id sid tid token lemma pos d791sf29f6p 1 1 we we PRON d791sf29f6p 1 2 construct construct VERB d791sf29f6p 1 3 a a DET d791sf29f6p 1 4 geometric geometric ADJ d791sf29f6p 1 5 analogue analogue NOUN d791sf29f6p 1 6 to to ADP d791sf29f6p 1 7 the the DET d791sf29f6p 1 8 sphere sphere NOUN d791sf29f6p 1 9 with with ADP d791sf29f6p 1 10 tubes tube NOUN d791sf29f6p 1 11 model model NOUN d791sf29f6p 1 12 where where SCONJ d791sf29f6p 1 13 there there PRON d791sf29f6p 1 14 is be VERB d791sf29f6p 1 15 one one NUM d791sf29f6p 1 16 incoming incoming NOUN d791sf29f6p 1 17 and and CCONJ d791sf29f6p 1 18 one one NUM d791sf29f6p 1 19 outgoing outgoing ADJ d791sf29f6p 1 20 tube tube NOUN d791sf29f6p 1 21 in in ADP d791sf29f6p 1 22 yi yi PROPN d791sf29f6p 1 23 - - PUNCT d791sf29f6p 1 24 zhi zhi PROPN d791sf29f6p 1 25 huang huang PROPN d791sf29f6p 1 26 's 's PART d791sf29f6p 1 27 notion notion NOUN d791sf29f6p 1 28 of of ADP d791sf29f6p 1 29 a a DET d791sf29f6p 1 30 geometric geometric ADJ d791sf29f6p 1 31 vertex vertex NOUN d791sf29f6p 1 32 operator operator NOUN d791sf29f6p 1 33 algebra algebra NOUN d791sf29f6p 1 34 ( ( PUNCT d791sf29f6p 1 35 gvoa gvoa PROPN d791sf29f6p 1 36 ) ) PUNCT d791sf29f6p 1 37 in in ADP d791sf29f6p 1 38 a a DET d791sf29f6p 1 39 generalized generalized ADJ d791sf29f6p 1 40 setting setting NOUN d791sf29f6p 1 41 that that PRON d791sf29f6p 1 42 resolves resolve VERB d791sf29f6p 1 43 the the DET d791sf29f6p 1 44 multivaluedness multivaluedness NOUN d791sf29f6p 1 45 resulting result VERB d791sf29f6p 1 46 from from ADP d791sf29f6p 1 47 a a DET d791sf29f6p 1 48 generalization generalization NOUN d791sf29f6p 1 49 of of ADP d791sf29f6p 1 50 the the DET d791sf29f6p 1 51 grading grading ADJ d791sf29f6p 1 52 axiom axiom NOUN d791sf29f6p 1 53 in in ADP d791sf29f6p 1 54 a a DET d791sf29f6p 1 55 gvoa gvoa NOUN d791sf29f6p 1 56 such such ADJ d791sf29f6p 1 57 that that SCONJ d791sf29f6p 1 58 it it PRON d791sf29f6p 1 59 is be AUX d791sf29f6p 1 60 no no ADV d791sf29f6p 1 61 longer long ADV d791sf29f6p 1 62 semisimple semisimple ADJ d791sf29f6p 1 63 ; ; PUNCT d791sf29f6p 1 64 we we PRON d791sf29f6p 1 65 call call VERB d791sf29f6p 1 66 the the DET d791sf29f6p 1 67 objects object NOUN d791sf29f6p 1 68 in in ADP d791sf29f6p 1 69 our our PRON d791sf29f6p 1 70 geometric geometric ADJ d791sf29f6p 1 71 structure structure NOUN d791sf29f6p 1 72 the the DET d791sf29f6p 1 73 unfurled unfurled ADJ d791sf29f6p 1 74 worldsheets worldsheet NOUN d791sf29f6p 1 75 . . PUNCT d791sf29f6p 2 1 we we PRON d791sf29f6p 2 2 establish establish VERB d791sf29f6p 2 3 a a DET d791sf29f6p 2 4 partial partial ADJ d791sf29f6p 2 5 semi semi ADJ d791sf29f6p 2 6 - - ADJ d791sf29f6p 2 7 group group ADJ d791sf29f6p 2 8 structure structure NOUN d791sf29f6p 2 9 on on ADP d791sf29f6p 2 10 the the DET d791sf29f6p 2 11 unfurled unfurled ADJ d791sf29f6p 2 12 worldsheets worldsheet NOUN d791sf29f6p 2 13 , , PUNCT d791sf29f6p 2 14 and and CCONJ d791sf29f6p 2 15 show show VERB d791sf29f6p 2 16 that that SCONJ d791sf29f6p 2 17 a a DET d791sf29f6p 2 18 certain certain ADJ d791sf29f6p 2 19 associated associated ADJ d791sf29f6p 2 20 tangent tangent NOUN d791sf29f6p 2 21 space space NOUN d791sf29f6p 2 22 forms form VERB d791sf29f6p 2 23 an an DET d791sf29f6p 2 24 algebra algebra NOUN d791sf29f6p 2 25 that that PRON d791sf29f6p 2 26 is be AUX d791sf29f6p 2 27 not not PART d791sf29f6p 2 28 leibniz leibniz NOUN d791sf29f6p 2 29 . . PUNCT d791sf29f6p 3 1 then then ADV d791sf29f6p 3 2 , , PUNCT d791sf29f6p 3 3 we we PRON d791sf29f6p 3 4 introduce introduce VERB d791sf29f6p 3 5 a a DET d791sf29f6p 3 6 new new ADJ d791sf29f6p 3 7 piece piece NOUN d791sf29f6p 3 8 of of ADP d791sf29f6p 3 9 data datum NOUN d791sf29f6p 3 10 to to ADP d791sf29f6p 3 11 our our PRON d791sf29f6p 3 12 notion notion NOUN d791sf29f6p 3 13 of of ADP d791sf29f6p 3 14 unfurled unfurled ADJ d791sf29f6p 3 15 worldsheet worldsheet NOUN d791sf29f6p 3 16 , , PUNCT d791sf29f6p 3 17 which which PRON d791sf29f6p 3 18 results result VERB d791sf29f6p 3 19 in in ADP d791sf29f6p 3 20 a a DET d791sf29f6p 3 21 new new ADJ d791sf29f6p 3 22 collection collection NOUN d791sf29f6p 3 23 of of ADP d791sf29f6p 3 24 objects object NOUN d791sf29f6p 3 25 , , PUNCT d791sf29f6p 3 26 called call VERB d791sf29f6p 3 27 the the DET d791sf29f6p 3 28 unfurled unfurled ADJ d791sf29f6p 3 29 worldsheets worldsheet NOUN d791sf29f6p 3 30 with with ADP d791sf29f6p 3 31 dilation dilation NOUN d791sf29f6p 3 32 . . PUNCT d791sf29f6p 4 1 we we PRON d791sf29f6p 4 2 find find VERB d791sf29f6p 4 3 that that SCONJ d791sf29f6p 4 4 the the DET d791sf29f6p 4 5 unfurled unfurled ADJ d791sf29f6p 4 6 worldsheets worldsheet NOUN d791sf29f6p 4 7 with with ADP d791sf29f6p 4 8 dilation dilation NOUN d791sf29f6p 4 9 are be AUX d791sf29f6p 4 10 not not PART d791sf29f6p 4 11 closed close VERB d791sf29f6p 4 12 under under ADP d791sf29f6p 4 13 our our PRON d791sf29f6p 4 14 analogue analogue NOUN d791sf29f6p 4 15 of of ADP d791sf29f6p 4 16 sewing sewing NOUN d791sf29f6p 4 17 . . PUNCT d791sf29f6p 5 1 however however ADV d791sf29f6p 5 2 , , PUNCT d791sf29f6p 5 3 we we PRON d791sf29f6p 5 4 can can AUX d791sf29f6p 5 5 close close VERB d791sf29f6p 5 6 the the DET d791sf29f6p 5 7 sewing sewing NOUN d791sf29f6p 5 8 by by ADP d791sf29f6p 5 9 creating create VERB d791sf29f6p 5 10 an an DET d791sf29f6p 5 11 extension extension NOUN d791sf29f6p 5 12 of of ADP d791sf29f6p 5 13 the the DET d791sf29f6p 5 14 virasoro virasoro ADJ d791sf29f6p 5 15 algebra algebra NOUN d791sf29f6p 5 16 . . PUNCT d791sf29f6p 6 1 this this DET d791sf29f6p 6 2 extension extension NOUN d791sf29f6p 6 3 scaffolds scaffold VERB d791sf29f6p 6 4 our our PRON d791sf29f6p 6 5 formal formal ADJ d791sf29f6p 6 6 identification identification NOUN d791sf29f6p 6 7 of of ADP d791sf29f6p 6 8 the the DET d791sf29f6p 6 9 moduli modulus NOUN d791sf29f6p 6 10 space space NOUN d791sf29f6p 6 11 of of ADP d791sf29f6p 6 12 the the DET d791sf29f6p 6 13 unfurled unfurled ADJ d791sf29f6p 6 14 worldsheets worldsheet NOUN d791sf29f6p 6 15 with with ADP d791sf29f6p 6 16 dilation dilation NOUN d791sf29f6p 6 17 . . PUNCT