id sid tid token lemma pos k3569309463 1 1 it it PRON k3569309463 1 2 is be AUX k3569309463 1 3 known know VERB k3569309463 1 4 that that SCONJ k3569309463 1 5 any any DET k3569309463 1 6 model model NOUN k3569309463 1 7 of of ADP k3569309463 1 8 the the DET k3569309463 1 9 theory theory NOUN k3569309463 1 10 of of ADP k3569309463 1 11 the the DET k3569309463 1 12 group group NOUN k3569309463 1 13 of of ADP k3569309463 1 14 integers integer NOUN k3569309463 1 15 can can AUX k3569309463 1 16 be be AUX k3569309463 1 17 decomposed decompose VERB k3569309463 1 18 into into ADP k3569309463 1 19 a a DET k3569309463 1 20 direct direct ADJ k3569309463 1 21 sum sum NOUN k3569309463 1 22 of of ADP k3569309463 1 23 a a DET k3569309463 1 24 torsion torsion NOUN k3569309463 1 25 - - PUNCT k3569309463 1 26 free free ADJ k3569309463 1 27 divisible divisible ADJ k3569309463 1 28 abelian abelian PROPN k3569309463 1 29 group group NOUN k3569309463 1 30 and and CCONJ k3569309463 1 31 an an DET k3569309463 1 32 elementary elementary ADJ k3569309463 1 33 substructure substructure NOUN k3569309463 1 34 of of ADP k3569309463 1 35 the the DET k3569309463 1 36 profinite profinite ADJ k3569309463 1 37 group group NOUN k3569309463 1 38 . . PUNCT k3569309463 2 1 we we PRON k3569309463 2 2 give give VERB k3569309463 2 3 a a DET k3569309463 2 4 similar similar ADJ k3569309463 2 5 result result NOUN k3569309463 2 6 for for ADP k3569309463 2 7 models model NOUN k3569309463 2 8 of of ADP k3569309463 2 9 the the DET k3569309463 2 10 theory theory NOUN k3569309463 2 11 of of ADP k3569309463 2 12 presburger presburger PROPN k3569309463 2 13 arithmetic arithmetic PROPN k3569309463 2 14 and and CCONJ k3569309463 2 15 discuss discuss VERB k3569309463 2 16 orderings ordering NOUN k3569309463 2 17 on on ADP k3569309463 2 18 direct direct ADJ k3569309463 2 19 summands summand NOUN k3569309463 2 20 . . PUNCT k3569309463 3 1 we we PRON k3569309463 3 2 show show VERB k3569309463 3 3 that that SCONJ k3569309463 3 4 the the DET k3569309463 3 5 torsion torsion NOUN k3569309463 3 6 - - PUNCT k3569309463 3 7 free free ADJ k3569309463 3 8 divisible divisible ADJ k3569309463 3 9 abelian abelian PROPN k3569309463 3 10 group group NOUN k3569309463 3 11 is be AUX k3569309463 3 12 densely densely ADV k3569309463 3 13 ordered order VERB k3569309463 3 14 and and CCONJ k3569309463 3 15 we we PRON k3569309463 3 16 find find VERB k3569309463 3 17 the the DET k3569309463 3 18 number number NOUN k3569309463 3 19 of of ADP k3569309463 3 20 non non ADJ k3569309463 3 21 - - ADJ k3569309463 3 22 isomorphic isomorphic ADJ k3569309463 3 23 expansions expansion NOUN k3569309463 3 24 of of ADP k3569309463 3 25 the the DET k3569309463 3 26 profinite profinite ADJ k3569309463 3 27 group group NOUN k3569309463 3 28 to to ADP k3569309463 3 29 a a DET k3569309463 3 30 model model NOUN k3569309463 3 31 of of ADP k3569309463 3 32 presburger presburger PROPN k3569309463 3 33 arithmetic arithmetic PROPN k3569309463 3 34 . . PUNCT k3569309463 4 1 we we PRON k3569309463 4 2 also also ADV k3569309463 4 3 give give VERB k3569309463 4 4 a a DET k3569309463 4 5 description description NOUN k3569309463 4 6 of of ADP k3569309463 4 7 the the DET k3569309463 4 8 f f PROPN k3569309463 4 9 - - PUNCT k3569309463 4 10 generic generic ADJ k3569309463 4 11 types type NOUN k3569309463 4 12 of of ADP k3569309463 4 13 saturated saturate VERB k3569309463 4 14 models model NOUN k3569309463 4 15 of of ADP k3569309463 4 16 presburger presburger NOUN k3569309463 4 17 arithmetic.we arithmetic.we X k3569309463 4 18 consider consider VERB k3569309463 4 19 nonstandard nonstandard ADJ k3569309463 4 20 analogues analogue NOUN k3569309463 4 21 of of ADP k3569309463 4 22 finite finite ADJ k3569309463 4 23 cyclic cyclic ADJ k3569309463 4 24 groups group NOUN k3569309463 4 25 as as ADP k3569309463 4 26 a a DET k3569309463 4 27 family family NOUN k3569309463 4 28 of of ADP k3569309463 4 29 groups group NOUN k3569309463 4 30 defined define VERB k3569309463 4 31 in in ADP k3569309463 4 32 an an DET k3569309463 4 33 elementary elementary ADJ k3569309463 4 34 extension extension NOUN k3569309463 4 35 of of ADP k3569309463 4 36 presburger presburger PROPN k3569309463 4 37 arithmetic arithmetic PROPN k3569309463 4 38 . . PUNCT k3569309463 5 1 since since SCONJ k3569309463 5 2 the the DET k3569309463 5 3 theory theory NOUN k3569309463 5 4 of of ADP k3569309463 5 5 presburger presburger PROPN k3569309463 5 6 arithmetic arithmetic PROPN k3569309463 5 7 has have AUX k3569309463 5 8 nip nip VERB k3569309463 5 9 , , PUNCT k3569309463 5 10 any any DET k3569309463 5 11 such such ADJ k3569309463 5 12 group group NOUN k3569309463 5 13 h h PROPN k3569309463 5 14 has have VERB k3569309463 5 15 a a DET k3569309463 5 16 smallest small ADJ k3569309463 5 17 type type NOUN k3569309463 5 18 - - PUNCT k3569309463 5 19 definable definable ADJ k3569309463 5 20 subgroup subgroup NOUN k3569309463 5 21 of of ADP k3569309463 5 22 bounded bound VERB k3569309463 5 23 index index NOUN k3569309463 5 24 . . PUNCT k3569309463 6 1 each each DET k3569309463 6 2 quotient quotient NOUN k3569309463 6 3 is be AUX k3569309463 6 4 a a DET k3569309463 6 5 compact compact ADJ k3569309463 6 6 group group NOUN k3569309463 6 7 under under ADP k3569309463 6 8 the the DET k3569309463 6 9 logic logic NOUN k3569309463 6 10 topology topology NOUN k3569309463 6 11 . . PUNCT k3569309463 7 1 the the DET k3569309463 7 2 main main ADJ k3569309463 7 3 result result NOUN k3569309463 7 4 of of ADP k3569309463 7 5 this this DET k3569309463 7 6 thesis thesis NOUN k3569309463 7 7 is be AUX k3569309463 7 8 the the DET k3569309463 7 9 classification classification NOUN k3569309463 7 10 of of ADP k3569309463 7 11 these these DET k3569309463 7 12 compact compact ADJ k3569309463 7 13 groups.the groups.the DET k3569309463 7 14 universal universal ADJ k3569309463 7 15 definable definable ADJ k3569309463 7 16 compactification compactification NOUN k3569309463 7 17 of of ADP k3569309463 7 18 a a DET k3569309463 7 19 group group NOUN k3569309463 7 20 g g PROPN k3569309463 7 21 , , PUNCT k3569309463 7 22 in in ADP k3569309463 7 23 a a DET k3569309463 7 24 language language NOUN k3569309463 7 25 in in ADP k3569309463 7 26 which which PRON k3569309463 7 27 all all DET k3569309463 7 28 the the DET k3569309463 7 29 subsets subset NOUN k3569309463 7 30 of of ADP k3569309463 7 31 g g PROPN k3569309463 7 32 are be AUX k3569309463 7 33 definable definable ADJ k3569309463 7 34 , , PUNCT k3569309463 7 35 coincides coincide VERB k3569309463 7 36 with with ADP k3569309463 7 37 the the DET k3569309463 7 38 bohr bohr NOUN k3569309463 7 39 compactification compactification NOUN k3569309463 7 40 bg bg INTJ k3569309463 7 41 of of ADP k3569309463 7 42 g g NOUN k3569309463 7 43 considered consider VERB k3569309463 7 44 as as ADP k3569309463 7 45 a a DET k3569309463 7 46 discrete discrete ADJ k3569309463 7 47 group group NOUN k3569309463 7 48 . . PUNCT k3569309463 8 1 for for ADP k3569309463 8 2 an an DET k3569309463 8 3 abelian abelian PROPN k3569309463 8 4 group group NOUN k3569309463 8 5 g g PROPN k3569309463 8 6 , , PUNCT k3569309463 8 7 in in ADP k3569309463 8 8 particular particular ADJ k3569309463 8 9 the the DET k3569309463 8 10 group group NOUN k3569309463 8 11 of of ADP k3569309463 8 12 integers integer NOUN k3569309463 8 13 , , PUNCT k3569309463 8 14 we we PRON k3569309463 8 15 compute compute VERB k3569309463 8 16 the the DET k3569309463 8 17 type type NOUN k3569309463 8 18 - - PUNCT k3569309463 8 19 connected connect VERB k3569309463 8 20 component component NOUN k3569309463 8 21 . . PUNCT k3569309463 9 1 we we PRON k3569309463 9 2 show show VERB k3569309463 9 3 that that SCONJ k3569309463 9 4 adding add VERB k3569309463 9 5 predicates predicate NOUN k3569309463 9 6 for for ADP k3569309463 9 7 certain certain ADJ k3569309463 9 8 subsets subset NOUN k3569309463 9 9 of of ADP k3569309463 9 10 g g PROPN k3569309463 9 11 is be AUX k3569309463 9 12 enough enough ADJ k3569309463 9 13 to to PART k3569309463 9 14 get get VERB k3569309463 9 15 bg bg INTJ k3569309463 9 16 as as ADP k3569309463 9 17 the the DET k3569309463 9 18 universal universal ADJ k3569309463 9 19 compactification compactification NOUN k3569309463 9 20 . . PUNCT