id sid tid token lemma pos 5x21td99n58 1 1 in in ADP 5x21td99n58 1 2 vivo vivo PROPN 5x21td99n58 1 3 fluorescence fluorescence ADJ 5x21td99n58 1 4 imaging image VERB 5x21td99n58 1 5 is be AUX 5x21td99n58 1 6 a a DET 5x21td99n58 1 7 powerful powerful ADJ 5x21td99n58 1 8 tool tool NOUN 5x21td99n58 1 9 for for ADP 5x21td99n58 1 10 understanding understanding NOUN 5x21td99n58 1 11 and and CCONJ 5x21td99n58 1 12 characterizing characterize VERB 5x21td99n58 1 13 biological biological ADJ 5x21td99n58 1 14 systems system NOUN 5x21td99n58 1 15 . . PUNCT 5x21td99n58 2 1 for for ADP 5x21td99n58 2 2 example example NOUN 5x21td99n58 2 3 , , PUNCT 5x21td99n58 2 4 with with ADP 5x21td99n58 2 5 the the DET 5x21td99n58 2 6 help help NOUN 5x21td99n58 2 7 of of ADP 5x21td99n58 2 8 in in ADP 5x21td99n58 2 9 vivo vivo PROPN 5x21td99n58 2 10 fluorescence fluorescence ADJ 5x21td99n58 2 11 imaging imaging NOUN 5x21td99n58 2 12 , , PUNCT 5x21td99n58 2 13 one one PRON 5x21td99n58 2 14 can can AUX 5x21td99n58 2 15 record record VERB 5x21td99n58 2 16 the the DET 5x21td99n58 2 17 neural neural ADJ 5x21td99n58 2 18 activity activity NOUN 5x21td99n58 2 19 ( ( PUNCT 5x21td99n58 2 20 neuronal neuronal ADJ 5x21td99n58 2 21 firing firing NOUN 5x21td99n58 2 22 ) ) PUNCT 5x21td99n58 2 23 of of ADP 5x21td99n58 2 24 freely freely ADV 5x21td99n58 2 25 moving move VERB 5x21td99n58 2 26 mice mouse NOUN 5x21td99n58 2 27 . . PUNCT 5x21td99n58 3 1 while while SCONJ 5x21td99n58 3 2 in in ADP 5x21td99n58 3 3 vivo vivo PROPN 5x21td99n58 3 4 fluorescence fluorescence ADJ 5x21td99n58 3 5 imaging imaging NOUN 5x21td99n58 3 6 technique technique NOUN 5x21td99n58 3 7 has have AUX 5x21td99n58 3 8 been be AUX 5x21td99n58 3 9 widely widely ADV 5x21td99n58 3 10 used use VERB 5x21td99n58 3 11 and and CCONJ 5x21td99n58 3 12 has have AUX 5x21td99n58 3 13 brought bring VERB 5x21td99n58 3 14 many many ADJ 5x21td99n58 3 15 benefits benefit NOUN 5x21td99n58 3 16 to to ADP 5x21td99n58 3 17 the the DET 5x21td99n58 3 18 biomedical biomedical ADJ 5x21td99n58 3 19 image image NOUN 5x21td99n58 3 20 processing processing NOUN 5x21td99n58 3 21 field field NOUN 5x21td99n58 3 22 , , PUNCT 5x21td99n58 3 23 a a DET 5x21td99n58 3 24 few few ADJ 5x21td99n58 3 25 major major ADJ 5x21td99n58 3 26 physical physical ADJ 5x21td99n58 3 27 limitations limitation NOUN 5x21td99n58 3 28 affect affect VERB 5x21td99n58 3 29 the the DET 5x21td99n58 3 30 image image NOUN 5x21td99n58 3 31 quality quality NOUN 5x21td99n58 3 32 and and CCONJ 5x21td99n58 3 33 data datum NOUN 5x21td99n58 3 34 analysis analysis NOUN 5x21td99n58 3 35 . . PUNCT 5x21td99n58 4 1 the the DET 5x21td99n58 4 2 three three NUM 5x21td99n58 4 3 fundamental fundamental ADJ 5x21td99n58 4 4 limits limit NOUN 5x21td99n58 4 5 in in ADP 5x21td99n58 4 6 fluorescence fluorescence ADJ 5x21td99n58 4 7 microscopy microscopy NOUN 5x21td99n58 4 8 include include VERB 5x21td99n58 4 9 poor poor ADJ 5x21td99n58 4 10 signal signal NOUN 5x21td99n58 4 11 - - PUNCT 5x21td99n58 4 12 to to ADP 5x21td99n58 4 13 - - PUNCT 5x21td99n58 4 14 noise noise NOUN 5x21td99n58 4 15 ratio ratio NOUN 5x21td99n58 4 16 ( ( PUNCT 5x21td99n58 4 17 snr snr PROPN 5x21td99n58 4 18 ) ) PUNCT 5x21td99n58 4 19 , , PUNCT 5x21td99n58 4 20 poor poor ADJ 5x21td99n58 4 21 spatial spatial ADJ 5x21td99n58 4 22 resolution resolution NOUN 5x21td99n58 4 23 , , PUNCT 5x21td99n58 4 24 and and CCONJ 5x21td99n58 4 25 dense dense ADJ 5x21td99n58 4 26 axial axial ADJ 5x21td99n58 4 27 images image NOUN 5x21td99n58 4 28 . . PUNCT 5x21td99n58 5 1 in in ADP 5x21td99n58 5 2 this this DET 5x21td99n58 5 3 work work NOUN 5x21td99n58 5 4 , , PUNCT 5x21td99n58 5 5 we we PRON 5x21td99n58 5 6 employ employ VERB 5x21td99n58 5 7 machine machine NOUN 5x21td99n58 5 8 learning learning NOUN 5x21td99n58 5 9 ( ( PUNCT 5x21td99n58 5 10 ml ml PROPN 5x21td99n58 5 11 ) ) PUNCT 5x21td99n58 5 12 models model NOUN 5x21td99n58 5 13 based base VERB 5x21td99n58 5 14 on on ADP 5x21td99n58 5 15 deep deep ADJ 5x21td99n58 5 16 convolutional convolutional ADJ 5x21td99n58 5 17 neural neural ADJ 5x21td99n58 5 18 networks network NOUN 5x21td99n58 5 19 ( ( PUNCT 5x21td99n58 5 20 cnn cnn PROPN 5x21td99n58 5 21 ) ) PUNCT 5x21td99n58 5 22 to to PART 5x21td99n58 5 23 overcome overcome VERB 5x21td99n58 5 24 the the DET 5x21td99n58 5 25 above above ADV 5x21td99n58 5 26 - - PUNCT 5x21td99n58 5 27 mentioned mention VERB 5x21td99n58 5 28 fundamental fundamental ADJ 5x21td99n58 5 29 limits limit NOUN 5x21td99n58 5 30 for for ADP 5x21td99n58 5 31 3d 3d NOUN 5x21td99n58 5 32 in in ADP 5x21td99n58 5 33 vivo vivo PROPN 5x21td99n58 5 34 fluorescence fluorescence PROPN 5x21td99n58 5 35 imaging.firstly imaging.firstly ADV 5x21td99n58 5 36 , , PUNCT 5x21td99n58 5 37 the the DET 5x21td99n58 5 38 poor poor ADJ 5x21td99n58 5 39 snr snr PROPN 5x21td99n58 5 40 arises arise VERB 5x21td99n58 5 41 due due ADP 5x21td99n58 5 42 to to ADP 5x21td99n58 5 43 the the DET 5x21td99n58 5 44 faster fast ADJ 5x21td99n58 5 45 imaging imaging NOUN 5x21td99n58 5 46 speed speed NOUN 5x21td99n58 5 47 in in ADP 5x21td99n58 5 48 scenarios scenario NOUN 5x21td99n58 5 49 where where SCONJ 5x21td99n58 5 50 one one PRON 5x21td99n58 5 51 needs need VERB 5x21td99n58 5 52 to to PART 5x21td99n58 5 53 understand understand VERB 5x21td99n58 5 54 the the DET 5x21td99n58 5 55 dynamic dynamic ADJ 5x21td99n58 5 56 processes process NOUN 5x21td99n58 5 57 in in ADP 5x21td99n58 5 58 3d 3d NOUN 5x21td99n58 5 59 in in ADP 5x21td99n58 5 60 vivo vivo PROPN 5x21td99n58 5 61 . . PUNCT 5x21td99n58 6 1 conventionally conventionally ADV 5x21td99n58 6 2 , , PUNCT 5x21td99n58 6 3 to to PART 5x21td99n58 6 4 improve improve VERB 5x21td99n58 6 5 image image NOUN 5x21td99n58 6 6 snr snr PROPN 5x21td99n58 6 7 for for ADP 5x21td99n58 6 8 a a DET 5x21td99n58 6 9 given give VERB 5x21td99n58 6 10 image image NOUN 5x21td99n58 6 11 acquisition acquisition NOUN 5x21td99n58 6 12 rate rate NOUN 5x21td99n58 6 13 , , PUNCT 5x21td99n58 6 14 one one PRON 5x21td99n58 6 15 can can AUX 5x21td99n58 6 16 use use VERB 5x21td99n58 6 17 statistical statistical ADJ 5x21td99n58 6 18 methods method NOUN 5x21td99n58 6 19 - - PUNCT 5x21td99n58 6 20 based base VERB 5x21td99n58 6 21 computational computational ADJ 5x21td99n58 6 22 denoising denoise VERB 5x21td99n58 6 23 techniques technique NOUN 5x21td99n58 6 24 to to PART 5x21td99n58 6 25 suppress suppress VERB 5x21td99n58 6 26 the the DET 5x21td99n58 6 27 noise noise NOUN 5x21td99n58 6 28 . . PUNCT 5x21td99n58 7 1 however however ADV 5x21td99n58 7 2 , , PUNCT 5x21td99n58 7 3 these these DET 5x21td99n58 7 4 methods method NOUN 5x21td99n58 7 5 are be AUX 5x21td99n58 7 6 either either CCONJ 5x21td99n58 7 7 computationally computationally ADV 5x21td99n58 7 8 expensive expensive ADJ 5x21td99n58 7 9 or or CCONJ 5x21td99n58 7 10 rely rely VERB 5x21td99n58 7 11 on on ADP 5x21td99n58 7 12 only only ADJ 5x21td99n58 7 13 simple simple ADJ 5x21td99n58 7 14 poisson poisson NOUN 5x21td99n58 7 15 or or CCONJ 5x21td99n58 7 16 gaussian gaussian ADJ 5x21td99n58 7 17 noise noise NOUN 5x21td99n58 7 18 statistics statistic NOUN 5x21td99n58 7 19 , , PUNCT 5x21td99n58 7 20 which which PRON 5x21td99n58 7 21 are be AUX 5x21td99n58 7 22 not not PART 5x21td99n58 7 23 appropriate appropriate ADJ 5x21td99n58 7 24 for for ADP 5x21td99n58 7 25 fluorescence fluorescence ADJ 5x21td99n58 7 26 microscopes microscope NOUN 5x21td99n58 7 27 that that PRON 5x21td99n58 7 28 usually usually ADV 5x21td99n58 7 29 contain contain VERB 5x21td99n58 7 30 a a DET 5x21td99n58 7 31 mixture mixture NOUN 5x21td99n58 7 32 of of ADP 5x21td99n58 7 33 poisson poisson NOUN 5x21td99n58 7 34 and and CCONJ 5x21td99n58 7 35 gaussian gaussian ADJ 5x21td99n58 7 36 ( ( PUNCT 5x21td99n58 7 37 mpg mpg ADJ 5x21td99n58 7 38 ) ) PUNCT 5x21td99n58 7 39 noise noise NOUN 5x21td99n58 7 40 . . PUNCT 5x21td99n58 8 1 therefore therefore ADV 5x21td99n58 8 2 , , PUNCT 5x21td99n58 8 3 to to PART 5x21td99n58 8 4 overcome overcome VERB 5x21td99n58 8 5 this this DET 5x21td99n58 8 6 fundamental fundamental ADJ 5x21td99n58 8 7 limitation limitation NOUN 5x21td99n58 8 8 , , PUNCT 5x21td99n58 8 9 we we PRON 5x21td99n58 8 10 have have AUX 5x21td99n58 8 11 developed develop VERB 5x21td99n58 8 12 two two NUM 5x21td99n58 8 13 cnn cnn NOUN 5x21td99n58 8 14 models model NOUN 5x21td99n58 8 15 based base VERB 5x21td99n58 8 16 on on ADP 5x21td99n58 8 17 the the DET 5x21td99n58 8 18 noise2noise noise2noise ADJ 5x21td99n58 8 19 and and CCONJ 5x21td99n58 8 20 dncnn dncnn ADJ 5x21td99n58 8 21 architectures architecture NOUN 5x21td99n58 8 22 trained train VERB 5x21td99n58 8 23 on on ADP 5x21td99n58 8 24 the the DET 5x21td99n58 8 25 massive massive ADJ 5x21td99n58 8 26 fluorescence fluorescence ADJ 5x21td99n58 8 27 microscopy microscopy NOUN 5x21td99n58 8 28 denoising denoise VERB 5x21td99n58 8 29 dataset dataset NOUN 5x21td99n58 8 30 containing contain VERB 5x21td99n58 8 31 mpg mpg NOUN 5x21td99n58 8 32 noise noise NOUN 5x21td99n58 8 33 . . PUNCT 5x21td99n58 9 1 noisy noisy ADJ 5x21td99n58 9 2 images image NOUN 5x21td99n58 9 3 in in ADP 5x21td99n58 9 4 the the DET 5x21td99n58 9 5 trained train VERB 5x21td99n58 9 6 dataset dataset NOUN 5x21td99n58 9 7 were be AUX 5x21td99n58 9 8 collected collect VERB 5x21td99n58 9 9 by by ADP 5x21td99n58 9 10 wide wide ADJ 5x21td99n58 9 11 - - PUNCT 5x21td99n58 9 12 field field NOUN 5x21td99n58 9 13 , , PUNCT 5x21td99n58 9 14 confocal confocal ADJ 5x21td99n58 9 15 and and CCONJ 5x21td99n58 9 16 two two NUM 5x21td99n58 9 17 - - PUNCT 5x21td99n58 9 18 photon photon NOUN 5x21td99n58 9 19 microscopes microscope NOUN 5x21td99n58 9 20 with with ADP 5x21td99n58 9 21 samples sample NOUN 5x21td99n58 9 22 including include VERB 5x21td99n58 9 23 fixed fix VERB 5x21td99n58 9 24 cells cell NOUN 5x21td99n58 9 25 , , PUNCT 5x21td99n58 9 26 zebrafish zebrafish NOUN 5x21td99n58 9 27 , , PUNCT 5x21td99n58 9 28 and and CCONJ 5x21td99n58 9 29 mouse mouse NOUN 5x21td99n58 9 30 brains brain NOUN 5x21td99n58 9 31 . . PUNCT 5x21td99n58 10 1 an an DET 5x21td99n58 10 2 open open ADJ 5x21td99n58 10 3 - - PUNCT 5x21td99n58 10 4 source source NOUN 5x21td99n58 10 5 imagej imagej ADJ 5x21td99n58 10 6 plugin plugin NOUN 5x21td99n58 10 7 was be AUX 5x21td99n58 10 8 developed develop VERB 5x21td99n58 10 9 using use VERB 5x21td99n58 10 10 the the DET 5x21td99n58 10 11 trained train VERB 5x21td99n58 10 12 cnn cnn PROPN 5x21td99n58 10 13 model model NOUN 5x21td99n58 10 14 that that PRON 5x21td99n58 10 15 performs perform VERB 5x21td99n58 10 16 instant instant ADJ 5x21td99n58 10 17 image image NOUN 5x21td99n58 10 18 denoising denoise VERB 5x21td99n58 10 19 within within ADP 5x21td99n58 10 20 tens ten NOUN 5x21td99n58 10 21 of of ADP 5x21td99n58 10 22 milliseconds millisecond NOUN 5x21td99n58 10 23 with with ADP 5x21td99n58 10 24 superior superior ADJ 5x21td99n58 10 25 performance performance NOUN 5x21td99n58 10 26 ( ( PUNCT 5x21td99n58 10 27 ~8.1 ~8.1 PROPN 5x21td99n58 10 28 db db PROPN 5x21td99n58 10 29 psnr psnr PROPN 5x21td99n58 10 30 improvement improvement PROPN 5x21td99n58 10 31 or or CCONJ 5x21td99n58 10 32 8x 8x VERB 5x21td99n58 10 33 faster fast ADV 5x21td99n58 10 34 in in ADP 5x21td99n58 10 35 acquisition acquisition NOUN 5x21td99n58 10 36 ) ) PUNCT 5x21td99n58 10 37 compared compare VERB 5x21td99n58 10 38 to to ADP 5x21td99n58 10 39 the the DET 5x21td99n58 10 40 conventional conventional ADJ 5x21td99n58 10 41 denoising denoise VERB 5x21td99n58 10 42 methods method NOUN 5x21td99n58 10 43 . . PUNCT 5x21td99n58 11 1 hence hence ADV 5x21td99n58 11 2 , , PUNCT 5x21td99n58 11 3 imaging image VERB 5x21td99n58 11 4 speed speed NOUN 5x21td99n58 11 5 is be AUX 5x21td99n58 11 6 improved improve VERB 5x21td99n58 11 7 by by ADP 5x21td99n58 11 8 eight eight NUM 5x21td99n58 11 9 times time NOUN 5x21td99n58 11 10 using use VERB 5x21td99n58 11 11 this this DET 5x21td99n58 11 12 cnn cnn PROPN 5x21td99n58 11 13 - - PUNCT 5x21td99n58 11 14 based base VERB 5x21td99n58 11 15 image image NOUN 5x21td99n58 11 16 denoising denoise VERB 5x21td99n58 11 17 method method NOUN 5x21td99n58 11 18 . . PUNCT 5x21td99n58 12 1 next next ADJ 5x21td99n58 12 2 , , PUNCT 5x21td99n58 12 3 extensive extensive ADJ 5x21td99n58 12 4 validation validation NOUN 5x21td99n58 12 5 of of ADP 5x21td99n58 12 6 the the DET 5x21td99n58 12 7 pre pre ADJ 5x21td99n58 12 8 - - ADJ 5x21td99n58 12 9 trained train VERB 5x21td99n58 12 10 models model NOUN 5x21td99n58 12 11 was be AUX 5x21td99n58 12 12 performed perform VERB 5x21td99n58 12 13 on on ADP 5x21td99n58 12 14 the the DET 5x21td99n58 12 15 out out ADV 5x21td99n58 12 16 - - PUNCT 5x21td99n58 12 17 of of ADP 5x21td99n58 12 18 - - PUNCT 5x21td99n58 12 19 distribution distribution NOUN 5x21td99n58 12 20 noise noise NOUN 5x21td99n58 12 21 , , PUNCT 5x21td99n58 12 22 contrast contrast NOUN 5x21td99n58 12 23 , , PUNCT 5x21td99n58 12 24 microscope microscope NOUN 5x21td99n58 12 25 modality modality NOUN 5x21td99n58 12 26 , , PUNCT 5x21td99n58 12 27 biological biological ADJ 5x21td99n58 12 28 samples sample NOUN 5x21td99n58 12 29 ( ( PUNCT 5x21td99n58 12 30 2d 2d NOUN 5x21td99n58 12 31 and and CCONJ 5x21td99n58 12 32 3d 3d NOUN 5x21td99n58 12 33 images image NOUN 5x21td99n58 12 34 ) ) PUNCT 5x21td99n58 12 35 , , PUNCT 5x21td99n58 12 36 and and CCONJ 5x21td99n58 12 37 other other ADJ 5x21td99n58 12 38 open open ADJ 5x21td99n58 12 39 - - PUNCT 5x21td99n58 12 40 source source NOUN 5x21td99n58 12 41 fluorescence fluorescence ADJ 5x21td99n58 12 42 microscopy microscopy NOUN 5x21td99n58 12 43 datasets dataset NOUN 5x21td99n58 12 44 . . PUNCT 5x21td99n58 13 1 ml ml PROPN 5x21td99n58 13 2 - - PUNCT 5x21td99n58 13 3 based base VERB 5x21td99n58 13 4 fluorescence fluorescence ADJ 5x21td99n58 13 5 lifetime lifetime NOUN 5x21td99n58 13 6 and and CCONJ 5x21td99n58 13 7 phasor phasor VERB 5x21td99n58 13 8 denoising denoise VERB 5x21td99n58 13 9 techniques technique NOUN 5x21td99n58 13 10 and and CCONJ 5x21td99n58 13 11 their their PRON 5x21td99n58 13 12 applications application NOUN 5x21td99n58 13 13 are be AUX 5x21td99n58 13 14 also also ADV 5x21td99n58 13 15 demonstrated demonstrate VERB 5x21td99n58 13 16 . . PUNCT 5x21td99n58 14 1 the the DET 5x21td99n58 14 2 ml ml PROPN 5x21td99n58 14 3 - - PUNCT 5x21td99n58 14 4 based base VERB 5x21td99n58 14 5 approaches approach NOUN 5x21td99n58 14 6 provide provide VERB 5x21td99n58 14 7 high high ADJ 5x21td99n58 14 8 snr snr PROPN 5x21td99n58 14 9 in in ADP 5x21td99n58 14 10 lifetime lifetime NOUN 5x21td99n58 14 11 information information NOUN 5x21td99n58 14 12 and and CCONJ 5x21td99n58 14 13 improve improve VERB 5x21td99n58 14 14 the the DET 5x21td99n58 14 15 lifetime lifetime NOUN 5x21td99n58 14 16 segmentation segmentation NOUN 5x21td99n58 14 17 with with ADP 5x21td99n58 14 18 denoised denoise VERB 5x21td99n58 14 19 phasor.secondly phasor.secondly ADV 5x21td99n58 14 20 , , PUNCT 5x21td99n58 14 21 after after ADP 5x21td99n58 14 22 achieving achieve VERB 5x21td99n58 14 23 a a DET 5x21td99n58 14 24 faster fast ADJ 5x21td99n58 14 25 image image NOUN 5x21td99n58 14 26 acquisition acquisition NOUN 5x21td99n58 14 27 speed speed NOUN 5x21td99n58 14 28 of of ADP 5x21td99n58 14 29 the the DET 5x21td99n58 14 30 in in ADP 5x21td99n58 14 31 vivo vivo ADJ 5x21td99n58 14 32 images image NOUN 5x21td99n58 14 33 , , PUNCT 5x21td99n58 14 34 our our PRON 5x21td99n58 14 35 next next ADJ 5x21td99n58 14 36 goal goal NOUN 5x21td99n58 14 37 is be AUX 5x21td99n58 14 38 to to PART 5x21td99n58 14 39 improve improve VERB 5x21td99n58 14 40 the the DET 5x21td99n58 14 41 spatial spatial ADJ 5x21td99n58 14 42 resolution resolution NOUN 5x21td99n58 14 43 of of ADP 5x21td99n58 14 44 the the DET 5x21td99n58 14 45 fluorescence fluorescence ADJ 5x21td99n58 14 46 images image NOUN 5x21td99n58 14 47 by by ADP 5x21td99n58 14 48 overcoming overcome VERB 5x21td99n58 14 49 the the DET 5x21td99n58 14 50 fundamental fundamental ADJ 5x21td99n58 14 51 diffraction diffraction NOUN 5x21td99n58 14 52 limit limit NOUN 5x21td99n58 14 53 . . PUNCT 5x21td99n58 15 1 to to PART 5x21td99n58 15 2 develop develop VERB 5x21td99n58 15 3 the the DET 5x21td99n58 15 4 ml ml PROPN 5x21td99n58 15 5 model model NOUN 5x21td99n58 15 6 , , PUNCT 5x21td99n58 15 7 we we PRON 5x21td99n58 15 8 need need VERB 5x21td99n58 15 9 another another DET 5x21td99n58 15 10 massive massive ADJ 5x21td99n58 15 11 training training NOUN 5x21td99n58 15 12 dataset dataset NOUN 5x21td99n58 15 13 that that PRON 5x21td99n58 15 14 maps map VERB 5x21td99n58 15 15 from from ADP 5x21td99n58 15 16 the the DET 5x21td99n58 15 17 diffraction diffraction NOUN 5x21td99n58 15 18 - - PUNCT 5x21td99n58 15 19 limited limit VERB 5x21td99n58 15 20 images image NOUN 5x21td99n58 15 21 to to ADP 5x21td99n58 15 22 super super ADJ 5x21td99n58 15 23 - - ADJ 5x21td99n58 15 24 resolution resolution ADJ 5x21td99n58 15 25 images image NOUN 5x21td99n58 15 26 , , PUNCT 5x21td99n58 15 27 which which PRON 5x21td99n58 15 28 is be AUX 5x21td99n58 15 29 a a DET 5x21td99n58 15 30 cumbersome cumbersome ADJ 5x21td99n58 15 31 process process NOUN 5x21td99n58 15 32 . . PUNCT 5x21td99n58 16 1 currently currently ADV 5x21td99n58 16 2 , , PUNCT 5x21td99n58 16 3 we we PRON 5x21td99n58 16 4 have have AUX 5x21td99n58 16 5 developed develop VERB 5x21td99n58 16 6 a a DET 5x21td99n58 16 7 prototype prototype NOUN 5x21td99n58 16 8 of of ADP 5x21td99n58 16 9 the the DET 5x21td99n58 16 10 ml ml PROPN 5x21td99n58 16 11 model model NOUN 5x21td99n58 16 12 that that PRON 5x21td99n58 16 13 requires require VERB 5x21td99n58 16 14 only only ADV 5x21td99n58 16 15 an an DET 5x21td99n58 16 16 ultra ultra ADJ 5x21td99n58 16 17 - - ADJ 5x21td99n58 16 18 small small ADJ 5x21td99n58 16 19 training training NOUN 5x21td99n58 16 20 dataset dataset NOUN 5x21td99n58 16 21 ( ( PUNCT 5x21td99n58 16 22 15 15 NUM 5x21td99n58 16 23 target target NOUN 5x21td99n58 16 24 sr sr NOUN 5x21td99n58 16 25 images image NOUN 5x21td99n58 16 26 with with ADP 5x21td99n58 16 27 50 50 NUM 5x21td99n58 16 28 diffraction diffraction NOUN 5x21td99n58 16 29 - - PUNCT 5x21td99n58 16 30 limited limit VERB 5x21td99n58 16 31 images image NOUN 5x21td99n58 16 32 per per ADP 5x21td99n58 16 33 target target NOUN 5x21td99n58 16 34 ) ) PUNCT 5x21td99n58 16 35 to to PART 5x21td99n58 16 36 generate generate VERB 5x21td99n58 16 37 super super ADJ 5x21td99n58 16 38 - - ADJ 5x21td99n58 16 39 resolution resolution ADJ 5x21td99n58 16 40 images image NOUN 5x21td99n58 16 41 . . PUNCT 5x21td99n58 17 1 briefly briefly ADV 5x21td99n58 17 2 , , PUNCT 5x21td99n58 17 3 this this DET 5x21td99n58 17 4 model model NOUN 5x21td99n58 17 5 is be AUX 5x21td99n58 17 6 based base VERB 5x21td99n58 17 7 on on ADP 5x21td99n58 17 8 the the DET 5x21td99n58 17 9 novel novel NOUN 5x21td99n58 17 10 ` ` PUNCT 5x21td99n58 17 11 ` ` PUNCT 5x21td99n58 17 12 dense dense ADJ 5x21td99n58 17 13 encoder encoder NOUN 5x21td99n58 17 14 - - PUNCT 5x21td99n58 17 15 decoder decoder NOUN 5x21td99n58 17 16 " " PUNCT 5x21td99n58 17 17 ( ( PUNCT 5x21td99n58 17 18 denseed denseed PROPN 5x21td99n58 17 19 ) ) PUNCT 5x21td99n58 17 20 block block NOUN 5x21td99n58 17 21 , , PUNCT 5x21td99n58 17 22 developed develop VERB 5x21td99n58 17 23 based base VERB 5x21td99n58 17 24 on on ADP 5x21td99n58 17 25 the the DET 5x21td99n58 17 26 dense dense ADJ 5x21td99n58 17 27 layer layer NOUN 5x21td99n58 17 28 in in ADP 5x21td99n58 17 29 the the DET 5x21td99n58 17 30 existing exist VERB 5x21td99n58 17 31 popular popular ADJ 5x21td99n58 17 32 super super ADJ 5x21td99n58 17 33 - - ADJ 5x21td99n58 17 34 resolution resolution ADJ 5x21td99n58 17 35 models model NOUN 5x21td99n58 17 36 . . PUNCT 5x21td99n58 18 1 we we PRON 5x21td99n58 18 2 experimentally experimentally ADV 5x21td99n58 18 3 verified verify VERB 5x21td99n58 18 4 our our PRON 5x21td99n58 18 5 demonstrated demonstrated ADJ 5x21td99n58 18 6 ml ml PROPN 5x21td99n58 18 7 model model NOUN 5x21td99n58 18 8 using use VERB 5x21td99n58 18 9 fluorescent fluorescent NOUN 5x21td99n58 18 10 - - PUNCT 5x21td99n58 18 11 labeled label VERB 5x21td99n58 18 12 fixed fixed ADJ 5x21td99n58 18 13 bovine bovine NOUN 5x21td99n58 18 14 pulmonary pulmonary ADJ 5x21td99n58 18 15 artery artery NOUN 5x21td99n58 18 16 endothelial endothelial NOUN 5x21td99n58 18 17 ( ( PUNCT 5x21td99n58 18 18 bpae bpae PROPN 5x21td99n58 18 19 ) ) PUNCT 5x21td99n58 18 20 cells cell NOUN 5x21td99n58 18 21 . . PUNCT 5x21td99n58 19 1 the the DET 5x21td99n58 19 2 improvement improvement NOUN 5x21td99n58 19 3 in in ADP 5x21td99n58 19 4 snr snr PROPN 5x21td99n58 19 5 and and CCONJ 5x21td99n58 19 6 spatial spatial ADJ 5x21td99n58 19 7 resolution resolution NOUN 5x21td99n58 19 8 in in ADP 5x21td99n58 19 9 the the DET 5x21td99n58 19 10 ml ml PROPN 5x21td99n58 19 11 - - PUNCT 5x21td99n58 19 12 generated generate VERB 5x21td99n58 19 13 super super ADJ 5x21td99n58 19 14 - - ADJ 5x21td99n58 19 15 resolution resolution ADJ 5x21td99n58 19 16 images image NOUN 5x21td99n58 19 17 is be AUX 5x21td99n58 19 18 ~3.49 ~3.49 PUNCT 5x21td99n58 19 19 db db PROPN 5x21td99n58 19 20 and and CCONJ 5x21td99n58 19 21 2x 2x PROPN 5x21td99n58 19 22 , , PUNCT 5x21td99n58 19 23 respectively respectively ADV 5x21td99n58 19 24 , , PUNCT 5x21td99n58 19 25 compared compare VERB 5x21td99n58 19 26 to to ADP 5x21td99n58 19 27 the the DET 5x21td99n58 19 28 diffraction diffraction NOUN 5x21td99n58 19 29 - - PUNCT 5x21td99n58 19 30 limited limit VERB 5x21td99n58 19 31 image image NOUN 5x21td99n58 19 32 . . PUNCT 5x21td99n58 20 1 this this DET 5x21td99n58 20 2 approach approach NOUN 5x21td99n58 20 3 is be AUX 5x21td99n58 20 4 beneficial beneficial ADJ 5x21td99n58 20 5 for for ADP 5x21td99n58 20 6 in in ADP 5x21td99n58 20 7 vivo vivo ADJ 5x21td99n58 20 8 imaging imaging NOUN 5x21td99n58 20 9 , , PUNCT 5x21td99n58 20 10 x x NOUN 5x21td99n58 20 11 - - NOUN 5x21td99n58 20 12 ray ray NOUN 5x21td99n58 20 13 , , PUNCT 5x21td99n58 20 14 and and CCONJ 5x21td99n58 20 15 mri mri NOUN 5x21td99n58 20 16 imaging imaging NOUN 5x21td99n58 20 17 , , PUNCT 5x21td99n58 20 18 where where SCONJ 5x21td99n58 20 19 extracting extract VERB 5x21td99n58 20 20 large large ADJ 5x21td99n58 20 21 datasets dataset NOUN 5x21td99n58 20 22 is be AUX 5x21td99n58 20 23 challenging challenging ADJ 5x21td99n58 20 24 . . PUNCT 5x21td99n58 21 1 next next ADV 5x21td99n58 21 2 , , PUNCT 5x21td99n58 21 3 validation validation NOUN 5x21td99n58 21 4 of of ADP 5x21td99n58 21 5 the the DET 5x21td99n58 21 6 proposed propose VERB 5x21td99n58 21 7 methodology methodology NOUN 5x21td99n58 21 8 is be AUX 5x21td99n58 21 9 shown show VERB 5x21td99n58 21 10 on on ADP 5x21td99n58 21 11 the the DET 5x21td99n58 21 12 experimentally experimentally ADV 5x21td99n58 21 13 captured capture VERB 5x21td99n58 21 14 diffraction diffraction NOUN 5x21td99n58 21 15 - - PUNCT 5x21td99n58 21 16 limited limit VERB 5x21td99n58 21 17 and and CCONJ 5x21td99n58 21 18 super super ADJ 5x21td99n58 21 19 - - ADJ 5x21td99n58 21 20 resolution resolution ADJ 5x21td99n58 21 21 image image NOUN 5x21td99n58 21 22 datasets dataset NOUN 5x21td99n58 21 23 . . PUNCT 5x21td99n58 22 1 clearly clearly ADV 5x21td99n58 22 2 , , PUNCT 5x21td99n58 22 3 the the DET 5x21td99n58 22 4 demonstrated demonstrate VERB 5x21td99n58 22 5 ` ` PUNCT 5x21td99n58 22 6 ` ` PUNCT 5x21td99n58 22 7 denseed denseed X 5x21td99n58 22 8 " " PUNCT 5x21td99n58 22 9 ml ml PROPN 5x21td99n58 22 10 block block NOUN 5x21td99n58 22 11 provides provide VERB 5x21td99n58 22 12 enhanced enhanced ADJ 5x21td99n58 22 13 super super ADJ 5x21td99n58 22 14 - - ADJ 5x21td99n58 22 15 resolution resolution ADJ 5x21td99n58 22 16 images image NOUN 5x21td99n58 22 17 compared compare VERB 5x21td99n58 22 18 to to ADP 5x21td99n58 22 19 simple simple ADJ 5x21td99n58 22 20 cnn cnn PROPN 5x21td99n58 22 21 - - PUNCT 5x21td99n58 22 22 based base VERB 5x21td99n58 22 23 ml ml PROPN 5x21td99n58 22 24 models model NOUN 5x21td99n58 22 25 when when SCONJ 5x21td99n58 22 26 trained train VERB 5x21td99n58 22 27 with with ADP 5x21td99n58 22 28 an an DET 5x21td99n58 22 29 ultra ultra ADJ 5x21td99n58 22 30 - - ADJ 5x21td99n58 22 31 small small ADJ 5x21td99n58 22 32 training training NOUN 5x21td99n58 22 33 dataset dataset NOUN 5x21td99n58 22 34 ( ( PUNCT 5x21td99n58 22 35 minimal minimal ADJ 5x21td99n58 22 36 number number NOUN 5x21td99n58 22 37 of of ADP 5x21td99n58 22 38 fovs fovs NOUN 5x21td99n58 22 39 ) ) PUNCT 5x21td99n58 22 40 . . PUNCT 5x21td99n58 23 1 in in ADP 5x21td99n58 23 2 the the DET 5x21td99n58 23 3 case case NOUN 5x21td99n58 23 4 of of ADP 5x21td99n58 23 5 flim flim PROPN 5x21td99n58 23 6 super super NOUN 5x21td99n58 23 7 - - NOUN 5x21td99n58 23 8 resolution resolution NOUN 5x21td99n58 23 9 , , PUNCT 5x21td99n58 23 10 we we PRON 5x21td99n58 23 11 proposed propose VERB 5x21td99n58 23 12 a a DET 5x21td99n58 23 13 traditional traditional ADJ 5x21td99n58 23 14 deconvolution deconvolution NOUN 5x21td99n58 23 15 approach approach NOUN 5x21td99n58 23 16 to to PART 5x21td99n58 23 17 identify identify VERB 5x21td99n58 23 18 the the DET 5x21td99n58 23 19 true true ADJ 5x21td99n58 23 20 object object NOUN 5x21td99n58 23 21 / / SYM 5x21td99n58 23 22 sample sample NOUN 5x21td99n58 23 23 from from ADP 5x21td99n58 23 24 the the DET 5x21td99n58 23 25 diffraction diffraction NOUN 5x21td99n58 23 26 - - PUNCT 5x21td99n58 23 27 limited limit VERB 5x21td99n58 23 28 images image NOUN 5x21td99n58 23 29 ( ( PUNCT 5x21td99n58 23 30 experimentally experimentally ADV 5x21td99n58 23 31 captured capture VERB 5x21td99n58 23 32 ) ) PUNCT 5x21td99n58 23 33 . . PUNCT 5x21td99n58 24 1 in in ADP 5x21td99n58 24 2 this this DET 5x21td99n58 24 3 project project NOUN 5x21td99n58 24 4 , , PUNCT 5x21td99n58 24 5 we we PRON 5x21td99n58 24 6 provide provide VERB 5x21td99n58 24 7 a a DET 5x21td99n58 24 8 theoretical theoretical ADJ 5x21td99n58 24 9 model model NOUN 5x21td99n58 24 10 for for ADP 5x21td99n58 24 11 convolution convolution NOUN 5x21td99n58 24 12 in in ADP 5x21td99n58 24 13 flim flim PROPN 5x21td99n58 24 14 and and CCONJ 5x21td99n58 24 15 richardson richardson PROPN 5x21td99n58 24 16 - - PUNCT 5x21td99n58 24 17 lucy lucy PROPN 5x21td99n58 24 18 ( ( PUNCT 5x21td99n58 24 19 rl rl PROPN 5x21td99n58 24 20 ) ) PUNCT 5x21td99n58 24 21 based base VERB 5x21td99n58 24 22 deconvolution deconvolution NOUN 5x21td99n58 24 23 , , PUNCT 5x21td99n58 24 24 including include VERB 5x21td99n58 24 25 the the DET 5x21td99n58 24 26 total total ADJ 5x21td99n58 24 27 variation variation NOUN 5x21td99n58 24 28 ( ( PUNCT 5x21td99n58 24 29 tv tv NOUN 5x21td99n58 24 30 ) ) PUNCT 5x21td99n58 24 31 regularization regularization NOUN 5x21td99n58 24 32 method method NOUN 5x21td99n58 24 33 to to PART 5x21td99n58 24 34 correct correct VERB 5x21td99n58 24 35 the the DET 5x21td99n58 24 36 convolution convolution NOUN 5x21td99n58 24 37 - - PUNCT 5x21td99n58 24 38 induced induce VERB 5x21td99n58 24 39 distortions distortion NOUN 5x21td99n58 24 40 in in ADP 5x21td99n58 24 41 flim flim ADJ 5x21td99n58 24 42 measurements measurement NOUN 5x21td99n58 24 43 . . PUNCT 5x21td99n58 25 1 in in ADP 5x21td99n58 25 2 addition addition NOUN 5x21td99n58 25 3 , , PUNCT 5x21td99n58 25 4 the the DET 5x21td99n58 25 5 proposed propose VERB 5x21td99n58 25 6 method method NOUN 5x21td99n58 25 7 is be AUX 5x21td99n58 25 8 validated validate VERB 5x21td99n58 25 9 on on ADP 5x21td99n58 25 10 experimental experimental ADJ 5x21td99n58 25 11 images image NOUN 5x21td99n58 25 12 captured capture VERB 5x21td99n58 25 13 using use VERB 5x21td99n58 25 14 multi multi ADJ 5x21td99n58 25 15 - - ADJ 5x21td99n58 25 16 photon photon ADJ 5x21td99n58 25 17 microscopy microscopy NOUN 5x21td99n58 25 18 ( ( PUNCT 5x21td99n58 25 19 mpm)-flim mpm)-flim NUM 5x21td99n58 25 20 images image NOUN 5x21td99n58 25 21 of of ADP 5x21td99n58 25 22 fluorescent fluorescent NOUN 5x21td99n58 25 23 - - PUNCT 5x21td99n58 25 24 labeled label VERB 5x21td99n58 25 25 fixed fix VERB 5x21td99n58 25 26 bovine bovine NOUN 5x21td99n58 25 27 pulmonary pulmonary ADJ 5x21td99n58 25 28 arterial arterial ADJ 5x21td99n58 25 29 endothelial endothelial NOUN 5x21td99n58 25 30 ( ( PUNCT 5x21td99n58 25 31 bpae bpae PROPN 5x21td99n58 25 32 ) ) PUNCT 5x21td99n58 25 33 cells cell NOUN 5x21td99n58 25 34 . . PUNCT 5x21td99n58 26 1 finally finally ADV 5x21td99n58 26 2 , , PUNCT 5x21td99n58 26 3 we we PRON 5x21td99n58 26 4 further far ADV 5x21td99n58 26 5 enhance enhance VERB 5x21td99n58 26 6 the the DET 5x21td99n58 26 7 capabilities capability NOUN 5x21td99n58 26 8 of of ADP 5x21td99n58 26 9 low low ADJ 5x21td99n58 26 10 dosage dosage NOUN 5x21td99n58 26 11 , , PUNCT 5x21td99n58 26 12 long long ADJ 5x21td99n58 26 13 - - PUNCT 5x21td99n58 26 14 term term NOUN 5x21td99n58 26 15 , , PUNCT 5x21td99n58 26 16 in in ADP 5x21td99n58 26 17 vivo vivo NOUN 5x21td99n58 26 18 imaging image VERB 5x21td99n58 26 19 with with ADP 5x21td99n58 26 20 the the DET 5x21td99n58 26 21 assistance assistance NOUN 5x21td99n58 26 22 of of ADP 5x21td99n58 26 23 ml ml PROPN 5x21td99n58 26 24 models model NOUN 5x21td99n58 26 25 . . PUNCT 5x21td99n58 27 1 compressive compressive ADJ 5x21td99n58 27 2 sensing sense VERB 5x21td99n58 27 3 - - PUNCT 5x21td99n58 27 4 based base VERB 5x21td99n58 27 5 ( ( PUNCT 5x21td99n58 27 6 unsupervised unsupervised ADJ 5x21td99n58 27 7 machine machine NOUN 5x21td99n58 27 8 learning learning NOUN 5x21td99n58 27 9 model model NOUN 5x21td99n58 27 10 ) ) PUNCT 5x21td99n58 27 11 3d 3d NOUN 5x21td99n58 27 12 volume volume NOUN 5x21td99n58 27 13 reconstruction reconstruction NOUN 5x21td99n58 27 14 and and CCONJ 5x21td99n58 27 15 image image NOUN 5x21td99n58 27 16 denoising denoise VERB 5x21td99n58 27 17 for for ADP 5x21td99n58 27 18 low low ADJ 5x21td99n58 27 19 - - PUNCT 5x21td99n58 27 20 power power NOUN 5x21td99n58 27 21 image image NOUN 5x21td99n58 27 22 acquisition acquisition NOUN 5x21td99n58 27 23 will will AUX 5x21td99n58 27 24 be be AUX 5x21td99n58 27 25 developed develop VERB 5x21td99n58 27 26 to to PART 5x21td99n58 27 27 accurately accurately ADV 5x21td99n58 27 28 reconstruct reconstruct VERB 5x21td99n58 27 29 and and CCONJ 5x21td99n58 27 30 improve improve VERB 5x21td99n58 27 31 the the DET 5x21td99n58 27 32 snr snr PROPN 5x21td99n58 27 33 for for ADP 5x21td99n58 27 34 long long ADJ 5x21td99n58 27 35 - - PUNCT 5x21td99n58 27 36 term term NOUN 5x21td99n58 27 37 imaging imaging NOUN 5x21td99n58 27 38 . . PUNCT 5x21td99n58 28 1 experimental experimental ADJ 5x21td99n58 28 2 results result NOUN 5x21td99n58 28 3 are be AUX 5x21td99n58 28 4 presented present VERB 5x21td99n58 28 5 in in ADP 5x21td99n58 28 6 the the DET 5x21td99n58 28 7 respective respective ADJ 5x21td99n58 28 8 sections.overall sections.overall PROPN 5x21td99n58 28 9 , , PUNCT 5x21td99n58 28 10 in in ADP 5x21td99n58 28 11 this this DET 5x21td99n58 28 12 dissertation dissertation NOUN 5x21td99n58 28 13 , , PUNCT 5x21td99n58 28 14 we we PRON 5x21td99n58 28 15 show show VERB 5x21td99n58 28 16 that that SCONJ 5x21td99n58 28 17 the the DET 5x21td99n58 28 18 above above ADV 5x21td99n58 28 19 - - PUNCT 5x21td99n58 28 20 mentioned mention VERB 5x21td99n58 28 21 methods method NOUN 5x21td99n58 28 22 namely namely ADV 5x21td99n58 28 23 image image NOUN 5x21td99n58 28 24 denoising denoising NOUN 5x21td99n58 28 25 , , PUNCT 5x21td99n58 28 26 image image NOUN 5x21td99n58 28 27 super super NOUN 5x21td99n58 28 28 - - NOUN 5x21td99n58 28 29 resolution resolution NOUN 5x21td99n58 28 30 , , PUNCT 5x21td99n58 28 31 and and CCONJ 5x21td99n58 28 32 low low ADJ 5x21td99n58 28 33 - - PUNCT 5x21td99n58 28 34 dosage dosage NOUN 5x21td99n58 28 35 3d 3d NOUN 5x21td99n58 28 36 volume volume NOUN 5x21td99n58 28 37 imaging imaging NOUN 5x21td99n58 28 38 can can AUX 5x21td99n58 28 39 be be AUX 5x21td99n58 28 40 used use VERB 5x21td99n58 28 41 to to PART 5x21td99n58 28 42 solve solve VERB 5x21td99n58 28 43 the the DET 5x21td99n58 28 44 fundamental fundamental ADJ 5x21td99n58 28 45 limitations limitation NOUN 5x21td99n58 28 46 of of ADP 5x21td99n58 28 47 fluorescence fluorescence ADJ 5x21td99n58 28 48 microscopy microscopy NOUN 5x21td99n58 28 49 / / SYM 5x21td99n58 28 50 flim flim NOUN 5x21td99n58 28 51 using use VERB 5x21td99n58 28 52 machine machine NOUN 5x21td99n58 28 53 learning learning NOUN 5x21td99n58 28 54 models model NOUN 5x21td99n58 28 55 and and CCONJ 5x21td99n58 28 56 obtain obtain VERB 5x21td99n58 28 57 significant significant ADJ 5x21td99n58 28 58 acceleration acceleration NOUN 5x21td99n58 28 59 in in ADP 5x21td99n58 28 60 terms term NOUN 5x21td99n58 28 61 of of ADP 5x21td99n58 28 62 accuracy accuracy NOUN 5x21td99n58 28 63 and and CCONJ 5x21td99n58 28 64 computational computational ADJ 5x21td99n58 28 65 cost cost NOUN 5x21td99n58 28 66 ( ( PUNCT 5x21td99n58 28 67 in in ADP 5x21td99n58 28 68 - - PUNCT 5x21td99n58 28 69 terms term NOUN 5x21td99n58 28 70 of of ADP 5x21td99n58 28 71 instant instant ADJ 5x21td99n58 28 72 imaging imaging NOUN 5x21td99n58 28 73 , , PUNCT 5x21td99n58 28 74 faster fast ADV 5x21td99n58 28 75 training training NOUN 5x21td99n58 28 76 ml ml NOUN 5x21td99n58 28 77 models model NOUN 5x21td99n58 28 78 and and CCONJ 5x21td99n58 28 79 avoiding avoid VERB 5x21td99n58 28 80 photo photo NOUN 5x21td99n58 28 81 - - PUNCT 5x21td99n58 28 82 bleaching bleaching NOUN 5x21td99n58 28 83 of of ADP 5x21td99n58 28 84 the the DET 5x21td99n58 28 85 sample sample NOUN 5x21td99n58 28 86 ) ) PUNCT 5x21td99n58 28 87 than than ADP 5x21td99n58 28 88 conventional conventional ADJ 5x21td99n58 28 89 methods method NOUN 5x21td99n58 28 90 . . PUNCT