id sid tid token lemma pos ks65h99214b 1 1 given give VERB ks65h99214b 1 2 a a DET ks65h99214b 1 3 complex complex ADJ ks65h99214b 1 4 , , PUNCT ks65h99214b 1 5 semisimple semisimple ADJ ks65h99214b 1 6 lie lie NOUN ks65h99214b 1 7 biaglebra biaglebra NOUN ks65h99214b 1 8 , , PUNCT ks65h99214b 1 9 we we PRON ks65h99214b 1 10 consider consider VERB ks65h99214b 1 11 the the DET ks65h99214b 1 12 coisotropic coisotropic ADJ ks65h99214b 1 13 subalgebras subalgebra NOUN ks65h99214b 1 14 -- -- PUNCT ks65h99214b 1 15 the the DET ks65h99214b 1 16 lie lie NOUN ks65h99214b 1 17 subalgebras subalgebra NOUN ks65h99214b 1 18 of of ADP ks65h99214b 1 19 whose whose DET ks65h99214b 1 20 annihilator annihilator NOUN ks65h99214b 1 21 in in ADP ks65h99214b 1 22 the the DET ks65h99214b 1 23 dual dual ADJ ks65h99214b 1 24 space space NOUN ks65h99214b 1 25 is be AUX ks65h99214b 1 26 a a DET ks65h99214b 1 27 lie lie NOUN ks65h99214b 1 28 subalgebra subalgebra NOUN ks65h99214b 1 29 of of ADP ks65h99214b 1 30 the the DET ks65h99214b 1 31 dual dual ADJ ks65h99214b 1 32 space space NOUN ks65h99214b 1 33 . . PUNCT ks65h99214b 2 1 m. m. NOUN ks65h99214b 2 2 zambon zambon PROPN ks65h99214b 2 3 gives give VERB ks65h99214b 2 4 a a DET ks65h99214b 2 5 construction construction NOUN ks65h99214b 2 6 for for ADP ks65h99214b 2 7 certain certain ADJ ks65h99214b 2 8 coisotropic coisotropic ADJ ks65h99214b 2 9 sugalgebras sugalgebra NOUN ks65h99214b 2 10 , , PUNCT ks65h99214b 2 11 he he PRON ks65h99214b 2 12 explains explain VERB ks65h99214b 2 13 his his PRON ks65h99214b 2 14 construction construction NOUN ks65h99214b 2 15 explicitly explicitly ADV ks65h99214b 2 16 for for ADP ks65h99214b 2 17 the the DET ks65h99214b 2 18 classical classical ADJ ks65h99214b 2 19 simple simple ADJ ks65h99214b 2 20 lie lie NOUN ks65h99214b 2 21 algebras algebra NOUN ks65h99214b 2 22 . . PUNCT ks65h99214b 3 1 in in ADP ks65h99214b 3 2 this this DET ks65h99214b 3 3 dissertation dissertation NOUN ks65h99214b 3 4 , , PUNCT ks65h99214b 3 5 we we PRON ks65h99214b 3 6 explicitly explicitly ADV ks65h99214b 3 7 compute compute VERB ks65h99214b 3 8 zambon zambon PROPN ks65h99214b 3 9 's 's PART ks65h99214b 3 10 coisotroic coisotroic PROPN ks65h99214b 3 11 subalgebras subalgebras PROPN ks65h99214b 3 12 for for ADP ks65h99214b 3 13 a a DET ks65h99214b 3 14 general general ADJ ks65h99214b 3 15 complex complex ADJ ks65h99214b 3 16 semisimple semisimple ADJ ks65h99214b 3 17 lie lie NOUN ks65h99214b 3 18 algebra algebra NOUN ks65h99214b 3 19 and and CCONJ ks65h99214b 3 20 show show VERB ks65h99214b 3 21 that that SCONJ ks65h99214b 3 22 these these DET ks65h99214b 3 23 coisotropic coisotropic ADJ ks65h99214b 3 24 subalgebaras subalgebaras PROPN ks65h99214b 3 25 are be AUX ks65h99214b 3 26 a a DET ks65h99214b 3 27 special special ADJ ks65h99214b 3 28 case case NOUN ks65h99214b 3 29 of of ADP ks65h99214b 3 30 a a DET ks65h99214b 3 31 more more ADV ks65h99214b 3 32 general general ADJ ks65h99214b 3 33 construction construction NOUN ks65h99214b 3 34 . . PUNCT ks65h99214b 4 1 furthermore furthermore ADV ks65h99214b 4 2 , , PUNCT ks65h99214b 4 3 we we PRON ks65h99214b 4 4 view view VERB ks65h99214b 4 5 coisotropic coisotropic ADJ ks65h99214b 4 6 subalgebras subalgebra NOUN ks65h99214b 4 7 of of ADP ks65h99214b 4 8 inside inside ADP ks65h99214b 4 9 the the DET ks65h99214b 4 10 variety variety NOUN ks65h99214b 4 11 of of ADP ks65h99214b 4 12 lagrangian lagrangian ADJ ks65h99214b 4 13 subalgebras subalgebra NOUN ks65h99214b 4 14 of of ADP ks65h99214b 4 15 the the DET ks65h99214b 4 16 double double NOUN ks65h99214b 4 17 . . PUNCT