id sid tid token lemma pos ff365428x4m 1 1 totally totally ADV ff365428x4m 1 2 positive positive ADJ ff365428x4m 1 3 matrices matrix NOUN ff365428x4m 1 4 are be AUX ff365428x4m 1 5 matrices matrix NOUN ff365428x4m 1 6 in in ADP ff365428x4m 1 7 which which PRON ff365428x4m 1 8 each each DET ff365428x4m 1 9 minor minor ADJ ff365428x4m 1 10 is be AUX ff365428x4m 1 11 positive positive ADJ ff365428x4m 1 12 . . PUNCT ff365428x4m 2 1 such such ADJ ff365428x4m 2 2 matrices matrix NOUN ff365428x4m 2 3 appear appear VERB ff365428x4m 2 4 in in ADP ff365428x4m 2 5 many many ADJ ff365428x4m 2 6 different different ADJ ff365428x4m 2 7 areas area NOUN ff365428x4m 2 8 of of ADP ff365428x4m 2 9 theoretical theoretical ADJ ff365428x4m 2 10 and and CCONJ ff365428x4m 2 11 applied apply VERB ff365428x4m 2 12 mathematics mathematic NOUN ff365428x4m 2 13 . . PUNCT ff365428x4m 3 1 investigation investigation NOUN ff365428x4m 3 2 of of ADP ff365428x4m 3 3 the the DET ff365428x4m 3 4 structure structure NOUN ff365428x4m 3 5 of of ADP ff365428x4m 3 6 inequalities inequality NOUN ff365428x4m 3 7 between between ADP ff365428x4m 3 8 the the DET ff365428x4m 3 9 minors minor NOUN ff365428x4m 3 10 of of ADP ff365428x4m 3 11 totally totally ADV ff365428x4m 3 12 positive positive ADJ ff365428x4m 3 13 matrices matrix NOUN ff365428x4m 3 14 plays play VERB ff365428x4m 3 15 an an DET ff365428x4m 3 16 important important ADJ ff365428x4m 3 17 role role NOUN ff365428x4m 3 18 in in ADP ff365428x4m 3 19 many many ADJ ff365428x4m 3 20 problems problem NOUN ff365428x4m 3 21 in in ADP ff365428x4m 3 22 these these DET ff365428x4m 3 23 areas area NOUN ff365428x4m 3 24 . . PUNCT ff365428x4m 4 1 in in ADP ff365428x4m 4 2 representation representation NOUN ff365428x4m 4 3 theory theory NOUN ff365428x4m 4 4 of of ADP ff365428x4m 4 5 quantized quantize VERB ff365428x4m 4 6 enveloping envelop VERB ff365428x4m 4 7 algebras algebra NOUN ff365428x4m 4 8 the the DET ff365428x4m 4 9 notion notion NOUN ff365428x4m 4 10 of of ADP ff365428x4m 4 11 canonical canonical ADJ ff365428x4m 4 12 bases basis NOUN ff365428x4m 4 13 plays play VERB ff365428x4m 4 14 important important ADJ ff365428x4m 4 15 role role NOUN ff365428x4m 4 16 . . PUNCT ff365428x4m 5 1 one one NUM ff365428x4m 5 2 of of ADP ff365428x4m 5 3 the the DET ff365428x4m 5 4 approaches approach NOUN ff365428x4m 5 5 to to PART ff365428x4m 5 6 describe describe VERB ff365428x4m 5 7 canonical canonical ADJ ff365428x4m 5 8 bases basis NOUN ff365428x4m 5 9 is be AUX ff365428x4m 5 10 to to PART ff365428x4m 5 11 study study VERB ff365428x4m 5 12 their their PRON ff365428x4m 5 13 dual dual ADJ ff365428x4m 5 14 objects object NOUN ff365428x4m 5 15 , , PUNCT ff365428x4m 5 16 so so ADV ff365428x4m 5 17 called call VERB ff365428x4m 5 18 dual dual ADJ ff365428x4m 5 19 canonical canonical ADJ ff365428x4m 5 20 bases basis NOUN ff365428x4m 5 21 . . PUNCT ff365428x4m 6 1 lusztig lusztig PROPN ff365428x4m 6 2 has have AUX ff365428x4m 6 3 shown show VERB ff365428x4m 6 4 that that SCONJ ff365428x4m 6 5 specializations specialization NOUN ff365428x4m 6 6 of of ADP ff365428x4m 6 7 elements element NOUN ff365428x4m 6 8 of of ADP ff365428x4m 6 9 the the DET ff365428x4m 6 10 dual dual ADJ ff365428x4m 6 11 canonical canonical ADJ ff365428x4m 6 12 bases basis NOUN ff365428x4m 6 13 at at ADP ff365428x4m 6 14 q=1 q=1 NOUN ff365428x4m 6 15 are be AUX ff365428x4m 6 16 totally totally ADV ff365428x4m 6 17 non non ADJ ff365428x4m 6 18 - - ADJ ff365428x4m 6 19 negative negative ADJ ff365428x4m 6 20 polynomials polynomial NOUN ff365428x4m 6 21 . . PUNCT ff365428x4m 7 1 to to ADP ff365428x4m 7 2 this this DET ff365428x4m 7 3 end end NOUN ff365428x4m 7 4 there there PRON ff365428x4m 7 5 is be VERB ff365428x4m 7 6 an an DET ff365428x4m 7 7 interest interest NOUN ff365428x4m 7 8 in in ADP ff365428x4m 7 9 functions function NOUN ff365428x4m 7 10 that that PRON ff365428x4m 7 11 are be AUX ff365428x4m 7 12 positive positive ADJ ff365428x4m 7 13 on on ADP ff365428x4m 7 14 the the DET ff365428x4m 7 15 locus locus NOUN ff365428x4m 7 16 of of ADP ff365428x4m 7 17 totally totally ADV ff365428x4m 7 18 positive positive ADJ ff365428x4m 7 19 matrices matrix NOUN ff365428x4m 7 20 . . PUNCT ff365428x4m 8 1 we we PRON ff365428x4m 8 2 present present VERB ff365428x4m 8 3 results result NOUN ff365428x4m 8 4 on on ADP ff365428x4m 8 5 multiplicative multiplicative ADJ ff365428x4m 8 6 determinantal determinantal ADJ ff365428x4m 8 7 inequalities inequality NOUN ff365428x4m 8 8 ( ( PUNCT ff365428x4m 8 9 joint joint ADJ ff365428x4m 8 10 work work NOUN ff365428x4m 8 11 with with ADP ff365428x4m 8 12 m. m. NOUN ff365428x4m 8 13 gekhtman gekhtman PROPN ff365428x4m 8 14 ) ) PUNCT ff365428x4m 8 15 as as ADV ff365428x4m 8 16 well well ADV ff365428x4m 8 17 as as ADP ff365428x4m 8 18 possible possible ADJ ff365428x4m 8 19 further further ADJ ff365428x4m 8 20 directions direction NOUN ff365428x4m 8 21 including include VERB ff365428x4m 8 22 ratios ratio NOUN ff365428x4m 8 23 containing contain VERB ff365428x4m 8 24 exotic exotic ADJ ff365428x4m 8 25 cluster cluster NOUN ff365428x4m 8 26 variables variable NOUN ff365428x4m 8 27 . . PUNCT ff365428x4m 9 1 furthermore furthermore ADV ff365428x4m 9 2 , , PUNCT ff365428x4m 9 3 we we PRON ff365428x4m 9 4 present present VERB ff365428x4m 9 5 a a DET ff365428x4m 9 6 majorizing majorize VERB ff365428x4m 9 7 monotonicity monotonicity NOUN ff365428x4m 9 8 of of ADP ff365428x4m 9 9 symmetrized symmetrized ADJ ff365428x4m 9 10 fischer fischer NOUN ff365428x4m 9 11 's 's PART ff365428x4m 9 12 products product NOUN ff365428x4m 9 13 which which PRON ff365428x4m 9 14 are be AUX ff365428x4m 9 15 a a DET ff365428x4m 9 16 natural natural ADJ ff365428x4m 9 17 generalization generalization NOUN ff365428x4m 9 18 of of ADP ff365428x4m 9 19 hadamard hadamard ADJ ff365428x4m 9 20 - - PUNCT ff365428x4m 9 21 fischer fischer NOUN ff365428x4m 9 22 inequalities inequality NOUN ff365428x4m 9 23 . . PUNCT ff365428x4m 10 1 majorizing majorize VERB ff365428x4m 10 2 monotonicity monotonicity NOUN ff365428x4m 10 3 of of ADP ff365428x4m 10 4 symmetrized symmetrized ADJ ff365428x4m 10 5 fischer fischer NOUN ff365428x4m 10 6 's 's PART ff365428x4m 10 7 products product NOUN ff365428x4m 10 8 were be AUX ff365428x4m 10 9 already already ADV ff365428x4m 10 10 known know VERB ff365428x4m 10 11 for for ADP ff365428x4m 10 12 hermitian hermitian ADJ ff365428x4m 10 13 positive positive ADJ ff365428x4m 10 14 semi semi ADJ ff365428x4m 10 15 - - ADJ ff365428x4m 10 16 definite definite ADJ ff365428x4m 10 17 matrices matrix NOUN ff365428x4m 10 18 which which PRON ff365428x4m 10 19 brings bring VERB ff365428x4m 10 20 additional additional ADJ ff365428x4m 10 21 motivation motivation NOUN ff365428x4m 10 22 to to PART ff365428x4m 10 23 verify verify VERB ff365428x4m 10 24 if if SCONJ ff365428x4m 10 25 they they PRON ff365428x4m 10 26 hold hold VERB ff365428x4m 10 27 for for ADP ff365428x4m 10 28 totally totally ADV ff365428x4m 10 29 positive positive ADJ ff365428x4m 10 30 matrices matrix NOUN ff365428x4m 10 31 as as ADV ff365428x4m 10 32 well well ADV ff365428x4m 10 33 ( ( PUNCT ff365428x4m 10 34 joint joint ADJ ff365428x4m 10 35 work work NOUN ff365428x4m 10 36 with with ADP ff365428x4m 10 37 m. m. PROPN ff365428x4m 10 38 skandera skandera PROPN ff365428x4m 10 39 ) ) PUNCT ff365428x4m 10 40 . . PUNCT ff365428x4m 11 1 the the DET ff365428x4m 11 2 main main ADJ ff365428x4m 11 3 tools tool NOUN ff365428x4m 11 4 we we PRON ff365428x4m 11 5 employed employ VERB ff365428x4m 11 6 are be AUX ff365428x4m 11 7 network network NOUN ff365428x4m 11 8 parametrization parametrization NOUN ff365428x4m 11 9 and and CCONJ ff365428x4m 11 10 temperley temperley PROPN ff365428x4m 11 11 - - PUNCT ff365428x4m 11 12 lieb lieb PROPN ff365428x4m 11 13 and and CCONJ ff365428x4m 11 14 monomial monomial ADJ ff365428x4m 11 15 trace trace NOUN ff365428x4m 11 16 immanants immanant NOUN ff365428x4m 11 17 . . PUNCT