id sid tid token lemma pos dj52w378725 1 1 in in ADP dj52w378725 1 2 classical classical ADJ dj52w378725 1 3 lefschetz lefschetz PROPN dj52w378725 1 4 - - PUNCT dj52w378725 1 5 nielsen nielsen PROPN dj52w378725 1 6 theory theory NOUN dj52w378725 1 7 , , PUNCT dj52w378725 1 8 one one NUM dj52w378725 1 9 defines define VERB dj52w378725 1 10 the the DET dj52w378725 1 11 lefschetz lefschetz ADJ dj52w378725 1 12 invariant invariant PROPN dj52w378725 1 13 l(f l(f PROPN dj52w378725 1 14 ) ) PUNCT dj52w378725 1 15 of of ADP dj52w378725 1 16 an an DET dj52w378725 1 17 endomorphism endomorphism NOUN dj52w378725 1 18 f f X dj52w378725 1 19 of of ADP dj52w378725 1 20 a a DET dj52w378725 1 21 manifold manifold ADJ dj52w378725 1 22 m. m. NOUN dj52w378725 1 23 the the DET dj52w378725 1 24 definition definition NOUN dj52w378725 1 25 depends depend VERB dj52w378725 1 26 on on ADP dj52w378725 1 27 the the DET dj52w378725 1 28 fundamental fundamental ADJ dj52w378725 1 29 group group NOUN dj52w378725 1 30 of of ADP dj52w378725 1 31 m m PROPN dj52w378725 1 32 , , PUNCT dj52w378725 1 33 and and CCONJ dj52w378725 1 34 hence hence ADV dj52w378725 1 35 on on ADP dj52w378725 1 36 choosing choose VERB dj52w378725 1 37 a a DET dj52w378725 1 38 base base NOUN dj52w378725 1 39 point point NOUN dj52w378725 1 40 * * PUNCT dj52w378725 1 41 in in ADP dj52w378725 1 42 m m NOUN dj52w378725 1 43 and and CCONJ dj52w378725 1 44 a a DET dj52w378725 1 45 base base ADJ dj52w378725 1 46 path path NOUN dj52w378725 1 47 from from ADP dj52w378725 1 48 * * PUNCT dj52w378725 1 49 to to ADP dj52w378725 1 50 f f PROPN dj52w378725 1 51 ( ( PUNCT dj52w378725 1 52 * * PUNCT dj52w378725 1 53 ) ) PUNCT dj52w378725 1 54 . . PUNCT dj52w378725 2 1 our our PRON dj52w378725 2 2 goal goal NOUN dj52w378725 2 3 is be AUX dj52w378725 2 4 to to PART dj52w378725 2 5 develop develop VERB dj52w378725 2 6 a a DET dj52w378725 2 7 family family NOUN dj52w378725 2 8 version version NOUN dj52w378725 2 9 of of ADP dj52w378725 2 10 lefschetz lefschetz PROPN dj52w378725 2 11 - - PUNCT dj52w378725 2 12 nielsen nielsen PROPN dj52w378725 2 13 theory theory NOUN dj52w378725 2 14 , , PUNCT dj52w378725 2 15 i.e. i.e. X dj52w378725 2 16 , , PUNCT dj52w378725 2 17 for for ADP dj52w378725 2 18 a a DET dj52w378725 2 19 smooth smooth ADJ dj52w378725 2 20 fiber fiber NOUN dj52w378725 2 21 bundle bundle NOUN dj52w378725 2 22 p p NOUN dj52w378725 2 23 : : PUNCT dj52w378725 2 24 e-- e-- NUM dj52w378725 2 25 > > SYM dj52w378725 2 26 b b PROPN dj52w378725 2 27 and and CCONJ dj52w378725 2 28 a a DET dj52w378725 2 29 fiber fiber NOUN dj52w378725 2 30 bundle bundle NOUN dj52w378725 2 31 endomorphism endomorphism NOUN dj52w378725 2 32 f f X dj52w378725 2 33 : : PUNCT dj52w378725 2 34 e-- e-- X dj52w378725 2 35 > > X dj52w378725 2 36 e. e. PROPN dj52w378725 2 37 a a DET dj52w378725 2 38 family family NOUN dj52w378725 2 39 version version NOUN dj52w378725 2 40 of of ADP dj52w378725 2 41 the the DET dj52w378725 2 42 classical classical ADJ dj52w378725 2 43 approach approach NOUN dj52w378725 2 44 involves involve VERB dj52w378725 2 45 choosing choose VERB dj52w378725 2 46 a a DET dj52w378725 2 47 section section NOUN dj52w378725 2 48 s s PART dj52w378725 2 49 : : PUNCT dj52w378725 2 50 b-- b-- PROPN dj52w378725 2 51 > > X dj52w378725 2 52 e e PROPN dj52w378725 2 53 of of ADP dj52w378725 2 54 p p PROPN dj52w378725 2 55 and and CCONJ dj52w378725 2 56 a a DET dj52w378725 2 57 path path NOUN dj52w378725 2 58 of of ADP dj52w378725 2 59 sections section NOUN dj52w378725 2 60 from from ADP dj52w378725 2 61 s s VERB dj52w378725 2 62 to to ADP dj52w378725 2 63 fs fs PROPN dj52w378725 2 64 . . PROPN dj52w378725 3 1 not not PART dj52w378725 3 2 only only ADV dj52w378725 3 3 is be AUX dj52w378725 3 4 this this DET dj52w378725 3 5 artificial artificial ADJ dj52w378725 3 6 , , PUNCT dj52w378725 3 7 but but CCONJ dj52w378725 3 8 such such DET dj52w378725 3 9 a a DET dj52w378725 3 10 path path NOUN dj52w378725 3 11 does do AUX dj52w378725 3 12 not not PART dj52w378725 3 13 always always ADV dj52w378725 3 14 exist exist VERB dj52w378725 3 15 . . PUNCT dj52w378725 4 1 to to PART dj52w378725 4 2 avoid avoid VERB dj52w378725 4 3 this this DET dj52w378725 4 4 difficulty difficulty NOUN dj52w378725 4 5 , , PUNCT dj52w378725 4 6 we we PRON dj52w378725 4 7 replace replace VERB dj52w378725 4 8 the the DET dj52w378725 4 9 fundamental fundamental ADJ dj52w378725 4 10 group group NOUN dj52w378725 4 11 with with ADP dj52w378725 4 12 the the DET dj52w378725 4 13 fundamental fundamental ADJ dj52w378725 4 14 groupoid groupoid NOUN dj52w378725 4 15 . . PUNCT dj52w378725 5 1 this this PRON dj52w378725 5 2 gives give VERB dj52w378725 5 3 us we PRON dj52w378725 5 4 a a DET dj52w378725 5 5 base base NOUN dj52w378725 5 6 point point NOUN dj52w378725 5 7 free free ADJ dj52w378725 5 8 version version NOUN dj52w378725 5 9 of of ADP dj52w378725 5 10 the the DET dj52w378725 5 11 lefschetz lefschetz ADJ dj52w378725 5 12 invariant invariant NOUN dj52w378725 5 13 . . PUNCT dj52w378725 6 1 in in ADP dj52w378725 6 2 the the DET dj52w378725 6 3 family family NOUN dj52w378725 6 4 setting setting NOUN dj52w378725 6 5 , , PUNCT dj52w378725 6 6 we we PRON dj52w378725 6 7 define define VERB dj52w378725 6 8 the the DET dj52w378725 6 9 lefschetz lefschetz ADJ dj52w378725 6 10 invariant invariant NOUN dj52w378725 6 11 using use VERB dj52w378725 6 12 a a DET dj52w378725 6 13 bordism bordism NOUN dj52w378725 6 14 theoretic theoretic ADJ dj52w378725 6 15 construction construction NOUN dj52w378725 6 16 , , PUNCT dj52w378725 6 17 and and CCONJ dj52w378725 6 18 prove prove VERB dj52w378725 6 19 a a DET dj52w378725 6 20 hopf hopf NOUN dj52w378725 6 21 - - PUNCT dj52w378725 6 22 lefschetz lefschetz VERB dj52w378725 6 23 theorem theorem NOUN dj52w378725 6 24 . . PUNCT dj52w378725 7 1 we we PRON dj52w378725 7 2 then then ADV dj52w378725 7 3 describe describe VERB dj52w378725 7 4 our our PRON dj52w378725 7 5 ideas idea NOUN dj52w378725 7 6 for for ADP dj52w378725 7 7 extending extend VERB dj52w378725 7 8 the the DET dj52w378725 7 9 algebraic algebraic ADJ dj52w378725 7 10 base base NOUN dj52w378725 7 11 point point NOUN dj52w378725 7 12 free free ADJ dj52w378725 7 13 invariant invariant NOUN dj52w378725 7 14 to to PART dj52w378725 7 15 get get VERB dj52w378725 7 16 an an DET dj52w378725 7 17 algebraic algebraic ADJ dj52w378725 7 18 version version NOUN dj52w378725 7 19 of of ADP dj52w378725 7 20 the the DET dj52w378725 7 21 lefschetz lefschetz ADJ dj52w378725 7 22 invariant invariant NOUN dj52w378725 7 23 in in ADP dj52w378725 7 24 the the DET dj52w378725 7 25 family family NOUN dj52w378725 7 26 setting setting NOUN dj52w378725 7 27 . . PUNCT