id sid tid token lemma pos cc08hd78v30 1 1 in in ADP cc08hd78v30 1 2 this this DET cc08hd78v30 1 3 thesis thesis NOUN cc08hd78v30 1 4 , , PUNCT cc08hd78v30 1 5 we we PRON cc08hd78v30 1 6 shall shall AUX cc08hd78v30 1 7 examine examine VERB cc08hd78v30 1 8 a a DET cc08hd78v30 1 9 strong strong ADJ cc08hd78v30 1 10 form form NOUN cc08hd78v30 1 11 of of ADP cc08hd78v30 1 12 oka oka PROPN cc08hd78v30 1 13 's 's PART cc08hd78v30 1 14 lemma lemma NOUN cc08hd78v30 1 15 which which PRON cc08hd78v30 1 16 provides provide VERB cc08hd78v30 1 17 sufficient sufficient ADJ cc08hd78v30 1 18 conditions condition NOUN cc08hd78v30 1 19 for for ADP cc08hd78v30 1 20 compact compact ADJ cc08hd78v30 1 21 and and CCONJ cc08hd78v30 1 22 subelliptic subelliptic ADJ cc08hd78v30 1 23 estimates estimate NOUN cc08hd78v30 1 24 for for ADP cc08hd78v30 1 25 the the DET cc08hd78v30 1 26 d d NOUN cc08hd78v30 1 27 - - PUNCT cc08hd78v30 1 28 bar bar NOUN cc08hd78v30 1 29 neumann neumann NOUN cc08hd78v30 1 30 operator operator NOUN cc08hd78v30 1 31 on on ADP cc08hd78v30 1 32 lipschitz lipschitz NOUN cc08hd78v30 1 33 domains domain NOUN cc08hd78v30 1 34 . . PUNCT cc08hd78v30 2 1 on on ADP cc08hd78v30 2 2 smooth smooth ADJ cc08hd78v30 2 3 domains domain NOUN cc08hd78v30 2 4 , , PUNCT cc08hd78v30 2 5 the the DET cc08hd78v30 2 6 condition condition NOUN cc08hd78v30 2 7 for for ADP cc08hd78v30 2 8 subellipticity subellipticity NOUN cc08hd78v30 2 9 is be AUX cc08hd78v30 2 10 equivalent equivalent ADJ cc08hd78v30 2 11 to to ADP cc08hd78v30 2 12 d'angelo d'angelo PROPN cc08hd78v30 2 13 finite finite ADJ cc08hd78v30 2 14 - - PUNCT cc08hd78v30 2 15 type type NOUN cc08hd78v30 2 16 and and CCONJ cc08hd78v30 2 17 the the DET cc08hd78v30 2 18 condition condition NOUN cc08hd78v30 2 19 for for ADP cc08hd78v30 2 20 compactness compactness NOUN cc08hd78v30 2 21 is be AUX cc08hd78v30 2 22 equivalent equivalent ADJ cc08hd78v30 2 23 to to ADP cc08hd78v30 2 24 catlin catlin PROPN cc08hd78v30 2 25 's 's PART cc08hd78v30 2 26 condition condition NOUN cc08hd78v30 2 27 ( ( PUNCT cc08hd78v30 2 28 p p NOUN cc08hd78v30 2 29 ) ) PUNCT cc08hd78v30 2 30 . . PUNCT cc08hd78v30 3 1 once once ADV cc08hd78v30 3 2 the the DET cc08hd78v30 3 3 basic basic ADJ cc08hd78v30 3 4 properties property NOUN cc08hd78v30 3 5 of of ADP cc08hd78v30 3 6 this this DET cc08hd78v30 3 7 condition condition NOUN cc08hd78v30 3 8 have have AUX cc08hd78v30 3 9 been be AUX cc08hd78v30 3 10 established establish VERB cc08hd78v30 3 11 , , PUNCT cc08hd78v30 3 12 we we PRON cc08hd78v30 3 13 will will AUX cc08hd78v30 3 14 study study VERB cc08hd78v30 3 15 the the DET cc08hd78v30 3 16 extent extent NOUN cc08hd78v30 3 17 to to PART cc08hd78v30 3 18 which which PRON cc08hd78v30 3 19 these these DET cc08hd78v30 3 20 estimates estimate NOUN cc08hd78v30 3 21 can can AUX cc08hd78v30 3 22 be be AUX cc08hd78v30 3 23 extended extend VERB cc08hd78v30 3 24 to to ADP cc08hd78v30 3 25 higher high ADJ cc08hd78v30 3 26 order order NOUN cc08hd78v30 3 27 derivatives derivative NOUN cc08hd78v30 3 28 on on ADP cc08hd78v30 3 29 c^k c^k NOUN cc08hd78v30 3 30 domains domain NOUN cc08hd78v30 3 31 , , PUNCT cc08hd78v30 3 32 with with ADP cc08hd78v30 3 33 k k X cc08hd78v30 3 34 greater great ADJ cc08hd78v30 3 35 than than ADP cc08hd78v30 3 36 or or CCONJ cc08hd78v30 3 37 equal equal ADJ cc08hd78v30 3 38 to to ADP cc08hd78v30 3 39 2 2 NUM cc08hd78v30 3 40 . . PUNCT cc08hd78v30 4 1 for for ADP cc08hd78v30 4 2 the the DET cc08hd78v30 4 3 lipschitz lipschitz NOUN cc08hd78v30 4 4 case case NOUN cc08hd78v30 4 5 , , PUNCT cc08hd78v30 4 6 we we PRON cc08hd78v30 4 7 will will AUX cc08hd78v30 4 8 look look VERB cc08hd78v30 4 9 at at ADP cc08hd78v30 4 10 higher high ADJ cc08hd78v30 4 11 order order NOUN cc08hd78v30 4 12 estimates estimate NOUN cc08hd78v30 4 13 in in ADP cc08hd78v30 4 14 the the DET cc08hd78v30 4 15 special special ADJ cc08hd78v30 4 16 case case NOUN cc08hd78v30 4 17 when when SCONJ cc08hd78v30 4 18 the the DET cc08hd78v30 4 19 domain domain NOUN cc08hd78v30 4 20 admits admit VERB cc08hd78v30 4 21 a a DET cc08hd78v30 4 22 plurisubharmonic plurisubharmonic ADJ cc08hd78v30 4 23 defining define VERB cc08hd78v30 4 24 function function NOUN cc08hd78v30 4 25 . . PUNCT cc08hd78v30 5 1 finally finally ADV cc08hd78v30 5 2 , , PUNCT cc08hd78v30 5 3 we we PRON cc08hd78v30 5 4 will will AUX cc08hd78v30 5 5 use use VERB cc08hd78v30 5 6 these these DET cc08hd78v30 5 7 estimates estimate NOUN cc08hd78v30 5 8 to to PART cc08hd78v30 5 9 construct construct VERB cc08hd78v30 5 10 a a DET cc08hd78v30 5 11 compact compact ADJ cc08hd78v30 5 12 solution solution NOUN cc08hd78v30 5 13 operator operator NOUN cc08hd78v30 5 14 for for ADP cc08hd78v30 5 15 the the DET cc08hd78v30 5 16 boundary boundary ADJ cc08hd78v30 5 17 complex complex NOUN cc08hd78v30 5 18 . . PUNCT