id sid tid token lemma pos 0z708w34j7m 1 1 a a DET 0z708w34j7m 1 2 bergman bergman ADJ 0z708w34j7m 1 3 space space NOUN 0z708w34j7m 1 4 hl2(bd hl2(bd PROPN 0z708w34j7m 1 5 , , PUNCT 0z708w34j7m 1 6 du_eta du_eta PROPN 0z708w34j7m 1 7 ) ) PUNCT 0z708w34j7m 1 8 is be AUX 0z708w34j7m 1 9 non non ADJ 0z708w34j7m 1 10 - - ADJ 0z708w34j7m 1 11 zero zero NUM 0z708w34j7m 1 12 if if SCONJ 0z708w34j7m 1 13 and and CCONJ 0z708w34j7m 1 14 only only ADV 0z708w34j7m 1 15 if if SCONJ 0z708w34j7m 1 16 eta>-1 eta>-1 NOUN 0z708w34j7m 1 17 . . PUNCT 0z708w34j7m 2 1 we we PRON 0z708w34j7m 2 2 define define VERB 0z708w34j7m 2 3 new new ADJ 0z708w34j7m 2 4 spaces space NOUN 0z708w34j7m 2 5 , , PUNCT 0z708w34j7m 2 6 hl2(bd hl2(bd SPACE 0z708w34j7m 2 7 , , PUNCT 0z708w34j7m 2 8 eta eta PROPN 0z708w34j7m 2 9 ) ) PUNCT 0z708w34j7m 2 10 , , PUNCT 0z708w34j7m 2 11 which which PRON 0z708w34j7m 2 12 are be AUX 0z708w34j7m 2 13 the the DET 0z708w34j7m 2 14 same same ADJ 0z708w34j7m 2 15 as as ADP 0z708w34j7m 2 16 bergman bergman ADJ 0z708w34j7m 2 17 spaces space NOUN 0z708w34j7m 2 18 if if SCONJ 0z708w34j7m 2 19 eta>-1 eta>-1 NOUN 0z708w34j7m 2 20 but but CCONJ 0z708w34j7m 2 21 non non ADJ 0z708w34j7m 2 22 - - ADJ 0z708w34j7m 2 23 zero zero NUM 0z708w34j7m 2 24 for for ADP 0z708w34j7m 2 25 eta>-(d+1 eta>-(d+1 NOUN 0z708w34j7m 2 26 ) ) PUNCT 0z708w34j7m 2 27 . . PUNCT 0z708w34j7m 3 1 we we PRON 0z708w34j7m 3 2 define define VERB 0z708w34j7m 3 3 toeplitz toeplitz PROPN 0z708w34j7m 3 4 operators operator NOUN 0z708w34j7m 3 5 associated associate VERB 0z708w34j7m 3 6 with with ADP 0z708w34j7m 3 7 polynomials polynomial NOUN 0z708w34j7m 3 8 to to ADP 0z708w34j7m 3 9 the the DET 0z708w34j7m 3 10 spaces space NOUN 0z708w34j7m 3 11 hl2(bd hl2(bd SPACE 0z708w34j7m 3 12 , , PUNCT 0z708w34j7m 3 13 eta eta PROPN 0z708w34j7m 3 14 ) ) PUNCT 0z708w34j7m 4 1 when when SCONJ 0z708w34j7m 4 2 -(d+1)