id sid tid token lemma pos fq977s77r68 1 1 we we PRON fq977s77r68 1 2 give give VERB fq977s77r68 1 3 a a DET fq977s77r68 1 4 rigorous rigorous ADJ fq977s77r68 1 5 treatment treatment NOUN fq977s77r68 1 6 of of ADP fq977s77r68 1 7 the the DET fq977s77r68 1 8 notion notion NOUN fq977s77r68 1 9 of of ADP fq977s77r68 1 10 screening screen VERB fq977s77r68 1 11 pairs pair NOUN fq977s77r68 1 12 of of ADP fq977s77r68 1 13 screening screen VERB fq977s77r68 1 14 operators operator NOUN fq977s77r68 1 15 $ $ SYM fq977s77r68 1 16 ( ( PUNCT fq977s77r68 1 17 \ \ PROPN fq977s77r68 1 18 ilde{q},q)$ ilde{q},q)$ PROPN fq977s77r68 1 19 for for ADP fq977s77r68 1 20 a a DET fq977s77r68 1 21 rank rank NOUN fq977s77r68 1 22 $ $ SYM fq977s77r68 1 23 d$ d$ NUM fq977s77r68 1 24 lattice lattice NOUN fq977s77r68 1 25 vertex vertex NOUN fq977s77r68 1 26 operator operator NOUN fq977s77r68 1 27 superalgebra superalgebra NOUN fq977s77r68 1 28 $ $ SYM fq977s77r68 1 29 v_l$. v_l$. VERB fq977s77r68 1 30 certain certain ADJ fq977s77r68 1 31 such such ADJ fq977s77r68 1 32 screening screening NOUN fq977s77r68 1 33 pairs pair NOUN fq977s77r68 1 34 proved prove VERB fq977s77r68 1 35 to to PART fq977s77r68 1 36 be be AUX fq977s77r68 1 37 useful useful ADJ fq977s77r68 1 38 machinery machinery NOUN fq977s77r68 1 39 in in ADP fq977s77r68 1 40 the the DET fq977s77r68 1 41 study study NOUN fq977s77r68 1 42 of of ADP fq977s77r68 1 43 the the DET fq977s77r68 1 44 internal internal ADJ fq977s77r68 1 45 structure structure NOUN fq977s77r68 1 46 of of ADP fq977s77r68 1 47 the the DET fq977s77r68 1 48 $ $ SYM fq977s77r68 1 49 \mathcal{w}\mbox{-algebra}$ \mathcal{w}\mbox{-algebra}$ X fq977s77r68 1 50 $ $ SYM fq977s77r68 1 51 \mathcal{w}(p)=\mbox{ker \mathcal{w}(p)=\mbox{ker PROPN fq977s77r68 1 52 } } PUNCT fq977s77r68 1 53 \ \ PROPN fq977s77r68 1 54 ilde{q}$ ilde{q}$ PROPN fq977s77r68 1 55 by by ADP fq977s77r68 1 56 adamovi\'c adamovi\'c NOUN fq977s77r68 1 57 and and CCONJ fq977s77r68 1 58 milas mila NOUN fq977s77r68 1 59 and and CCONJ fq977s77r68 1 60 in in ADP fq977s77r68 1 61 proving prove VERB fq977s77r68 1 62 the the DET fq977s77r68 1 63 $ $ SYM fq977s77r68 1 64 c_2$-cofinite c_2$-cofinite NUM fq977s77r68 1 65 property property NOUN fq977s77r68 1 66 in in ADP fq977s77r68 1 67 the the DET fq977s77r68 1 68 rank rank NOUN fq977s77r68 1 69 1 1 NUM fq977s77r68 1 70 case case NOUN fq977s77r68 1 71 . . PUNCT fq977s77r68 2 1 we we PRON fq977s77r68 2 2 analyze analyze VERB fq977s77r68 2 3 and and CCONJ fq977s77r68 2 4 classify classify VERB fq977s77r68 2 5 when when SCONJ fq977s77r68 2 6 screening screen VERB fq977s77r68 2 7 pairs pair NOUN fq977s77r68 2 8 can can AUX fq977s77r68 2 9 arise arise VERB fq977s77r68 2 10 for for ADP fq977s77r68 2 11 $ $ SYM fq977s77r68 2 12 l$ l$ NOUN fq977s77r68 2 13 of of ADP fq977s77r68 2 14 arbitrary arbitrary ADJ fq977s77r68 2 15 rank rank NOUN fq977s77r68 2 16 , , PUNCT fq977s77r68 2 17 and and CCONJ fq977s77r68 2 18 then then ADV fq977s77r68 2 19 give give VERB fq977s77r68 2 20 a a DET fq977s77r68 2 21 classification classification NOUN fq977s77r68 2 22 of of ADP fq977s77r68 2 23 when when SCONJ fq977s77r68 2 24 configurations configuration NOUN fq977s77r68 2 25 of of ADP fq977s77r68 2 26 multiple multiple ADJ fq977s77r68 2 27 screening screening NOUN fq977s77r68 2 28 pairs pair NOUN fq977s77r68 2 29 can can AUX fq977s77r68 2 30 occur occur VERB fq977s77r68 2 31 for for ADP fq977s77r68 2 32 lattice lattice NOUN fq977s77r68 2 33 vertex vertex NOUN fq977s77r68 2 34 operator operator NOUN fq977s77r68 2 35 algebras algebra NOUN fq977s77r68 2 36 with with ADP fq977s77r68 2 37 lattices lattice NOUN fq977s77r68 2 38 of of ADP fq977s77r68 2 39 rank rank NOUN fq977s77r68 2 40 $ $ SYM fq977s77r68 2 41 2 2 NUM fq977s77r68 2 42 $ $ NUM fq977s77r68 2 43 and and CCONJ fq977s77r68 2 44 ade ade ADJ fq977s77r68 2 45 - - PUNCT fq977s77r68 2 46 type type NOUN fq977s77r68 2 47 root root NOUN fq977s77r68 2 48 lattices lattice NOUN fq977s77r68 2 49 . . PUNCT fq977s77r68 3 1 we we PRON fq977s77r68 3 2 then then ADV fq977s77r68 3 3 show show VERB fq977s77r68 3 4 how how SCONJ fq977s77r68 3 5 to to PART fq977s77r68 3 6 construct construct VERB fq977s77r68 3 7 subalgebras subalgebra NOUN fq977s77r68 3 8 of of ADP fq977s77r68 3 9 $ $ SYM fq977s77r68 3 10 v_l$ v_l$ NOUN fq977s77r68 3 11 by by ADP fq977s77r68 3 12 considering consider VERB fq977s77r68 3 13 the the DET fq977s77r68 3 14 kernel kernel NOUN fq977s77r68 3 15 of of ADP fq977s77r68 3 16 a a DET fq977s77r68 3 17 screening screening NOUN fq977s77r68 3 18 operator operator NOUN fq977s77r68 3 19 for for ADP fq977s77r68 3 20 $ $ SYM fq977s77r68 3 21 v_l$ v_l$ NUM fq977s77r68 3 22 when when SCONJ fq977s77r68 3 23 $ $ SYM fq977s77r68 3 24 l$ l$ NOUN fq977s77r68 3 25 is be AUX fq977s77r68 3 26 of of ADP fq977s77r68 3 27 rank rank NOUN fq977s77r68 3 28 $ $ SYM fq977s77r68 3 29 2 2 NUM fq977s77r68 3 30 $ $ NUM fq977s77r68 3 31 , , PUNCT fq977s77r68 3 32 and and CCONJ fq977s77r68 3 33 how how SCONJ fq977s77r68 3 34 one one PRON fq977s77r68 3 35 can can AUX fq977s77r68 3 36 take take VERB fq977s77r68 3 37 the the DET fq977s77r68 3 38 intersection intersection NOUN fq977s77r68 3 39 of of ADP fq977s77r68 3 40 the the DET fq977s77r68 3 41 kernels kernel NOUN fq977s77r68 3 42 of of ADP fq977s77r68 3 43 certain certain ADJ fq977s77r68 3 44 commuting commuting NOUN fq977s77r68 3 45 screening screen VERB fq977s77r68 3 46 operators operator NOUN fq977s77r68 3 47 to to PART fq977s77r68 3 48 obtain obtain VERB fq977s77r68 3 49 interesting interesting ADJ fq977s77r68 3 50 vertex vertex NOUN fq977s77r68 3 51 operator operator NOUN fq977s77r68 3 52 algebras algebra NOUN fq977s77r68 3 53 that that PRON fq977s77r68 3 54 can can AUX fq977s77r68 3 55 be be AUX fq977s77r68 3 56 analyzed analyze VERB fq977s77r68 3 57 using use VERB fq977s77r68 3 58 this this DET fq977s77r68 3 59 intersection intersection NOUN fq977s77r68 3 60 of of ADP fq977s77r68 3 61 kernels kernel NOUN fq977s77r68 3 62 structure structure NOUN fq977s77r68 3 63 . . PUNCT fq977s77r68 4 1 the the DET fq977s77r68 4 2 subalgebras subalgebra NOUN fq977s77r68 4 3 studied study VERB fq977s77r68 4 4 here here ADV fq977s77r68 4 5 share share NOUN fq977s77r68 4 6 features feature NOUN fq977s77r68 4 7 similar similar ADJ fq977s77r68 4 8 to to ADP fq977s77r68 4 9 the the DET fq977s77r68 4 10 $ $ SYM fq977s77r68 4 11 \mathcal{w}(p)$-algebra \mathcal{w}(p)$-algebra PROPN fq977s77r68 4 12 in in ADP fq977s77r68 4 13 the the DET fq977s77r68 4 14 rank rank NOUN fq977s77r68 4 15 1 1 NUM fq977s77r68 4 16 setting setting NOUN fq977s77r68 4 17 , , PUNCT fq977s77r68 4 18 in in SCONJ fq977s77r68 4 19 that that SCONJ fq977s77r68 4 20 they they PRON fq977s77r68 4 21 are be AUX fq977s77r68 4 22 simple simple ADJ fq977s77r68 4 23 , , PUNCT fq977s77r68 4 24 $ $ SYM fq977s77r68 4 25 c_2$-cofinite c_2$-cofinite ADJ fq977s77r68 4 26 , , PUNCT fq977s77r68 4 27 and and CCONJ fq977s77r68 4 28 irrational irrational ADJ fq977s77r68 4 29 . . PUNCT fq977s77r68 5 1 we we PRON fq977s77r68 5 2 classify classify VERB fq977s77r68 5 3 the the DET fq977s77r68 5 4 irreducible irreducible ADJ fq977s77r68 5 5 modules module NOUN fq977s77r68 5 6 for for ADP fq977s77r68 5 7 these these DET fq977s77r68 5 8 vertex vertex NOUN fq977s77r68 5 9 operator operator NOUN fq977s77r68 5 10 superalgebras superalgebras PROPN fq977s77r68 5 11 . . PUNCT