id sid tid token lemma pos 0g354f1842q 1 1 we we PRON 0g354f1842q 1 2 shall shall AUX 0g354f1842q 1 3 consider consider VERB 0g354f1842q 1 4 the the DET 0g354f1842q 1 5 periodic periodic ADJ 0g354f1842q 1 6 cauchy cauchy ADJ 0g354f1842q 1 7 problem problem NOUN 0g354f1842q 1 8 for for ADP 0g354f1842q 1 9 a a DET 0g354f1842q 1 10 modified modify VERB 0g354f1842q 1 11 camassa camassa NOUN 0g354f1842q 1 12 - - PUNCT 0g354f1842q 1 13 holm holm NOUN 0g354f1842q 1 14 ( ( PUNCT 0g354f1842q 1 15 mch mch PROPN 0g354f1842q 1 16 ) ) PUNCT 0g354f1842q 1 17 equation equation NOUN 0g354f1842q 1 18 . . PUNCT 0g354f1842q 2 1 we we PRON 0g354f1842q 2 2 begin begin VERB 0g354f1842q 2 3 by by ADP 0g354f1842q 2 4 proving prove VERB 0g354f1842q 2 5 well well ADV 0g354f1842q 2 6 - - PUNCT 0g354f1842q 2 7 posedness posedness NOUN 0g354f1842q 2 8 in in ADP 0g354f1842q 2 9 bourgain bourgain NOUN 0g354f1842q 2 10 spaces space NOUN 0g354f1842q 2 11 for for ADP 0g354f1842q 2 12 sufficiently sufficiently ADV 0g354f1842q 2 13 small small ADJ 0g354f1842q 2 14 size size NOUN 0g354f1842q 2 15 initial initial ADJ 0g354f1842q 2 16 data datum NOUN 0g354f1842q 2 17 in in ADP 0g354f1842q 2 18 the the DET 0g354f1842q 2 19 sobolev sobolev NOUN 0g354f1842q 2 20 space space NOUN 0g354f1842q 2 21 $ $ SYM 0g354f1842q 2 22 h^s(mathbb{t})$ h^s(mathbb{t})$ NOUN 0g354f1842q 2 23 , , PUNCT 0g354f1842q 2 24 $ $ SYM 0g354f1842q 2 25 s=1/2 s=1/2 NOUN 0g354f1842q 2 26 $ $ NUM 0g354f1842q 2 27 , , PUNCT 0g354f1842q 2 28 by by ADP 0g354f1842q 2 29 using use VERB 0g354f1842q 2 30 appropriate appropriate ADJ 0g354f1842q 2 31 bilinear bilinear ADJ 0g354f1842q 2 32 estimates estimate NOUN 0g354f1842q 2 33 . . PUNCT 0g354f1842q 3 1 also also ADV 0g354f1842q 3 2 we we PRON 0g354f1842q 3 3 show show VERB 0g354f1842q 3 4 that that SCONJ 0g354f1842q 3 5 these these DET 0g354f1842q 3 6 bilinear bilinear ADJ 0g354f1842q 3 7 estimates estimate NOUN 0g354f1842q 3 8 do do AUX 0g354f1842q 3 9 not not PART 0g354f1842q 3 10 hold hold VERB 0g354f1842q 3 11 if if SCONJ 0g354f1842q 3 12 $ $ SYM 0g354f1842q 3 13 s<1/2$. s<1/2$. VERB 0g354f1842q 3 14 well well ADJ 0g354f1842q 3 15 - - PUNCT 0g354f1842q 3 16 posedness posedness NOUN 0g354f1842q 3 17 of of ADP 0g354f1842q 3 18 the the DET 0g354f1842q 3 19 mch mch NOUN 0g354f1842q 3 20 for for ADP 0g354f1842q 3 21 $ $ SYM 0g354f1842q 3 22 s>1/2 s>1/2 PROPN 0g354f1842q 3 23 $ $ NUM 0g354f1842q 3 24 has have AUX 0g354f1842q 3 25 been be AUX 0g354f1842q 3 26 established establish VERB 0g354f1842q 3 27 by by ADP 0g354f1842q 3 28 himonas himonas PROPN 0g354f1842q 3 29 and and CCONJ 0g354f1842q 3 30 misiol misiol PROPN 0g354f1842q 3 31 ek ek PROPN 0g354f1842q 3 32 in in ADP 0g354f1842q 3 33 [ [ X 0g354f1842q 3 34 hm1 hm1 NOUN 0g354f1842q 3 35 ] ] PUNCT 0g354f1842q 3 36 . . PUNCT 0g354f1842q 4 1 these these DET 0g354f1842q 4 2 results result NOUN 0g354f1842q 4 3 indicate indicate VERB 0g354f1842q 4 4 that that SCONJ 0g354f1842q 4 5 $ $ SYM 0g354f1842q 4 6 s=1/2 s=1/2 NOUN 0g354f1842q 4 7 $ $ NUM 0g354f1842q 4 8 may may AUX 0g354f1842q 4 9 be be AUX 0g354f1842q 4 10 the the DET 0g354f1842q 4 11 critical critical ADJ 0g354f1842q 4 12 sobolev sobolev NOUN 0g354f1842q 4 13 exponent exponent NOUN 0g354f1842q 4 14 for for ADP 0g354f1842q 4 15 well well ADV 0g354f1842q 4 16 - - PUNCT 0g354f1842q 4 17 posedness posedness NOUN 0g354f1842q 4 18 . . PUNCT 0g354f1842q 5 1 in in ADP 0g354f1842q 5 2 the the DET 0g354f1842q 5 3 second second ADJ 0g354f1842q 5 4 part part NOUN 0g354f1842q 5 5 of of ADP 0g354f1842q 5 6 this this DET 0g354f1842q 5 7 work work NOUN 0g354f1842q 5 8 we we PRON 0g354f1842q 5 9 show show VERB 0g354f1842q 5 10 that that SCONJ 0g354f1842q 5 11 the the DET 0g354f1842q 5 12 periodic periodic ADJ 0g354f1842q 5 13 cauchy cauchy ADJ 0g354f1842q 5 14 problem problem NOUN 0g354f1842q 5 15 for for ADP 0g354f1842q 5 16 the the DET 0g354f1842q 5 17 mch mch ADJ 0g354f1842q 5 18 equation equation NOUN 0g354f1842q 5 19 with with ADP 0g354f1842q 5 20 analytic analytic ADJ 0g354f1842q 5 21 initial initial ADJ 0g354f1842q 5 22 data datum NOUN 0g354f1842q 5 23 is be AUX 0g354f1842q 5 24 analytic analytic ADJ 0g354f1842q 5 25 in in ADP 0g354f1842q 5 26 the the DET 0g354f1842q 5 27 space space NOUN 0g354f1842q 5 28 variable variable NOUN 0g354f1842q 5 29 $ $ SYM 0g354f1842q 5 30 x$ x$ X 0g354f1842q 5 31 for for ADP 0g354f1842q 5 32 time time NOUN 0g354f1842q 5 33 near near ADP 0g354f1842q 5 34 zero zero NUM 0g354f1842q 5 35 . . PUNCT 0g354f1842q 6 1 by by ADP 0g354f1842q 6 2 differentiating differentiate VERB 0g354f1842q 6 3 the the DET 0g354f1842q 6 4 equation equation NOUN 0g354f1842q 6 5 and and CCONJ 0g354f1842q 6 6 the the DET 0g354f1842q 6 7 initial initial ADJ 0g354f1842q 6 8 condition condition NOUN 0g354f1842q 6 9 with with ADP 0g354f1842q 6 10 respect respect NOUN 0g354f1842q 6 11 to to ADP 0g354f1842q 6 12 $ $ SYM 0g354f1842q 6 13 x$ x$ X 0g354f1842q 6 14 we we PRON 0g354f1842q 6 15 obtain obtain VERB 0g354f1842q 6 16 a a DET 0g354f1842q 6 17 sequence sequence NOUN 0g354f1842q 6 18 of of ADP 0g354f1842q 6 19 initial initial ADJ 0g354f1842q 6 20 value value NOUN 0g354f1842q 6 21 problems problem NOUN 0g354f1842q 6 22 of of ADP 0g354f1842q 6 23 kdv kdv ADJ 0g354f1842q 6 24 - - PUNCT 0g354f1842q 6 25 type type NOUN 0g354f1842q 6 26 equations equation NOUN 0g354f1842q 6 27 . . PUNCT 0g354f1842q 7 1 these these PRON 0g354f1842q 7 2 , , PUNCT 0g354f1842q 7 3 written write VERB 0g354f1842q 7 4 in in ADP 0g354f1842q 7 5 the the DET 0g354f1842q 7 6 form form NOUN 0g354f1842q 7 7 of of ADP 0g354f1842q 7 8 integral integral ADJ 0g354f1842q 7 9 equations equation NOUN 0g354f1842q 7 10 , , PUNCT 0g354f1842q 7 11 define define VERB 0g354f1842q 7 12 a a DET 0g354f1842q 7 13 mapping mapping NOUN 0g354f1842q 7 14 on on ADP 0g354f1842q 7 15 a a DET 0g354f1842q 7 16 banach banach NOUN 0g354f1842q 7 17 space space NOUN 0g354f1842q 7 18 whose whose DET 0g354f1842q 7 19 elements element NOUN 0g354f1842q 7 20 are be AUX 0g354f1842q 7 21 sequences sequence NOUN 0g354f1842q 7 22 of of ADP 0g354f1842q 7 23 functions function NOUN 0g354f1842q 7 24 equipped equip VERB 0g354f1842q 7 25 with with ADP 0g354f1842q 7 26 a a DET 0g354f1842q 7 27 norm norm NOUN 0g354f1842q 7 28 expressing express VERB 0g354f1842q 7 29 the the DET 0g354f1842q 7 30 cauchy cauchy ADJ 0g354f1842q 7 31 estimates estimate NOUN 0g354f1842q 7 32 in in ADP 0g354f1842q 7 33 terms term NOUN 0g354f1842q 7 34 of of ADP 0g354f1842q 7 35 the the DET 0g354f1842q 7 36 kdv kdv ADJ 0g354f1842q 7 37 norms norm NOUN 0g354f1842q 7 38 of of ADP 0g354f1842q 7 39 the the DET 0g354f1842q 7 40 components component NOUN 0g354f1842q 7 41 introduced introduce VERB 0g354f1842q 7 42 in in ADP 0g354f1842q 7 43 the the DET 0g354f1842q 7 44 works work NOUN 0g354f1842q 7 45 of of ADP 0g354f1842q 7 46 bourgain bourgain PROPN 0g354f1842q 7 47 , , PUNCT 0g354f1842q 7 48 kenig kenig NOUN 0g354f1842q 7 49 , , PUNCT 0g354f1842q 7 50 ponce ponce ADV 0g354f1842q 7 51 , , PUNCT 0g354f1842q 7 52 vega vega ADJ 0g354f1842q 7 53 and and CCONJ 0g354f1842q 7 54 others other NOUN 0g354f1842q 7 55 . . PUNCT 0g354f1842q 8 1 by by ADP 0g354f1842q 8 2 proving prove VERB 0g354f1842q 8 3 appropriate appropriate ADJ 0g354f1842q 8 4 bilinear bilinear ADJ 0g354f1842q 8 5 estimates estimate NOUN 0g354f1842q 8 6 we we PRON 0g354f1842q 8 7 show show VERB 0g354f1842q 8 8 that that SCONJ 0g354f1842q 8 9 this this DET 0g354f1842q 8 10 mapping mapping NOUN 0g354f1842q 8 11 is be AUX 0g354f1842q 8 12 a a DET 0g354f1842q 8 13 contraction contraction NOUN 0g354f1842q 8 14 , , PUNCT 0g354f1842q 8 15 and and CCONJ 0g354f1842q 8 16 therefore therefore ADV 0g354f1842q 8 17 we we PRON 0g354f1842q 8 18 obtain obtain VERB 0g354f1842q 8 19 a a DET 0g354f1842q 8 20 solution solution NOUN 0g354f1842q 8 21 whose whose DET 0g354f1842q 8 22 derivatives derivative NOUN 0g354f1842q 8 23 in in ADP 0g354f1842q 8 24 the the DET 0g354f1842q 8 25 space space NOUN 0g354f1842q 8 26 variable variable NOUN 0g354f1842q 8 27 satisfy satisfy VERB 0g354f1842q 8 28 the the DET 0g354f1842q 8 29 cauchy cauchy ADJ 0g354f1842q 8 30 estimates estimate NOUN 0g354f1842q 8 31 . . PUNCT