id sid tid token lemma pos h415p844p19 1 1 this this DET h415p844p19 1 2 thesis thesis NOUN h415p844p19 1 3 proposes propose VERB h415p844p19 1 4 two two NUM h415p844p19 1 5 algorithms algorithm NOUN h415p844p19 1 6 for for ADP h415p844p19 1 7 data data NOUN h415p844p19 1 8 generation generation NOUN h415p844p19 1 9 and and CCONJ h415p844p19 1 10 density density NOUN h415p844p19 1 11 estimation estimation NOUN h415p844p19 1 12 . . PUNCT h415p844p19 2 1 the the DET h415p844p19 2 2 algorithms algorithm NOUN h415p844p19 2 3 use use VERB h415p844p19 2 4 gradient gradient NOUN h415p844p19 2 5 flow flow NOUN h415p844p19 2 6 formulation formulation NOUN h415p844p19 2 7 and and CCONJ h415p844p19 2 8 neural neural ADJ h415p844p19 2 9 - - PUNCT h415p844p19 2 10 network network NOUN h415p844p19 2 11 - - PUNCT h415p844p19 2 12 based base VERB h415p844p19 2 13 discretization discretization NOUN h415p844p19 2 14 of of ADP h415p844p19 2 15 the the DET h415p844p19 2 16 gradient gradient NOUN h415p844p19 2 17 flow flow NOUN h415p844p19 2 18 . . PUNCT h415p844p19 3 1 in in ADP h415p844p19 3 2 our our PRON h415p844p19 3 3 first first ADJ h415p844p19 3 4 algorithm algorithm NOUN h415p844p19 3 5 , , PUNCT h415p844p19 3 6 we we PRON h415p844p19 3 7 uniquely uniquely ADV h415p844p19 3 8 propose propose VERB h415p844p19 3 9 using use VERB h415p844p19 3 10 maximum maximum ADJ h415p844p19 3 11 mean mean NOUN h415p844p19 3 12 discrepancy(mmd discrepancy(mmd PROPN h415p844p19 3 13 ) ) PUNCT h415p844p19 3 14 as as ADP h415p844p19 3 15 an an DET h415p844p19 3 16 energy energy NOUN h415p844p19 3 17 functional functional ADJ h415p844p19 3 18 to to PART h415p844p19 3 19 measure measure VERB h415p844p19 3 20 the the DET h415p844p19 3 21 dissimilarity dissimilarity NOUN h415p844p19 3 22 between between ADP h415p844p19 3 23 distributions distribution NOUN h415p844p19 3 24 . . PUNCT h415p844p19 4 1 in in ADP h415p844p19 4 2 our our PRON h415p844p19 4 3 second second ADJ h415p844p19 4 4 algorithm algorithm NOUN h415p844p19 4 5 , , PUNCT h415p844p19 4 6 we we PRON h415p844p19 4 7 propose propose VERB h415p844p19 4 8 the the DET h415p844p19 4 9 neural neural ADJ h415p844p19 4 10 network network NOUN h415p844p19 4 11 - - PUNCT h415p844p19 4 12 based base VERB h415p844p19 4 13 algorithm algorithm PROPN h415p844p19 4 14 that that PRON h415p844p19 4 15 uses use VERB h415p844p19 4 16 the the DET h415p844p19 4 17 second second ADJ h415p844p19 4 18 - - PUNCT h415p844p19 4 19 order order NOUN h415p844p19 4 20 backward backward ADJ h415p844p19 4 21 differentiation differentiation NOUN h415p844p19 4 22 formula(bdf2 formula(bdf2 SPACE h415p844p19 4 23 ) ) PUNCT h415p844p19 4 24 scheme scheme NOUN h415p844p19 4 25 to to PART h415p844p19 4 26 discretize discretize VERB h415p844p19 4 27 in in ADP h415p844p19 4 28 the the DET h415p844p19 4 29 time time NOUN h415p844p19 4 30 dimension dimension NOUN h415p844p19 4 31 . . PUNCT h415p844p19 5 1 meanwhile meanwhile ADV h415p844p19 5 2 , , PUNCT h415p844p19 5 3 the the DET h415p844p19 5 4 importance importance NOUN h415p844p19 5 5 of of ADP h415p844p19 5 6 understanding understanding NOUN h415p844p19 5 7 and and CCONJ h415p844p19 5 8 leveraging leverage VERB h415p844p19 5 9 the the DET h415p844p19 5 10 underlying underlying ADJ h415p844p19 5 11 geometric geometric ADJ h415p844p19 5 12 structures structure NOUN h415p844p19 5 13 in in ADP h415p844p19 5 14 datasets dataset NOUN h415p844p19 5 15 has have AUX h415p844p19 5 16 been be AUX h415p844p19 5 17 increasingly increasingly ADV h415p844p19 5 18 recognized recognize VERB h415p844p19 5 19 . . PUNCT h415p844p19 6 1 the the DET h415p844p19 6 2 other other ADJ h415p844p19 6 3 topic topic NOUN h415p844p19 6 4 of of ADP h415p844p19 6 5 this this DET h415p844p19 6 6 thesis thesis NOUN h415p844p19 6 7 is be AUX h415p844p19 6 8 utilizing utilize VERB h415p844p19 6 9 intrinsic intrinsic ADJ h415p844p19 6 10 geometric geometric ADJ h415p844p19 6 11 information information NOUN h415p844p19 6 12 to to PART h415p844p19 6 13 enhance enhance VERB h415p844p19 6 14 learning learn VERB h415p844p19 6 15 . . PUNCT h415p844p19 7 1 we we PRON h415p844p19 7 2 propose propose VERB h415p844p19 7 3 two two NUM h415p844p19 7 4 algorithms algorithm NOUN h415p844p19 7 5 to to PART h415p844p19 7 6 extract extract VERB h415p844p19 7 7 intrinsic intrinsic ADJ h415p844p19 7 8 geometric geometric ADJ h415p844p19 7 9 information information NOUN h415p844p19 7 10 from from ADP h415p844p19 7 11 the the DET h415p844p19 7 12 data datum NOUN h415p844p19 7 13 . . PUNCT h415p844p19 8 1 the the DET h415p844p19 8 2 first first ADJ h415p844p19 8 3 algorithm algorithm PROPN h415p844p19 8 4 is be AUX h415p844p19 8 5 constructing construct VERB h415p844p19 8 6 a a DET h415p844p19 8 7 graph graph NOUN h415p844p19 8 8 for for ADP h415p844p19 8 9 points point NOUN h415p844p19 8 10 in in ADP h415p844p19 8 11 the the DET h415p844p19 8 12 dataset dataset NOUN h415p844p19 8 13 and and CCONJ h415p844p19 8 14 applying apply VERB h415p844p19 8 15 the the DET h415p844p19 8 16 graph graph NOUN h415p844p19 8 17 neural neural ADJ h415p844p19 8 18 network network NOUN h415p844p19 8 19 to to PART h415p844p19 8 20 conduct conduct VERB h415p844p19 8 21 the the DET h415p844p19 8 22 learning learning NOUN h415p844p19 8 23 tasks task NOUN h415p844p19 8 24 like like ADP h415p844p19 8 25 regression regression NOUN h415p844p19 8 26 and and CCONJ h415p844p19 8 27 classification classification NOUN h415p844p19 8 28 . . PUNCT h415p844p19 9 1 the the DET h415p844p19 9 2 second second ADJ h415p844p19 9 3 algorithm algorithm NOUN h415p844p19 9 4 is be AUX h415p844p19 9 5 manipulating manipulate VERB h415p844p19 9 6 kernels kernel NOUN h415p844p19 9 7 in in ADP h415p844p19 9 8 gaussian gaussian ADJ h415p844p19 9 9 processes process NOUN h415p844p19 9 10 and and CCONJ h415p844p19 9 11 using use VERB h415p844p19 9 12 the the DET h415p844p19 9 13 properties property NOUN h415p844p19 9 14 of of ADP h415p844p19 9 15 the the DET h415p844p19 9 16 diffusion diffusion NOUN h415p844p19 9 17 process process NOUN h415p844p19 9 18 to to PART h415p844p19 9 19 redefine redefine VERB h415p844p19 9 20 metrics metric NOUN h415p844p19 9 21 in in ADP h415p844p19 9 22 the the DET h415p844p19 9 23 dataset dataset NOUN h415p844p19 9 24 and and CCONJ h415p844p19 9 25 , , PUNCT h415p844p19 9 26 hence hence ADV h415p844p19 9 27 , , PUNCT h415p844p19 9 28 extract extract VERB h415p844p19 9 29 geometric geometric ADJ h415p844p19 9 30 information information NOUN h415p844p19 9 31 . . PUNCT h415p844p19 10 1 then then ADV h415p844p19 10 2 mcmc mcmc NOUN h415p844p19 10 3 method method NOUN h415p844p19 10 4 can can AUX h415p844p19 10 5 be be AUX h415p844p19 10 6 applied apply VERB h415p844p19 10 7 to to PART h415p844p19 10 8 obtain obtain VERB h415p844p19 10 9 the the DET h415p844p19 10 10 samples sample NOUN h415p844p19 10 11 of of ADP h415p844p19 10 12 parameters parameter NOUN h415p844p19 10 13 . . PUNCT