id sid tid token lemma pos 7p88cf97j2w 1 1 an an DET 7p88cf97j2w 1 2 industry industry NOUN 7p88cf97j2w 1 3 has have AUX 7p88cf97j2w 1 4 arisen arise VERB 7p88cf97j2w 1 5 dedicated dedicate VERB 7p88cf97j2w 1 6 to to ADP 7p88cf97j2w 1 7 the the DET 7p88cf97j2w 1 8 study study NOUN 7p88cf97j2w 1 9 of of ADP 7p88cf97j2w 1 10 the the DET 7p88cf97j2w 1 11 interplay interplay NOUN 7p88cf97j2w 1 12 between between ADP 7p88cf97j2w 1 13 combinatorial combinatorial ADJ 7p88cf97j2w 1 14 principles principle NOUN 7p88cf97j2w 1 15 and and CCONJ 7p88cf97j2w 1 16 computational computational ADJ 7p88cf97j2w 1 17 strength strength NOUN 7p88cf97j2w 1 18 . . PUNCT 7p88cf97j2w 2 1 in in ADP 7p88cf97j2w 2 2 particular particular ADJ 7p88cf97j2w 2 3 , , PUNCT 7p88cf97j2w 2 4 much much ADJ 7p88cf97j2w 2 5 work work NOUN 7p88cf97j2w 2 6 has have AUX 7p88cf97j2w 2 7 been be AUX 7p88cf97j2w 2 8 done do VERB 7p88cf97j2w 2 9 on on ADP 7p88cf97j2w 2 10 theorems theorem NOUN 7p88cf97j2w 2 11 similar similar ADJ 7p88cf97j2w 2 12 to to ADP 7p88cf97j2w 2 13 ramsey ramsey NOUN 7p88cf97j2w 2 14 's 's PART 7p88cf97j2w 2 15 theorem theorem NOUN 7p88cf97j2w 2 16 and and CCONJ 7p88cf97j2w 2 17 to to ADP 7p88cf97j2w 2 18 weak weak ADJ 7p88cf97j2w 2 19 k k PROPN 7p88cf97j2w 2 20 nig nig PROPN 7p88cf97j2w 2 21 's 's PART 7p88cf97j2w 2 22 lemma lemma NOUN 7p88cf97j2w 2 23 . . PUNCT 7p88cf97j2w 3 1 we we PRON 7p88cf97j2w 3 2 study study VERB 7p88cf97j2w 3 3 two two NUM 7p88cf97j2w 3 4 related related ADJ 7p88cf97j2w 3 5 principles principle NOUN 7p88cf97j2w 3 6 , , PUNCT 7p88cf97j2w 3 7 which which PRON 7p88cf97j2w 3 8 are be AUX 7p88cf97j2w 3 9 interesting interesting ADJ 7p88cf97j2w 3 10 both both PRON 7p88cf97j2w 3 11 for for ADP 7p88cf97j2w 3 12 their their PRON 7p88cf97j2w 3 13 combinatorial combinatorial ADJ 7p88cf97j2w 3 14 form form NOUN 7p88cf97j2w 3 15 and and CCONJ 7p88cf97j2w 3 16 for for ADP 7p88cf97j2w 3 17 their their PRON 7p88cf97j2w 3 18 computational computational ADJ 7p88cf97j2w 3 19 content content NOUN 7p88cf97j2w 3 20 . . PUNCT 7p88cf97j2w 4 1 we we PRON 7p88cf97j2w 4 2 begin begin VERB 7p88cf97j2w 4 3 by by ADP 7p88cf97j2w 4 4 studying study VERB 7p88cf97j2w 4 5 the the DET 7p88cf97j2w 4 6 computational computational ADJ 7p88cf97j2w 4 7 strength strength NOUN 7p88cf97j2w 4 8 of of ADP 7p88cf97j2w 4 9 a a DET 7p88cf97j2w 4 10 version version NOUN 7p88cf97j2w 4 11 of of ADP 7p88cf97j2w 4 12 ramsey ramsey NOUN 7p88cf97j2w 4 13 's 's PART 7p88cf97j2w 4 14 theorem theorem NOUN 7p88cf97j2w 4 15 that that PRON 7p88cf97j2w 4 16 combines combine VERB 7p88cf97j2w 4 17 features feature NOUN 7p88cf97j2w 4 18 of of ADP 7p88cf97j2w 4 19 finite finite NOUN 7p88cf97j2w 4 20 and and CCONJ 7p88cf97j2w 4 21 infinite infinite ADJ 7p88cf97j2w 4 22 ramsey ramsey PROPN 7p88cf97j2w 4 23 theory theory NOUN 7p88cf97j2w 4 24 . . PUNCT 7p88cf97j2w 5 1 paul paul PROPN 7p88cf97j2w 5 2 erdős erdős NOUN 7p88cf97j2w 5 3 and and CCONJ 7p88cf97j2w 5 4 fred fred ADJ 7p88cf97j2w 5 5 galvin galvin NOUN 7p88cf97j2w 5 6 proved prove VERB 7p88cf97j2w 5 7 that that SCONJ 7p88cf97j2w 5 8 for for ADP 7p88cf97j2w 5 9 each each DET 7p88cf97j2w 5 10 coloring color VERB 7p88cf97j2w 5 11 f f PROPN 7p88cf97j2w 5 12 , , PUNCT 7p88cf97j2w 5 13 there there PRON 7p88cf97j2w 5 14 is be VERB 7p88cf97j2w 5 15 an an DET 7p88cf97j2w 5 16 infinite infinite ADJ 7p88cf97j2w 5 17 set set NOUN 7p88cf97j2w 5 18 that that PRON 7p88cf97j2w 5 19 is be AUX 7p88cf97j2w 5 20 ' ' PUNCT 7p88cf97j2w 5 21 packed packed ADJ 7p88cf97j2w 5 22 together together ADV 7p88cf97j2w 5 23 ' ' PUNCT 7p88cf97j2w 5 24 which which PRON 7p88cf97j2w 5 25 is be AUX 7p88cf97j2w 5 26 given give VERB 7p88cf97j2w 5 27 ' ' PUNCT 7p88cf97j2w 5 28 a a DET 7p88cf97j2w 5 29 small small ADJ 7p88cf97j2w 5 30 number number NOUN 7p88cf97j2w 5 31 ' ' PUNCT 7p88cf97j2w 5 32 of of ADP 7p88cf97j2w 5 33 colors color NOUN 7p88cf97j2w 5 34 by by ADP 7p88cf97j2w 5 35 f. f. PROPN 7p88cf97j2w 6 1 we we PRON 7p88cf97j2w 6 2 show show VERB 7p88cf97j2w 6 3 that that SCONJ 7p88cf97j2w 6 4 this this DET 7p88cf97j2w 6 5 theorem theorem NOUN 7p88cf97j2w 6 6 is be AUX 7p88cf97j2w 6 7 close close ADJ 7p88cf97j2w 6 8 in in ADP 7p88cf97j2w 6 9 computational computational ADJ 7p88cf97j2w 6 10 strength strength NOUN 7p88cf97j2w 6 11 to to ADP 7p88cf97j2w 6 12 standard standard ADJ 7p88cf97j2w 6 13 ramsey ramsey NOUN 7p88cf97j2w 6 14 's 's PART 7p88cf97j2w 6 15 theorem theorem NOUN 7p88cf97j2w 6 16 , , PUNCT 7p88cf97j2w 6 17 giving give VERB 7p88cf97j2w 6 18 arithmetical arithmetical ADJ 7p88cf97j2w 6 19 bounds bound NOUN 7p88cf97j2w 6 20 for for ADP 7p88cf97j2w 6 21 solutions solution NOUN 7p88cf97j2w 6 22 to to ADP 7p88cf97j2w 6 23 computable computable NOUN 7p88cf97j2w 6 24 instances instance NOUN 7p88cf97j2w 6 25 . . PUNCT 7p88cf97j2w 7 1 in in ADP 7p88cf97j2w 7 2 reverse reverse ADJ 7p88cf97j2w 7 3 mathematics mathematic NOUN 7p88cf97j2w 7 4 , , PUNCT 7p88cf97j2w 7 5 we we PRON 7p88cf97j2w 7 6 show show VERB 7p88cf97j2w 7 7 that that SCONJ 7p88cf97j2w 7 8 that that SCONJ 7p88cf97j2w 7 9 this this DET 7p88cf97j2w 7 10 packed pack VERB 7p88cf97j2w 7 11 ramsey ramsey NOUN 7p88cf97j2w 7 12 's 's PART 7p88cf97j2w 7 13 theorem theorem NOUN 7p88cf97j2w 7 14 is be AUX 7p88cf97j2w 7 15 equivalent equivalent ADJ 7p88cf97j2w 7 16 to to ADP 7p88cf97j2w 7 17 ramsey ramsey NOUN 7p88cf97j2w 7 18 's 's PART 7p88cf97j2w 7 19 theorem theorem NOUN 7p88cf97j2w 7 20 for for ADP 7p88cf97j2w 7 21 exponents exponent NOUN 7p88cf97j2w 7 22 n n CCONJ 7p88cf97j2w 7 23 other other ADJ 7p88cf97j2w 7 24 than than ADP 7p88cf97j2w 7 25 2 2 NUM 7p88cf97j2w 7 26 . . PUNCT 7p88cf97j2w 7 27 when when SCONJ 7p88cf97j2w 7 28 n=2 n=2 PROPN 7p88cf97j2w 7 29 , , PUNCT 7p88cf97j2w 7 30 we we PRON 7p88cf97j2w 7 31 show show VERB 7p88cf97j2w 7 32 that that SCONJ 7p88cf97j2w 7 33 it it PRON 7p88cf97j2w 7 34 implies imply VERB 7p88cf97j2w 7 35 ramsey ramsey NOUN 7p88cf97j2w 7 36 's 's PART 7p88cf97j2w 7 37 theorem theorem NOUN 7p88cf97j2w 7 38 , , PUNCT 7p88cf97j2w 7 39 and and CCONJ 7p88cf97j2w 7 40 that that SCONJ 7p88cf97j2w 7 41 it it PRON 7p88cf97j2w 7 42 does do AUX 7p88cf97j2w 7 43 not not PART 7p88cf97j2w 7 44 imply imply VERB 7p88cf97j2w 7 45 aca aca PROPN 7p88cf97j2w 7 46 . . PUNCT 7p88cf97j2w 8 1 we we PRON 7p88cf97j2w 8 2 next next ADV 7p88cf97j2w 8 3 introduce introduce VERB 7p88cf97j2w 8 4 a a DET 7p88cf97j2w 8 5 new new ADJ 7p88cf97j2w 8 6 combinatorial combinatorial ADJ 7p88cf97j2w 8 7 principle principle NOUN 7p88cf97j2w 8 8 , , PUNCT 7p88cf97j2w 8 9 called call VERB 7p88cf97j2w 8 10 rkl rkl NOUN 7p88cf97j2w 8 11 , , PUNCT 7p88cf97j2w 8 12 which which PRON 7p88cf97j2w 8 13 combines combine VERB 7p88cf97j2w 8 14 features feature NOUN 7p88cf97j2w 8 15 of of ADP 7p88cf97j2w 8 16 weak weak ADJ 7p88cf97j2w 8 17 k k PROPN 7p88cf97j2w 8 18 nig nig PROPN 7p88cf97j2w 8 19 's 's PART 7p88cf97j2w 8 20 lemma lemma NOUN 7p88cf97j2w 8 21 and and CCONJ 7p88cf97j2w 8 22 ramsey ramsey NOUN 7p88cf97j2w 8 23 's 's PART 7p88cf97j2w 8 24 theorem theorem NOUN 7p88cf97j2w 8 25 . . PUNCT 7p88cf97j2w 9 1 we we PRON 7p88cf97j2w 9 2 show show VERB 7p88cf97j2w 9 3 that that SCONJ 7p88cf97j2w 9 4 this this DET 7p88cf97j2w 9 5 principle principle NOUN 7p88cf97j2w 9 6 is be AUX 7p88cf97j2w 9 7 strictly strictly ADV 7p88cf97j2w 9 8 weaker weak ADJ 7p88cf97j2w 9 9 than than ADP 7p88cf97j2w 9 10 both both PRON 7p88cf97j2w 9 11 wkl wkl PROPN 7p88cf97j2w 9 12 and and CCONJ 7p88cf97j2w 9 13 rt22 rt22 PROPN 7p88cf97j2w 9 14 , , PUNCT 7p88cf97j2w 9 15 and and CCONJ 7p88cf97j2w 9 16 that that SCONJ 7p88cf97j2w 9 17 it it PRON 7p88cf97j2w 9 18 is be AUX 7p88cf97j2w 9 19 strictly strictly ADV 7p88cf97j2w 9 20 stronger strong ADJ 7p88cf97j2w 9 21 than than ADP 7p88cf97j2w 9 22 rca rca NOUN 7p88cf97j2w 9 23 . . PUNCT 7p88cf97j2w 10 1 we we PRON 7p88cf97j2w 10 2 also also ADV 7p88cf97j2w 10 3 consider consider VERB 7p88cf97j2w 10 4 two two NUM 7p88cf97j2w 10 5 generalizations generalization NOUN 7p88cf97j2w 10 6 of of ADP 7p88cf97j2w 10 7 this this DET 7p88cf97j2w 10 8 principle principle NOUN 7p88cf97j2w 10 9 . . PUNCT 7p88cf97j2w 11 1 we we PRON 7p88cf97j2w 11 2 obtain obtain VERB 7p88cf97j2w 11 3 the the DET 7p88cf97j2w 11 4 surprising surprising ADJ 7p88cf97j2w 11 5 result result NOUN 7p88cf97j2w 11 6 that that SCONJ 7p88cf97j2w 11 7 these these DET 7p88cf97j2w 11 8 stronger strong ADJ 7p88cf97j2w 11 9 principles principle NOUN 7p88cf97j2w 11 10 are be AUX 7p88cf97j2w 11 11 closer close ADJ 7p88cf97j2w 11 12 in in ADP 7p88cf97j2w 11 13 strength strength NOUN 7p88cf97j2w 11 14 to to ADP 7p88cf97j2w 11 15 rt22 rt22 PROPN 7p88cf97j2w 11 16 than than SCONJ 7p88cf97j2w 11 17 they they PRON 7p88cf97j2w 11 18 are be AUX 7p88cf97j2w 11 19 to to ADP 7p88cf97j2w 11 20 wkl wkl NOUN 7p88cf97j2w 11 21 . . PUNCT