 7 11 rate rate NOUN kw52j676c5n 7 12 in in ADP kw52j676c5n 7 13 signal signal NOUN kw52j676c5n 7 14 processing processing NOUN kw52j676c5n 7 15 applications application NOUN kw52j676c5n 7 16 , , PUNCT kw52j676c5n 7 17 as as ADV kw52j676c5n 7 18 long long ADV kw52j676c5n 7 19 as as SCONJ kw52j676c5n 7 20 the the DET kw52j676c5n 7 21 number number NOUN kw52j676c5n 7 22 of of ADP kw52j676c5n 7 23 receiving receive VERB kw52j676c5n 7 24 elements element NOUN kw52j676c5n 7 25 is be AUX kw52j676c5n 7 26 large large ADJ kw52j676c5n 7 27 enough enough ADV kw52j676c5n 7 28 . . PUNCT kw52j676c5n 8 1 in in ADP kw52j676c5n 8 2 machine machine NOUN kw52j676c5n 8 3 learning learning PROPN kw52j676c5n 8 4 , , PUNCT kw52j676c5n 8 5 where where SCONJ kw52j676c5n 8 6 a a DET kw52j676c5n 8 7 linear linear ADJ kw52j676c5n 8 8 classifier classifier NOUN kw52j676c5n 8 9 is be AUX kw52j676c5n 8 10 considered consider VERB kw52j676c5n 8 11 , , PUNCT kw52j676c5n 8 12 we we PRON kw52j676c5n 8 13 show show VERB kw52j676c5n 8 14 that that SCONJ kw52j676c5n 8 15 the the DET kw52j676c5n 8 16 misclassification misclassification NOUN kw52j676c5n 8 17 rate rate NOUN kw52j676c5n 8 18 is be AUX kw52j676c5n 8 19 not not PART kw52j676c5n 8 20 sensitive sensitive ADJ kw52j676c5n 8 21 to to ADP kw52j676c5n 8 22 the the DET kw52j676c5n 8 23 number number NOUN kw52j676c5n 8 24 of of ADP kw52j676c5n 8 25 classes class NOUN kw52j676c5n 8 26 when when SCONJ kw52j676c5n 8 27 the the DET kw52j676c5n 8 28 number number NOUN kw52j676c5n 8 29 of of ADP kw52j676c5n 8 30 training training NOUN kw52j676c5n 8 31 examples example NOUN kw52j676c5n 8 32 is be AUX kw52j676c5n 8 33 large large ADJ kw52j676c5n 8 34 , , PUNCT kw52j676c5n 8 35 and and CCONJ kw52j676c5n 8 36 is be AUX kw52j676c5n 8 37 approximately approximately ADV kw52j676c5n 8 38 inversely inversely ADV kw52j676c5n 8 39 proportional proportional ADJ kw52j676c5n 8 40 to to ADP kw52j676c5n 8 41 the the DET kw52j676c5n 8 42 size size NOUN kw52j676c5n 8 43 of of ADP kw52j676c5n 8 44 the the DET kw52j676c5n 8 45 training training NOUN kw52j676c5n 8 46 set set NOUN kw52j676c5n 8 47 . . PUNCT kw52j676c5n 9 1 we we PRON kw52j676c5n 9 2 show show VERB kw52j676c5n 9 3 that that SCONJ kw52j676c5n 9 4 a a DET kw52j676c5n 9 5 linear linear ADJ kw52j676c5n 9 6 analysis analysis NOUN kw52j676c5n 9 7 of of ADP kw52j676c5n 9 8 this this DET kw52j676c5n 9 9 nonlinear nonlinear ADJ kw52j676c5n 9 10 training training NOUN kw52j676c5n 9 11 problem problem NOUN kw52j676c5n 9 12 can can AUX kw52j676c5n 9 13 be be AUX kw52j676c5n 9 14 accurate accurate ADJ kw52j676c5n 9 15 when when SCONJ kw52j676c5n 9 16 the the DET kw52j676c5n 9 17 additive additive ADJ kw52j676c5n 9 18 thermal thermal ADJ kw52j676c5n 9 19 noise noise NOUN kw52j676c5n 9 20 power power NOUN kw52j676c5n 9 21 is be AUX kw52j676c5n 9 22 high high ADJ kw52j676c5n 9 23 . . PUNCT