id sid tid token lemma pos g732d79512m 1 1 let let VERB g732d79512m 1 2 g g NOUN g732d79512m 1 3 be be AUX g732d79512m 1 4 a a DET g732d79512m 1 5 connected connect VERB g732d79512m 1 6 linear linear ADJ g732d79512m 1 7 algebraic algebraic ADJ g732d79512m 1 8 group group NOUN g732d79512m 1 9 acting act VERB g732d79512m 1 10 on on ADP g732d79512m 1 11 a a DET g732d79512m 1 12 smooth smooth ADJ g732d79512m 1 13 complex complex ADJ g732d79512m 1 14 variety variety NOUN g732d79512m 1 15 x x PUNCT g732d79512m 1 16 with with ADP g732d79512m 1 17 finitely finitely ADV g732d79512m 1 18 many many ADJ g732d79512m 1 19 orbits orbit NOUN g732d79512m 1 20 . . PUNCT g732d79512m 2 1 in in ADP g732d79512m 2 2 this this DET g732d79512m 2 3 case case NOUN g732d79512m 2 4 , , PUNCT g732d79512m 2 5 the the DET g732d79512m 2 6 category category NOUN g732d79512m 2 7 of of ADP g732d79512m 2 8 g g NOUN g732d79512m 2 9 - - PUNCT g732d79512m 2 10 equivariant equivariant ADJ g732d79512m 2 11 d d NOUN g732d79512m 2 12 - - NOUN g732d79512m 2 13 modules module NOUN g732d79512m 2 14 is be AUX g732d79512m 2 15 equivalent equivalent ADJ g732d79512m 2 16 to to ADP g732d79512m 2 17 the the DET g732d79512m 2 18 category category NOUN g732d79512m 2 19 of of ADP g732d79512m 2 20 finite finite ADJ g732d79512m 2 21 dimensional dimensional ADJ g732d79512m 2 22 representations representation NOUN g732d79512m 2 23 of of ADP g732d79512m 2 24 a a DET g732d79512m 2 25 quiver quiver NOUN g732d79512m 2 26 with with ADP g732d79512m 2 27 relations relation NOUN g732d79512m 2 28 , , PUNCT g732d79512m 2 29 and and CCONJ g732d79512m 2 30 one one PRON g732d79512m 2 31 may may AUX g732d79512m 2 32 take take VERB g732d79512m 2 33 advantage advantage NOUN g732d79512m 2 34 of of ADP g732d79512m 2 35 this this DET g732d79512m 2 36 structure structure NOUN g732d79512m 2 37 to to PART g732d79512m 2 38 study study VERB g732d79512m 2 39 the the DET g732d79512m 2 40 local local ADJ g732d79512m 2 41 cohomology cohomology NOUN g732d79512m 2 42 modules module NOUN g732d79512m 2 43 with with ADP g732d79512m 2 44 support support NOUN g732d79512m 2 45 in in ADP g732d79512m 2 46 the the DET g732d79512m 2 47 g g PROPN g732d79512m 2 48 - - PUNCT g732d79512m 2 49 stable stable ADJ g732d79512m 2 50 subvarieties subvarietie NOUN g732d79512m 2 51 of of ADP g732d79512m 2 52 x.this x.this PRON g732d79512m 2 53 thesis thesis NOUN g732d79512m 2 54 is be AUX g732d79512m 2 55 dedicated dedicate VERB g732d79512m 2 56 to to ADP g732d79512m 2 57 investigating investigate VERB g732d79512m 2 58 categories category NOUN g732d79512m 2 59 of of ADP g732d79512m 2 60 g g NOUN g732d79512m 2 61 - - PUNCT g732d79512m 2 62 equivariant equivariant ADJ g732d79512m 2 63 d d NOUN g732d79512m 2 64 - - NOUN g732d79512m 2 65 modules module NOUN g732d79512m 2 66 and and CCONJ g732d79512m 2 67 local local ADJ g732d79512m 2 68 cohomology cohomology NOUN g732d79512m 2 69 on on ADP g732d79512m 2 70 vinberg vinberg NOUN g732d79512m 2 71 representations representation NOUN g732d79512m 2 72 , , PUNCT g732d79512m 2 73 i.e. i.e. ADV g732d79512m 2 74 when when SCONJ g732d79512m 2 75 x x SYM g732d79512m 2 76 is be AUX g732d79512m 2 77 an an DET g732d79512m 2 78 irreducible irreducible ADJ g732d79512m 2 79 representation representation NOUN g732d79512m 2 80 of of ADP g732d79512m 2 81 g g PROPN g732d79512m 2 82 , , PUNCT g732d79512m 2 83 thought think VERB g732d79512m 2 84 of of ADP g732d79512m 2 85 as as ADP g732d79512m 2 86 an an DET g732d79512m 2 87 affine affine ADJ g732d79512m 2 88 space space NOUN g732d79512m 2 89 , , PUNCT g732d79512m 2 90 and and CCONJ g732d79512m 2 91 g g PROPN g732d79512m 2 92 is be AUX g732d79512m 2 93 reductive reductive ADJ g732d79512m 2 94 . . PUNCT g732d79512m 3 1 such such ADJ g732d79512m 3 2 representations representation NOUN g732d79512m 3 3 have have AUX g732d79512m 3 4 been be AUX g732d79512m 3 5 classified classify VERB g732d79512m 3 6 , , PUNCT g732d79512m 3 7 and and CCONJ g732d79512m 3 8 correspond correspond VERB g732d79512m 3 9 to to ADP g732d79512m 3 10 a a DET g732d79512m 3 11 choice choice NOUN g732d79512m 3 12 of of ADP g732d79512m 3 13 dynkin dynkin ADJ g732d79512m 3 14 diagram diagram NOUN g732d79512m 3 15 and and CCONJ g732d79512m 3 16 vertex.when vertex.when NOUN g732d79512m 3 17 x x PUNCT g732d79512m 3 18 is be AUX g732d79512m 3 19 the the DET g732d79512m 3 20 space space NOUN g732d79512m 3 21 of of ADP g732d79512m 3 22 2x2x2 2x2x2 NUM g732d79512m 3 23 hypermatrices hypermatrice NOUN g732d79512m 3 24 endowed endow VERB g732d79512m 3 25 with with ADP g732d79512m 3 26 the the DET g732d79512m 3 27 natural natural ADJ g732d79512m 3 28 action action NOUN g732d79512m 3 29 of of ADP g732d79512m 3 30 g= g= PROPN g732d79512m 3 31 gl_2 gl_2 PROPN g732d79512m 3 32 x x PUNCT g732d79512m 4 1 gl_2 gl_2 INTJ g732d79512m 4 2 x x PUNCT g732d79512m 4 3 gl_2 gl_2 INTJ g732d79512m 4 4 , , PUNCT g732d79512m 4 5 or or CCONJ g732d79512m 4 6 when when SCONJ g732d79512m 4 7 x x SYM g732d79512m 4 8 is be AUX g732d79512m 4 9 the the DET g732d79512m 4 10 space space NOUN g732d79512m 4 11 of of ADP g732d79512m 4 12 alternating alternate VERB g732d79512m 4 13 senary senary ADJ g732d79512m 4 14 3 3 NUM g732d79512m 4 15 - - PUNCT g732d79512m 4 16 tensors tensor NOUN g732d79512m 4 17 endowed endow VERB g732d79512m 4 18 with with ADP g732d79512m 4 19 the the DET g732d79512m 4 20 natural natural ADJ g732d79512m 4 21 action action NOUN g732d79512m 4 22 of of ADP g732d79512m 4 23 g g NOUN g732d79512m 4 24 = = NOUN g732d79512m 4 25 gl_6 gl_6 PROPN g732d79512m 4 26 , , PUNCT g732d79512m 4 27 our our PRON g732d79512m 4 28 analysis analysis NOUN g732d79512m 4 29 entails entail VERB g732d79512m 4 30 : : PUNCT g732d79512m 4 31 classifying classify VERB g732d79512m 4 32 and and CCONJ g732d79512m 4 33 explicitly explicitly ADV g732d79512m 4 34 realizing realize VERB g732d79512m 4 35 the the DET g732d79512m 4 36 simple simple ADJ g732d79512m 4 37 equivariant equivariant NOUN g732d79512m 4 38 d d NOUN g732d79512m 4 39 - - NOUN g732d79512m 4 40 modules module NOUN g732d79512m 4 41 , , PUNCT g732d79512m 4 42 and and CCONJ g732d79512m 4 43 determining determine VERB g732d79512m 4 44 the the DET g732d79512m 4 45 corresponding corresponding ADJ g732d79512m 4 46 quiver quiver NOUN g732d79512m 4 47 with with ADP g732d79512m 4 48 relations relation NOUN g732d79512m 4 49 . . PUNCT g732d79512m 5 1 the the DET g732d79512m 5 2 latter latter ADJ g732d79512m 5 3 case case NOUN g732d79512m 5 4 is be AUX g732d79512m 5 5 joint joint ADJ g732d79512m 5 6 work work NOUN g732d79512m 5 7 with with ADP g732d79512m 5 8 andrás andrás PROPN g732d79512m 5 9 c. c. PROPN g732d79512m 5 10 lőrincz lőrincz PROPN g732d79512m 5 11 . . PUNCT g732d79512m 6 1 as as ADP g732d79512m 6 2 an an DET g732d79512m 6 3 application application NOUN g732d79512m 6 4 , , PUNCT g732d79512m 6 5 we we PRON g732d79512m 6 6 calculate calculate VERB g732d79512m 6 7 local local ADJ g732d79512m 6 8 cohomology cohomology NOUN g732d79512m 6 9 with with ADP g732d79512m 6 10 support support NOUN g732d79512m 6 11 in in ADP g732d79512m 6 12 the the DET g732d79512m 6 13 orbit orbit NOUN g732d79512m 6 14 closures closure NOUN g732d79512m 6 15 , , PUNCT g732d79512m 6 16 and and CCONJ g732d79512m 6 17 obtain obtain VERB g732d79512m 6 18 the the DET g732d79512m 6 19 lyubeznik lyubeznik ADJ g732d79512m 6 20 numbers.in numbers.in X g732d79512m 6 21 another another DET g732d79512m 6 22 direction direction NOUN g732d79512m 6 23 , , PUNCT g732d79512m 6 24 we we PRON g732d79512m 6 25 determine determine VERB g732d79512m 6 26 the the DET g732d79512m 6 27 d d NOUN g732d79512m 6 28 - - PUNCT g732d79512m 6 29 module module NOUN g732d79512m 6 30 structure structure NOUN g732d79512m 6 31 of of ADP g732d79512m 6 32 local local ADJ g732d79512m 6 33 cohomology cohomology NOUN g732d79512m 6 34 with with ADP g732d79512m 6 35 support support NOUN g732d79512m 6 36 in in ADP g732d79512m 6 37 pfaffian pfaffian ADJ g732d79512m 6 38 varieties variety NOUN g732d79512m 6 39 , , PUNCT g732d79512m 6 40 in in ADP g732d79512m 6 41 which which DET g732d79512m 6 42 case case NOUN g732d79512m 6 43 the the DET g732d79512m 6 44 simple simple ADJ g732d79512m 6 45 composition composition NOUN g732d79512m 6 46 factors factor NOUN g732d79512m 6 47 were be AUX g732d79512m 6 48 known know VERB g732d79512m 6 49 by by ADP g732d79512m 6 50 past past ADJ g732d79512m 6 51 work work NOUN g732d79512m 6 52 of of ADP g732d79512m 6 53 raicu raicu NOUN g732d79512m 6 54 - - PUNCT g732d79512m 6 55 weyman weyman NOUN g732d79512m 6 56 . . PUNCT g732d79512m 7 1 this this DET g732d79512m 7 2 information information NOUN g732d79512m 7 3 , , PUNCT g732d79512m 7 4 combined combine VERB g732d79512m 7 5 with with ADP g732d79512m 7 6 careful careful ADJ g732d79512m 7 7 use use NOUN g732d79512m 7 8 of of ADP g732d79512m 7 9 graded grade VERB g732d79512m 7 10 local local ADJ g732d79512m 7 11 duality duality NOUN g732d79512m 7 12 allows allow VERB g732d79512m 7 13 us we PRON g732d79512m 7 14 to to PART g732d79512m 7 15 calculate calculate VERB g732d79512m 7 16 the the DET g732d79512m 7 17 lyubeznik lyubeznik ADJ g732d79512m 7 18 numbers number NOUN g732d79512m 7 19 for for ADP g732d79512m 7 20 pfaffian pfaffian ADJ g732d79512m 7 21 varieties variety NOUN g732d79512m 7 22 . . PUNCT g732d79512m 8 1 a a DET g732d79512m 8 2 major major ADJ g732d79512m 8 3 step step NOUN g732d79512m 8 4 in in ADP g732d79512m 8 5 this this DET g732d79512m 8 6 work work NOUN g732d79512m 8 7 is be AUX g732d79512m 8 8 our our PRON g732d79512m 8 9 computations computation NOUN g732d79512m 8 10 of of ADP g732d79512m 8 11 ext^j_s(s ext^j_s(s SPACE g732d79512m 8 12 / / SYM g732d79512m 8 13 i i PRON g732d79512m 8 14 , , PUNCT g732d79512m 8 15 s s NOUN g732d79512m 8 16 ) ) PUNCT g732d79512m 8 17 , , PUNCT g732d79512m 8 18 where where SCONJ g732d79512m 8 19 s s VERB g732d79512m 8 20 is be AUX g732d79512m 8 21 the the DET g732d79512m 8 22 coordinate coordinate NOUN g732d79512m 8 23 ring ring NOUN g732d79512m 8 24 of of ADP g732d79512m 8 25 the the DET g732d79512m 8 26 space space NOUN g732d79512m 8 27 of of ADP g732d79512m 8 28 skew skew ADV g732d79512m 8 29 - - PUNCT g732d79512m 8 30 symmetric symmetric ADJ g732d79512m 8 31 matrices matrix NOUN g732d79512m 8 32 and and CCONJ g732d79512m 8 33 i i PRON g732d79512m 8 34 is be AUX g732d79512m 8 35 a a DET g732d79512m 8 36 g g ADJ g732d79512m 8 37 - - PUNCT g732d79512m 8 38 invariant invariant ADJ g732d79512m 8 39 ideal ideal NOUN g732d79512m 8 40 . . PUNCT g732d79512m 9 1 as as ADP g732d79512m 9 2 another another DET g732d79512m 9 3 application application NOUN g732d79512m 9 4 of of ADP g732d79512m 9 5 these these DET g732d79512m 9 6 ext ext ADJ g732d79512m 9 7 results result NOUN g732d79512m 9 8 , , PUNCT g732d79512m 9 9 we we PRON g732d79512m 9 10 determine determine VERB g732d79512m 9 11 the the DET g732d79512m 9 12 castelnuovo castelnuovo PROPN g732d79512m 9 13 - - PUNCT g732d79512m 9 14 mumford mumford ADJ g732d79512m 9 15 regularity regularity NOUN g732d79512m 9 16 of of ADP g732d79512m 9 17 powers power NOUN g732d79512m 9 18 and and CCONJ g732d79512m 9 19 symbolic symbolic ADJ g732d79512m 9 20 powers power NOUN g732d79512m 9 21 of of ADP g732d79512m 9 22 ideals ideal NOUN g732d79512m 9 23 of of ADP g732d79512m 9 24 pfaffians pfaffian NOUN g732d79512m 9 25 . . PUNCT