id sid tid token lemma pos kd17cr58x0q 1 1 we we PRON kd17cr58x0q 1 2 study study VERB kd17cr58x0q 1 3 the the DET kd17cr58x0q 1 4 soul soul NOUN kd17cr58x0q 1 5 theorem theorem NOUN kd17cr58x0q 1 6 for for ADP kd17cr58x0q 1 7 low low ADJ kd17cr58x0q 1 8 dimensional dimensional ADJ kd17cr58x0q 1 9 topologically topologically ADV kd17cr58x0q 1 10 regular regular ADJ kd17cr58x0q 1 11 open open ADJ kd17cr58x0q 1 12 complete complete NOUN kd17cr58x0q 1 13 nonnegatively nonnegatively ADV kd17cr58x0q 1 14 curved curved ADJ kd17cr58x0q 1 15 alexandrov alexandrov PROPN kd17cr58x0q 1 16 spaces space NOUN kd17cr58x0q 1 17 and and CCONJ kd17cr58x0q 1 18 give give VERB kd17cr58x0q 1 19 a a DET kd17cr58x0q 1 20 topological topological ADJ kd17cr58x0q 1 21 classification classification NOUN kd17cr58x0q 1 22 of of ADP kd17cr58x0q 1 23 these these DET kd17cr58x0q 1 24 spaces space NOUN kd17cr58x0q 1 25 . . PUNCT kd17cr58x0q 2 1 these these DET kd17cr58x0q 2 2 spaces space NOUN kd17cr58x0q 2 3 occurs occur VERB kd17cr58x0q 2 4 naturally naturally ADV kd17cr58x0q 2 5 as as SCONJ kd17cr58x0q 2 6 the the DET kd17cr58x0q 2 7 blow blow NOUN kd17cr58x0q 2 8 - - PUNCT kd17cr58x0q 2 9 up up ADP kd17cr58x0q 2 10 limits limit NOUN kd17cr58x0q 2 11 of of ADP kd17cr58x0q 2 12 sequences sequence NOUN kd17cr58x0q 2 13 of of ADP kd17cr58x0q 2 14 riemannian riemannian ADJ kd17cr58x0q 2 15 manifold manifold ADJ kd17cr58x0q 2 16 with with ADP kd17cr58x0q 2 17 a a DET kd17cr58x0q 2 18 lower low ADJ kd17cr58x0q 2 19 curvature curvature NOUN kd17cr58x0q 2 20 bound bind VERB kd17cr58x0q 2 21 . . PUNCT kd17cr58x0q 3 1 this this PRON kd17cr58x0q 3 2 will will AUX kd17cr58x0q 3 3 be be AUX kd17cr58x0q 3 4 used use VERB kd17cr58x0q 3 5 to to PART kd17cr58x0q 3 6 study study VERB kd17cr58x0q 3 7 the the DET kd17cr58x0q 3 8 collapsing collapsing NOUN kd17cr58x0q 3 9 of of ADP kd17cr58x0q 3 10 3 3 NUM kd17cr58x0q 3 11 - - PUNCT kd17cr58x0q 3 12 dimension dimension NOUN kd17cr58x0q 3 13 manifold manifold ADJ kd17cr58x0q 3 14 as as ADV kd17cr58x0q 3 15 well well ADV kd17cr58x0q 3 16 as as ADP kd17cr58x0q 3 17 of of ADP kd17cr58x0q 3 18 4 4 NUM kd17cr58x0q 3 19 - - PUNCT kd17cr58x0q 3 20 dimension dimension NOUN kd17cr58x0q 3 21 riemannian riemannian ADJ kd17cr58x0q 3 22 manifold manifold ADJ kd17cr58x0q 3 23 with with ADP kd17cr58x0q 3 24 a a DET kd17cr58x0q 3 25 lower low ADJ kd17cr58x0q 3 26 curvature curvature NOUN kd17cr58x0q 3 27 bound bind VERB kd17cr58x0q 3 28 . . PUNCT kd17cr58x0q 4 1 these these DET kd17cr58x0q 4 2 spaces space NOUN kd17cr58x0q 4 3 have have AUX kd17cr58x0q 4 4 also also ADV kd17cr58x0q 4 5 been be AUX kd17cr58x0q 4 6 studied study VERB kd17cr58x0q 4 7 in in ADP kd17cr58x0q 4 8 [ [ X kd17cr58x0q 4 9 sy00 sy00 PROPN kd17cr58x0q 4 10 ] ] PUNCT kd17cr58x0q 4 11 and and CCONJ kd17cr58x0q 4 12 [ [ X kd17cr58x0q 4 13 yam02 yam02 X kd17cr58x0q 4 14 ] ] PUNCT kd17cr58x0q 4 15 . . PUNCT kd17cr58x0q 5 1 our our PRON kd17cr58x0q 5 2 main main ADJ kd17cr58x0q 5 3 tools tool NOUN kd17cr58x0q 5 4 are be AUX kd17cr58x0q 5 5 critical critical ADJ kd17cr58x0q 5 6 point point NOUN kd17cr58x0q 5 7 theory theory NOUN kd17cr58x0q 5 8 for for ADP kd17cr58x0q 5 9 distance distance NOUN kd17cr58x0q 5 10 functions function NOUN kd17cr58x0q 5 11 and and CCONJ kd17cr58x0q 5 12 perelman perelman NOUN kd17cr58x0q 5 13 's 's PART kd17cr58x0q 5 14 fibration fibration NOUN kd17cr58x0q 5 15 theorem theorem NOUN kd17cr58x0q 5 16 . . PUNCT