id sid tid token lemma pos 7m01bk1495q 1 1 the the DET 7m01bk1495q 1 2 entropy entropy NOUN 7m01bk1495q 1 3 of of ADP 7m01bk1495q 1 4 a a DET 7m01bk1495q 1 5 discrete discrete ADJ 7m01bk1495q 1 6 dynamical dynamical ADJ 7m01bk1495q 1 7 system system NOUN 7m01bk1495q 1 8 is be AUX 7m01bk1495q 1 9 a a DET 7m01bk1495q 1 10 rough rough ADJ 7m01bk1495q 1 11 gauge gauge NOUN 7m01bk1495q 1 12 of of ADP 7m01bk1495q 1 13 its its PRON 7m01bk1495q 1 14 complexity complexity NOUN 7m01bk1495q 1 15 . . PUNCT 7m01bk1495q 2 1 we we PRON 7m01bk1495q 2 2 wish wish VERB 7m01bk1495q 2 3 to to PART 7m01bk1495q 2 4 find find VERB 7m01bk1495q 2 5 a a DET 7m01bk1495q 2 6 bound bind VERB 7m01bk1495q 2 7 for for ADP 7m01bk1495q 2 8 the the DET 7m01bk1495q 2 9 entropy entropy NOUN 7m01bk1495q 2 10 of of ADP 7m01bk1495q 2 11 a a DET 7m01bk1495q 2 12 system system NOUN 7m01bk1495q 2 13 . . PUNCT 7m01bk1495q 3 1 we we PRON 7m01bk1495q 3 2 particularly particularly ADV 7m01bk1495q 3 3 concern concern VERB 7m01bk1495q 3 4 ourselves ourselves PRON 7m01bk1495q 3 5 with with ADP 7m01bk1495q 3 6 the the DET 7m01bk1495q 3 7 specific specific ADJ 7m01bk1495q 3 8 family family NOUN 7m01bk1495q 3 9 of of ADP 7m01bk1495q 3 10 maps map NOUN 7m01bk1495q 3 11 $ $ SYM 7m01bk1495q 3 12 f:\overline{\r f:\overline{\r ADV 7m01bk1495q 3 13 } } PUNCT 7m01bk1495q 3 14 \ \ X 7m01bk1495q 3 15 imes ime NOUN 7m01bk1495q 3 16 \overline{\r \overline{\r SPACE 7m01bk1495q 3 17 } } PUNCT 7m01bk1495q 3 18 \ \ PROPN 7m01bk1495q 3 19 ightarrow ightarrow VERB 7m01bk1495q 3 20 \overline{\r \overline{\r SPACE 7m01bk1495q 3 21 } } PUNCT 7m01bk1495q 3 22 \ \ PROPN 7m01bk1495q 3 23 imes imes PROPN 7m01bk1495q 3 24 \overline{\r}$ \overline{\r}$ ADV 7m01bk1495q 3 25 defined define VERB 7m01bk1495q 3 26 by by ADP 7m01bk1495q 3 27 $ $ SYM 7m01bk1495q 3 28 f(x f(x NUM 7m01bk1495q 3 29 , , PUNCT 7m01bk1495q 3 30 y y PROPN 7m01bk1495q 3 31 ) ) PUNCT 7m01bk1495q 3 32 = = PROPN 7m01bk1495q 3 33 \left(y\ \left(y\ NOUN 7m01bk1495q 3 34 rac{x+a}{x-1},x+a-1\ rac{x+a}{x-1},x+a-1\ ADP 7m01bk1495q 3 35 ight)$ ight)$ PROPN 7m01bk1495q 3 36 , , PUNCT 7m01bk1495q 3 37 where where SCONJ 7m01bk1495q 3 38 $ $ SYM 7m01bk1495q 3 39 a a DET 7m01bk1495q 3 40 \in \in PROPN 7m01bk1495q 3 41 \r$ \r$ NOUN 7m01bk1495q 3 42 is be AUX 7m01bk1495q 3 43 a a DET 7m01bk1495q 3 44 parameter parameter NOUN 7m01bk1495q 3 45 subject subject ADJ 7m01bk1495q 3 46 to to ADP 7m01bk1495q 3 47 conditions condition NOUN 7m01bk1495q 3 48 specified specify VERB 7m01bk1495q 3 49 later later ADV 7m01bk1495q 3 50 . . PUNCT 7m01bk1495q 4 1 this this DET 7m01bk1495q 4 2 family family NOUN 7m01bk1495q 4 3 first first ADV 7m01bk1495q 4 4 appeared appear VERB 7m01bk1495q 4 5 in in ADP 7m01bk1495q 4 6 various various ADJ 7m01bk1495q 4 7 statistical statistical ADJ 7m01bk1495q 4 8 physics physics NOUN 7m01bk1495q 4 9 papers paper NOUN 7m01bk1495q 4 10 and and CCONJ 7m01bk1495q 4 11 was be AUX 7m01bk1495q 4 12 considered consider VERB 7m01bk1495q 4 13 mathematically mathematically ADV 7m01bk1495q 4 14 by by ADP 7m01bk1495q 4 15 bedford bedford PROPN 7m01bk1495q 4 16 and and CCONJ 7m01bk1495q 4 17 diller diller NOUN 7m01bk1495q 4 18 . . PUNCT 7m01bk1495q 5 1 our our PRON 7m01bk1495q 5 2 method method NOUN 7m01bk1495q 5 3 is be AUX 7m01bk1495q 5 4 combinatorial combinatorial ADJ 7m01bk1495q 5 5 , , PUNCT 7m01bk1495q 5 6 using use VERB 7m01bk1495q 5 7 invariant invariant ADJ 7m01bk1495q 5 8 and and CCONJ 7m01bk1495q 5 9 critical critical ADJ 7m01bk1495q 5 10 curves curve NOUN 7m01bk1495q 5 11 for for ADP 7m01bk1495q 5 12 $ $ SYM 7m01bk1495q 5 13 f$ f$ NOUN 7m01bk1495q 5 14 to to PART 7m01bk1495q 5 15 define define VERB 7m01bk1495q 5 16 a a DET 7m01bk1495q 5 17 partition partition NOUN 7m01bk1495q 5 18 of of ADP 7m01bk1495q 5 19 $ $ SYM 7m01bk1495q 5 20 \overline{\r \overline{\r NOUN 7m01bk1495q 5 21 } } PUNCT 7m01bk1495q 5 22 \ \ PROPN 7m01bk1495q 5 23 imes imes PROPN 7m01bk1495q 5 24 \overline{\r}$ \overline{\r}$ PROPN 7m01bk1495q 5 25 that that PRON 7m01bk1495q 5 26 is be AUX 7m01bk1495q 5 27 convenient convenient ADJ 7m01bk1495q 5 28 for for ADP 7m01bk1495q 5 29 coding code VERB 7m01bk1495q 5 30 orbits orbit NOUN 7m01bk1495q 5 31 under under ADP 7m01bk1495q 5 32 $ $ SYM 7m01bk1495q 5 33 f$. f$. ADJ 7m01bk1495q 5 34 we we PRON 7m01bk1495q 5 35 may may AUX 7m01bk1495q 5 36 expand expand VERB 7m01bk1495q 5 37 these these DET 7m01bk1495q 5 38 codings coding NOUN 7m01bk1495q 5 39 to to PART 7m01bk1495q 5 40 hold hold VERB 7m01bk1495q 5 41 for for ADP 7m01bk1495q 5 42 points point NOUN 7m01bk1495q 5 43 without without ADP 7m01bk1495q 5 44 well well ADV 7m01bk1495q 5 45 - - PUNCT 7m01bk1495q 5 46 defined define VERB 7m01bk1495q 5 47 orbits orbit NOUN 7m01bk1495q 5 48 . . PUNCT 7m01bk1495q 6 1 these these DET 7m01bk1495q 6 2 more more ADJ 7m01bk1495q 6 3 general general ADJ 7m01bk1495q 6 4 codings coding NOUN 7m01bk1495q 6 5 allow allow VERB 7m01bk1495q 6 6 us we PRON 7m01bk1495q 6 7 to to PART 7m01bk1495q 6 8 construct construct VERB 7m01bk1495q 6 9 a a DET 7m01bk1495q 6 10 set set NOUN 7m01bk1495q 6 11 with with ADP 7m01bk1495q 6 12 easier easy ADJ 7m01bk1495q 6 13 - - PUNCT 7m01bk1495q 6 14 to to PART 7m01bk1495q 6 15 - - PUNCT 7m01bk1495q 6 16 calculate calculate NOUN 7m01bk1495q 6 17 entropy entropy NOUN 7m01bk1495q 6 18 . . PUNCT 7m01bk1495q 7 1 this this DET 7m01bk1495q 7 2 new new ADJ 7m01bk1495q 7 3 set set NOUN 7m01bk1495q 7 4 's 's PART 7m01bk1495q 7 5 entropy entropy NOUN 7m01bk1495q 7 6 is be AUX 7m01bk1495q 7 7 a a DET 7m01bk1495q 7 8 lower lower ADV 7m01bk1495q 7 9 bound bound ADJ 7m01bk1495q 7 10 for for ADP 7m01bk1495q 7 11 the the DET 7m01bk1495q 7 12 entropy entropy NOUN 7m01bk1495q 7 13 of of ADP 7m01bk1495q 7 14 $ $ SYM 7m01bk1495q 7 15 f$. f$. X