bodies in contact, Electricity, through attractions and repulsions, will immediately reproduce motion in neighbouring bodies. Now a current of Electricity generates magnetism in a bar of soft iron; and now the rotation of a permanent magnet generates currents of Electricity. Here we have a battery in which from the play of chemical affinities an electric current results; and there, in the adjacent cell, we have an electric current effecting chemical decomposition. In the conducting wire we witness the transformation of Electricity into heat; while in electric sparks and in the voltaic arc we see light produced. Atomic arrangement, too, is changed by Electricity: as instance the transfer of matter from pole to pole of a battery; the fractures caused by the disruptive discharge; the formation of crystals under the influence of electric currents. And whether, conversely, Electricity be or be not directly generated by re-arrangement of the atoms of matter, it is at any rate indirectly so generated through the intermediation of magnetism. How from Magnetism the other physical forces result, must be next briefly noted�briefly, because in each successive case the illustrations become in great part the obverse forms of those before given. That Magnetism produces motion is the ordinary evidence we have of its existence. In the magneto-electric machine we see a rotating magnet evolving electricity. And the electricity so evolved may immediately after exhibit itself as heat, light, or chemical affinity. Faraday�s discovery of the effect of Magnetism on polarized light, as well as the discovery that change of magnetic state is accompanied by heat, point to further like connexions. Lastly, various experiments show that the magnetization of a body alters its internal structure; and that conversely, the alteration of its internal structure, as by mechanical strain, alters its magnetic condition. Improbable as it seemed, it is now proved that from Light also may proceed the like variety of agencies. The solar rays change the atomic arrangements of particular crystals. Certain mixed gases, which do not otherwise combine, combine in the sunshine. In some compounds Light produces decomposition. Since the inquiries of photographers have drawn attention to the subject, it has been shown that �a vast number of substances, both elementary and compound, are notably affected by this agent, even those apparently the most unalterable in character, such as metals.� And when a daguerreotype plate is connected with a proper apparatus �we get chemical action on the plate, electricity circulating through the wires, magnetism in the coil, heat in the helix, and motion in the needles.� The genesis of all other modes of force from Chemical Action, scarcely needs pointing out. The ordinary accompaniment of chemical combination is heat; and when the affinities are intense, light also is, under fit conditions, produced. Chemical changes involving alteration of bulk, cause motion, both in the combining elements and in adjacent masses of matter: witness the propulsion of a bullet by the explosion of gunpowder. In the galvanic battery we see electricity resulting from chemical composition and decomposition. While through the medium of this electricity, Chemical Action produces magnetism. These facts, the larger part of which are culled from Mr. Grove�s work on �The Correlation of Physical Forces,� show us that each force is transformable, directly or indirectly, into the others. In every change Force undergoes metamorphosis; and from the new form or forms it assumes, may subsequently result either the previous one or any of the rest, in endless variety of order and combination. It is further becoming manifest that the physical forces stand not simply in qualitative correlations with each other, but also in quantitative correlations. Besides proving that one mode of force may be transformed into another mode, experiments illustrate the truth that from a definite amount of one, definite amounts of others always arise. Ordinarily it is indeed difficult to show this; since it mostly happens that the transformation of any force is not into some one of the rest but into several of them: the proportions being determined by the ever-varying conditions. But in certain cases, positive results have been reached. Mr. Joule has ascertained that the fall of 772 lbs. through one foot, will raise the temperature of a pound of water one degree of Fahrenheit. The investigations of Dulong, Petit and Neumann, have proved a relation in amount between the affinities of combining bodies and the heat evolved during their combination. Between chemical action and voltaic electricity, a quantitative connexion has also been established: Faraday�s experiments implying that a specific measure of electricity is disengaged by a given measure of chemical action. The well-determined relations between the quantities of heat generated and water turned into steam, or still better the known expansion produced in steam by each additional degree of heat, may be cited in further evidence. Whence it is no longer doubted that among the several forms which force assumes, the quantitative relations are fixed. The conclusion tacitly agreed on by physicists, is, not only that the physical forces undergo metamorphoses, but that a certain amount of each is the constant equivalent of certain amounts of the others. * * * * * § 78. Throughout Evolution under all its phases, this truth of course invariably holds. Every successive change or group of changes forming part of it, is of necessity limited by the conditions thus implied. The forces which any step in Evolution exhibits, must be affiliable on the like or unlike forces previously existing; while from the forces so generated must thereafter be derived others more or less transformed. And besides recognizing the forces at any time existing, as necessarily linked with those preceding and succeeding them, we must also recognize the amounts of these forces successively manifested as determinate,�as necessarily producing such and such quantities of results, and as necessarily limited to those quantities. Involved as are the phenomena of Evolution, it is not to be expected that a _definite_ quantitative relation can in each case, or indeed in any case, be shown between the forces expended in successive phases. We have not adequate data for this; and probably shall never have them. The antecedents of the simpler forms of Evolution, belong to a remote past respecting which we can have nothing but inferential knowledge; while the antecedents of the only kind of Evolution which is traceable from beginning to end (namely, that of individual organisms) are too complex to be dealt with by exact methods. Hence we cannot hope to establish _equivalence_ among the successive manifestations of force which each order of Evolution affords. The most we can hope is to establish a qualitative correlation that is indefinitely quantitative�quantitative in so far as involving something like a due proportion between causes and effects. If this can be done, however, some progress will be made towards the solution of our problem. Though it may be beyond our power to show a measurable relation between the force or group of forces which any phase of Evolution displays, and the force or group of forces immediately succeeding it; yet if we can show that there always are antecedent forces, and that the effects they produce always become the antecedents of further ones�if while unable to calculate how much of each change will be produced, we can prove that a change of that kind was necessitated�if we can discern even the vaguest correspondence between the amount of such change and the amount of the pre-existing force; we shall advance a step towards interpreting the transformation of the simple into the complex. With the view of attempting this, let us now reconsider the different types of Evolution awhile since delineated: taking them in the same order as before. * * * * * § 79. On contemplating our Solar System the first fact which strikes us, is, that all its members are in motion; and that their motion is of a two-fold, or rather of a three-fold, kind. Each planet and satellite has a movement of rotation and a movement of translation; besides the movement through space which all have in common with their rotating primary. Whence this unceasing change of place? The hypothesis of Evolution supplies us with an answer. Impossible as it is to assign a reason for the pre-existence of matter in the diffused form supposed; yet assuming its pre-existence in that form, we have in the gravitation of its parts a cause of motion adequate to the results. So far too as the evidence carries us, we can perceive some quantitative relation between the motions produced, and the gravitative forces expended in producing them. The planets formed from that matter which has travelled the shortest distance towards the common centre of gravity, have the smallest velocities: the uniform law being that in advancing from the outermost to the innermost planets, the rate of orbital motion progressively increases. It may indeed be remarked that this is explicable on the teleological hypothesis; since it is a condition to equilibrium. But without dwelling on the fact that this is beside the question, it will suffice to point out that the like cannot be said of the planetary rotations. No such final cause can be assigned for the rapid axial movement of Jupiter and Saturn, or the slow axial movement of Mercury. But if in pursuance of the doctrine of correlation we look for the antecedents of these gyrations which all planets exhibit, the theory of Evolution furnishes us with equivalent ones; and ones which bear manifest quantitative relations to the motions displayed. For the planets that turn on their axes with extreme rapidity, are those having great masses and large orbits�those, that is, of which the once diffused elements moved to their centres of gravity through immense spaces, and so acquired high velocities. While, conversely, there has resulted the smallest axial movement where the orbit and the mass are both the smallest. �But what,� it may be asked, �has in such case become of all that motion which brought about the aggregation of this diffused matter into solid bodies?� The rotation of each body can be but a residuary result of concentration�a result due to the imperfect balancing of gravitative movements from opposite points towards the common centre. Such gravitative movements from opposite points must in great measure destroy each other. What then has become of these mutually-destroyed motions? The answer which the doctrine of correlation suggests is�they must have been radiated in the form of heat and light. And this answer the evidence, so far as it goes, confirms. Apart from any speculation respecting the genesis of the solar system, the inquiries of geologists lead to the conclusion that the heat of the Earth�s still molten nucleus is but a remnant of the heat which once made molten the entire Earth. The mountainous surfaces of the Moon and of Venus (which alone are near enough to be scrutinized), indicating, as they do, crusts that have, like our own, been corrugated by contraction, imply that these bodies too have undergone refrigeration�imply in each of them a primitive heat, such as the hypothesis necessitates. Lastly, we have in the Sun a still-continued production of this heat and light, which must result from the arrest of diffused matter moving towards a common centre of gravity. Here also, as before, a quantitative relation is traceable. Among the bodies which make up the Solar System, those containing comparatively small amounts of matter whose centripetal motion has been destroyed, have already lost nearly all the produced heat: a result which their relatively larger surfaces have facilitated. But the Sun, a thousand times as great in mass as the largest planet, and having therefore to give off an enormously greater quantity of heat and light due to arrest of moving matter, is still radiating with great intensity. Thus we see that when, in pursuance of the doctrine of correlation, we ask whence come the forces which our Solar System displays, the hypothesis of Evolution gives us a proximate explanation. If the Solar System once existed in a state of indefinite, incoherent homogeneity, and has progressed to its present state of definite, coherent heterogeneity; then the Motion, Heat, and Light now exhibited by its members, are interpretable as the correlatives of pre-existing forces; and between them and their antecedents we may discern relations that are not only qualitative, but also rudely quantitative. How matter came to exist under the form assumed, is a mystery which we must regard as ultimate. But grant such a previous form of existence, and the hypothesis of Evolution interpreted by the laws of correlation, explains for us the forces as we now see them. * * * * * § 80. If we inquire the origin of those forces which have wrought the surface of our planet into its present shape, we find them traceable to the same primordial source as that just assigned. Assuming the solar system to have been evolved, then geologic changes are either direct or indirect results of the unexpended heat caused by nebular condensation. These changes are commonly divided into igneous and aqueous:�heads under which we may most conveniently consider them. All those periodic disturbances which we call earthquakes, all those elevations and subsidences which they severally produce, all those accumulated effects of many such elevations and subsidences exhibited in ocean-basins, islands, continents, table-lands, mountain-chains, and all those formations which are distinguished as volcanic, geologists now regard as modifications of the Earth�s crust produced by the still-molten matter occupying its interior. However untenable may be the details of M. Elie de Beaumont�s theory, there is good reason to accept the general proposition that the disruptions and variations of level which take place at intervals on the terrestrial surface, are due to the progressive collapse of the Earth�s solid envelope upon its cooling and contracting nucleus. Even supposing that volcanic eruptions, extrusions of igneous rock, and upheaved mountain-chains, could be otherwise satisfactorily accounted for, which they cannot; it would be impossible otherwise to account for those wide-spread elevations and depressions whence continents and oceans result. The conclusion to be drawn is, then, that the forces displayed in these so-called igneous changes, are derived positively or negatively from the unexpended heat of the Earth�s interior. Such phenomena as the fusion or agglutination of sedimentary deposits, the warming of springs, the sublimation of metals into the fissures where we find them as ores, may be regarded as positive results of this residuary heat; while fractures of strata and alterations of level are its negative results, since they ensue on its escape. The original cause of all these effects is still, however, as it has been from the first, the gravitating movement of the Earth�s matter towards the Earth�s centre; seeing that to this is due both the internal heat itself and the collapse which takes place as it is radiated into space. When we inquire under what forms previously existed the force which works out the geological changes classed as aqueous, the answer is less obvious. The effects of rain, of rivers, of winds, of waves, of marine currents, do not manifestly proceed from one general source. Analysis, nevertheless, proves to us that they have a common genesis. If we ask,�Whence comes the power of the river-current, bearing sediment down to the sea? the reply is,�The gravitation of water throughout the tract which this river drains. If we ask,�How came the water to be dispersed over this tract? the reply is,�It fell in the shape of rain. If we ask,�How came the rain to be in that position whence it fell? the reply is,�The vapour from which it was condensed was drifted there by the winds. If we ask,�How came this vapour to be at that elevation? the reply is,�It was raised by evaporation. And if we ask,�What force thus raised it? the reply is,�The sun�s heat. Just that amount of gravitative force which the sun�s heat overcame in raising the atoms of water, is given out again in the fall of those atoms to the same level. Hence the denudations effected by rain and rivers, during the descent of this condensed vapour to the level of the sea, are indirectly due to the sun�s heat. Similarly with the winds that transport the vapours hither and thither. Consequent as atmospheric currents are on differences of temperature (either general, as between the equatorial and polar regions, or special as between tracts of the Earth�s surface of unlike physical characters) all such currents are due to that source from which the varying quantities of heat proceed. And if the winds thus originate, so too do the waves raised by them on the sea�s surface. Whence it follows that whatever changes waves produce�the wearing away of shores, the breaking down of rocks into shingle, sand, and mud�are also traceable to the solar rays as their primary cause. The same may be said of ocean-currents. Generated as the larger ones are by the excess of heat which the ocean in tropical climates continually acquires from the Sun; and generated as the smaller ones are by minor local differences in the quantities of solar heat absorbed; it follows that the distribution of sediment and other geological processes which these marine currents effect, are affiliable upon the force which the sun radiates. The only aqueous agency otherwise originating is that of the tides�an agency which, equally with the others, is traceable to unexpended astronomical motion. But making allowance for the changes which this works, we reach the conclusion that the slow wearing down of continents and gradual filling up of seas, by rain, rivers, winds, waves, and ocean-streams, are the indirect effects of solar heat. Thus the implication forced on us by the doctrine of correlation, that the forces which have moulded and re-moulded the Earth�s crust must have pre-existed under some other shape, is quite in conformity with the theory of Evolution; since this pre-supposes certain forces that are both adequate to the results, and cannot be expended without producing the results. We see that while the geological changes classed as igneous, result from the still-progressing motion of the Earth�s substance to its centre of gravity; the antagonistic changes classed as aqueous, result from the still-progressing motion of the Sun�s substance towards its centre of gravity�a motion which, transformed into heat and radiated to us, is here re-transformed, directly into motions of the gaseous and liquid matters on the Earth�s surface, and indirectly into motions of the solid matters. * * * * * § 81. That the forces exhibited in vital actions, vegetal and animal, are similarly derived, is so obvious a deduction from the facts of organic chemistry, that it will meet with ready acceptance from readers acquainted with these facts. Let us note first the physiological generalizations; and then the generalizations which they necessitate. Plant-life is all directly or indirectly dependant on the heat and light of the sun�directly dependant in the immense majority of plants, and indirectly dependant in plants which, as the fungi, flourish in the dark: since these, growing as they do at the expense of decaying organic matter, mediately draw their forces from the same original source. Each plant owes the carbon and hydrogen of which it mainly consists, to the carbonic acid and water contained in the surrounding air and earth. The carbonic acid and water must, however, be decomposed before their carbon and hydrogen can be assimilated. To overcome the powerful affinities which hold their elements together, requires the expenditure of force; and this force is supplied by the Sun. In what manner the decomposition is effected we do not know. But we know that when, under fit conditions, plants are exposed to the Sun�s rays, they give off oxygen and accumulate carbon and hydrogen. In darkness this process ceases. It ceases too when the quantities of light and heat received are greatly reduced, as in winter. Conversely, it is active when the light and heat are great, as in summer. And the like relation is seen in the fact that while plant-life is luxuriant in the tropics, it diminishes in temperate regions, and disappears as we approach the poles. Thus the irresistible inference is, that the forces by which plants abstract the materials of their tissues from surrounding inorganic compounds�the forces by which they grow and carry on their functions, are forces that previously existed as solar radiations. That animal life is immediately or mediately dependant on vegetal life is a familiar truth; and that, in the main, the processes of animal life are opposite to those of vegetal life is a truth long current among men of science. Chemically considered, vegetal life is chiefly a process of de-oxidation, and animal life chiefly a process of oxidation: chiefly, we must say, because in so far as plants are expenders of force for the purposes of organization, they are oxidizers (as is shown by the exhalation of carbonic acid during the night); and animals, in some of their minor processes, are probably de-oxidizers. But with this qualification, the general truth is that while the plant, decomposing carbonic acid and water and liberating oxygen, builds up the detained carbon and hydrogen (along with a little nitrogen and small quantities of other elements elsewhere obtained) into branches, leaves, and seeds; the animal, consuming these branches, leaves, and seeds, and absorbing oxygen, recomposes carbonic acid and water, together with certain nitrogenous compounds in minor amounts. And while the decomposition effected by the plant, is at the expense of certain forces emanating from the sun, which are employed in overcoming the affinities of carbon and hydrogen for the oxygen united with them; the recomposition effected by the animal, is at the profit of these forces, which are liberated during the combination of such elements. Thus the movements, internal and external, of the animal, are re-appearances in new forms of a power absorbed by the plant under the shape of light and heat. Just as, in the manner above explained, the solar forces expended in raising vapour from the sea�s surface, are given out again in the fall of rain and rivers to the same level, and in the accompanying transfer of solid matters; so, the solar forces that in the plant raised certain chemical elements to a condition of unstable equilibrium, are given out again in the actions of the animal during the fall of these elements to a condition of stable equilibrium. Besides thus tracing a qualitative correlation between these two great orders of organic activity, as well as between both of them and inorganic agencies, we may rudely trace a quantitative correlation. Where vegetal life is abundant, we usually find abundant animal life; and as we advance from torrid to temperate and frigid climates, the two decrease together. Speaking generally, the animals of each class reach a larger size in regions where vegetation is abundant, than in those where it is sparse. And further, there is a tolerably apparent connexion between the quantity of energy which each species of animal expends, and the quantity of force which the nutriment it absorbs gives out during oxidation. Certain phenomena of development in both plants and animals, illustrate still more directly the ultimate truth enunciated. Pursuing the suggestion made by Mr. Grove, in the first edition of his work on the �Correlation of the Physical Forces,� that a connexion probably exists between the forces classed as vital and those classed as physical, Dr. Carpenter has pointed out that such a connexion is clearly exhibited during incubation. The transformation of the unorganized contents of an egg into the organized chick, is altogether a question of heat: withhold heat and the process does not commence; supply heat and it goes on while the temperature is maintained, but ceases when the egg is allowed to cool. The developmental changes can be completed only by keeping the temperature with tolerable constancy at a definite height for a definite time; that is�only by supplying a definite quantity of heat. In the metamorphoses of insects we may discern parallel facts. Experiments show not only that the hatching of their eggs is determined by temperature, but also that the evolution of the pupa into the imago is similarly determined; and may be immensely accelerated or retarded according as heat is artificially supplied or withheld. It will suffice just to add that the germination of plants presents like relations of cause and effect�relations so similar that detail is superfluous. Thus then the various changes exhibited to us by the organic creation, whether considered as a whole, or in its two great divisions, or in its individual members, conform, so far as we can ascertain, to the law of correlation. Where, as in the transformation of an egg into a chick, we can investigate the phenomena apart from all complications, we find that the re-arrangement of parts which constitutes evolution, involves expenditure of a pre-existing force. Where it is not, as in the egg or the chrysalis, merely the change of a fixed quantity of matter into a new shape, but where, as in the growing plant or animal, we have an incorporation of matter existing outside, there is still a pre-existing external force at the cost of which this incorporation is effected. And where, as in the higher division of organisms, there remain over and above the forces expended in organization, certain surplus forces expended in movement, these too are indirectly derived from this same pre-existing external force. * * * * * § 82. Even after all that has been said in the foregoing part of this work, many will be alarmed by the assertion, that the forces which we distinguish as mental, come within the same generalization. Yet there is no alternative but to make this assertion: the facts which justify, or rather which necessitate it, being abundant and conspicuous. They fall into the following groups. All impressions from moment to moment made on our organs of sense, stand in direct correlation with physical forces existing externally. The modes of consciousness called pressure, motion, sound, light, heat, are effects produced in us by agencies which, as otherwise expended, crush or fracture pieces of matter, generate vibrations in surrounding objects, cause chemical combinations, and reduce substances from a solid to a liquid form. Hence if we regard the changes of relative position, of aggregation, or of chemical state, thus arising, as being transformed manifestations of the agencies from which they arise; so must we regard the sensations which such agencies produce in us, as new forms of the forces producing them. Any hesitation to admit that, between the physical forces and the sensations there exists a correlation like that between the physical forces themselves, must disappear on remembering how the one correlation, like the other, is not qualitative only but quantitative. Masses of matter which, by scales or dynamometer, are shown to differ greatly in weight, differ as greatly in the feelings of pressure they produce on our bodies. In arresting moving objects, the strains we are conscious of are proportionate to the momenta of such objects as otherwise measured. Under like conditions the impressions of sounds given to us by vibrating strings, bells, or columns of air, are found to vary in strength with the amount of force applied. Fluids or solids proved to be markedly contrasted in temperature by the different degrees of expansion they produce in the mercurial column, produce in us correspondingly different degrees of the sensation of heat. And similarly unlike intensities in our impressions of light, answer to unlike effects as measured by photometers. Besides the correlation and equivalence between external physical forces, and the mental forces generated by them in us under the form of sensations, there is a correlation and equivalence between sensations and those physical forces which, in the shape of bodily actions, result from them. The feelings we distinguish as light, heat, sound, odour, taste, pressure, &.c, do not die away without immediate results; but are invariably followed by other manifestations of force. In addition to the excitements of secreting organs, that are in some cases traceable, there arises a contraction of the involuntary muscles, or of the voluntary muscles, or of both. Sensations increase the action of the heart�slightly when they are slight; markedly when they are marked; and recent physiological inquiries imply not only that contraction of the heart is excited by every sensation, but also that the muscular fibres throughout the whole, vascular system, are at the same time more or less contracted. The respiratory muscles, too, are stimulated into greater activity by sensations. The rate of breathing is visibly and audibly augmented both by pleasurable and painful impressions on the nerves, when these reach any intensity. It has even of late been shown that inspiration becomes more frequent on transition from darkness into sunshine,�a result probably due to the increased amount of direct and indirect nervous stimulation involved. When the quantity of sensation is great, it generates contractions of the voluntary muscles, as well as of the involuntary ones. Unusual excitement of the nerves of touch, as by tickling, is followed by almost incontrollable movements of the limbs. Violent pains cause violent struggles. The start that succeeds a loud sound, the wry face produced by the taste of anything extremely disagreeable, the jerk with which the hand or foot is snatched out of water that is very hot, are instances of the transformation of feeling: into motion; and in these cases, as in all others, it is manifest that the quantity of bodily action is proportionate to the quantity of sensation. Even where from pride there is a suppression of the screams and groans expressive of great pain (also indirect results of muscular contraction), we may still see in the clenching of the hands, the knitting of the brows, and the setting of the teeth, that the bodily actions developed are as great, though less obtrusive in their results. If we take emotions instead of sensations, we find the correlation and equivalence equally manifest. Not only are the modes of consciousness directly produced in us by physical forces, re-transformable into physical forces under the form of muscular motions and the changes they initiate; but the like is true of those modes of consciousness which are not directly produced in us by the physical forces. Emotions of moderate intensity, like sensations of moderate intensity, generate little beyond excitement of the heart and vascular system, joined sometimes with increased action of glandular organs. But as the emotions rise in strength, the muscles of the face, body, and limbs, begin to move. Of examples may be mentioned the frowns, dilated nostrils, and stampings of anger; the contracted brows, and wrung hands, of grief; the smiles and leaps of joy; and the frantic struggles of terror or despair. Passing over certain apparent, but only apparent, exceptions, we see that whatever be the kind of emotion, there is a manifest relation between its amount, and the amount of muscular action induced: alike from the erect carriage and elastic step of exhilaration, up to the dancings of immense delight, and from the fidgetiness of impatience up to the almost convulsive movements accompanying great mental agony. To these several orders of evidence must be joined the further one, that between our feelings and those voluntary motions into which they are transformed, there comes the sensation of muscular tension, standing in manifest correlation with both�a correlation that is distinctly quantitative: the sense of strain varying, other things equal, directly as the quantity of momentum generated. �But how,� it may be asked, �can we interpret by the law of correlation the genesis of those thoughts and feelings which, instead of following external stimuli, arise spontaneously? Between the indignation caused by an insult, and the loud sounds or violent acts that follow, the alleged connexion may hold; but whence come the crowd of ideas and the mass of feelings that expend themselves in these demonstrations? They are clearly not equivalents of the sensations produced by the words on the ears; for the same words otherwise arranged, would not have caused them. The thing said bears to the mental action it excites, much the same relation that the pulling of a trigger bears to the subsequent explosion�does not produce the power, but merely liberates it. Whence then arises this immense amount of nervous energy which a whisper or a glance may call forth?� The reply is, that the immediate correlates of these and other such modes of consciousness, are not to be found in the agencies acting on us externally, but in certain internal agencies. The forces called vital, which we have seen to be correlates of the forces called physical, are the immediate sources of these thoughts and feelings; and are expended in producing them. The proofs of this are various. Here are some of them. It is a conspicuous fact that mental action is contingent on the presence of a certain nervous apparatus; and that, greatly obscured as it is by numerous and involved conditions, a general relation may be traced between the size of this apparatus and the quantity of mental action as measured by its results. Further, this apparatus has a particular chemical constitution on which its activity depends; and there is one element in it between the amount of which and the amount of function performed, there is an ascertained connexion: the proportion of phosphorus present in the brain being the smallest in infancy, old age and idiotcy, and the greatest during the prime of life. Note next, that the evolution of thought and emotion varies, other things equal, with the supply of blood to the brain. On the one hand, a cessation of the cerebral circulation, from arrest of the heart�s action, immediately entails unconsciousness. On the other hand, excess of cerebral circulation (unless it is such as to cause undue pressure) results in an excitement rising finally to delirium. Not the quantity only, but also the condition of the blood passing through the nervous system, influences the mental manifestations. The arterial currents must be duly aerated, to produce the normal amount of cerebration. At the one extreme, we find that if the blood is not allowed to exchange its carbonic acid for oxygen, there results asphyxia, with its accompanying stoppage of ideas and feelings. While at the other extreme, we find that by the inspiration of nitrous oxide, there is produced an excessive, and indeed irrepressible, nervous activity. Besides the connexion between the development of the mental forces and the presence of sufficient oxygen in the cerebral arteries, there is a kindred connexion between the development of the mental forces and the presence in the cerebral arteries of certain other elements. There must be supplied special materials for the nutrition of the nervous centres, as well as for their oxidation. And how what we may call the quantity of consciousness, is, other things equal, determined by the constituents of the blood, is unmistakably seen in the exaltation that follows when certain chemical compounds, as alcohol and the vegeto-alkalies, are added to it. The gentle exhilaration which tea and coffee create, is familiar to all; and though the gorgeous imaginations and intense feelings of happiness produced by opium and hashish, have been experienced by few, (in this country at least,) the testimony of those who have experienced them is sufficiently conclusive. Yet another proof that the genesis of the mental energies is immediately dependent on chemical change, is afforded by the fact, that the effete products separated from the blood by the kidneys, vary in character with the amount of cerebral action. Excessive activity of mind is habitually accompanied by the excretion of an unusual quantity of the alkaline phosphates. Conditions of abnormal nervous excitement bring on analogous effects. And the �peculiar odour of the insane,� implying as it does morbid products in the perspiration, shows a connexion between insanity and a special composition of the circulating fluids�a composition which, whether regarded as cause or consequence, equally implies correlation of the mental and the physical forces. Lastly we have to note that this correlation too, is, so far as we can trace it, quantitative. Provided the conditions to nervous action are not infringed on, and the concomitants are the same, there is a tolerably constant ratio between the amounts of the antecedents and consequents. Within the implied limits, nervous stimulants and anæsthetics produce effects on the thoughts and feelings, proportionate to the quantities administered. And conversely, where the thoughts and feelings form the initial term of the relation, the degree of reaction on the bodily energies is great, in proportion as they are great: reaching in extreme cases a total prostration of physique. Various classes of facts thus unite to prove that the law of metamorphosis, which holds among the physical forces, holds equally between them and the mental forces. Those modes of the Unknowable which we call motion, heat, light, chemical affinity, &c., are alike transformable into each other, and into those modes of the Unknowable which we distinguish as sensation, emotion, thought: these, in their turns, being directly or indirectly re-transformable into the original shapes. That no idea or feeling arises, save as a result of some physical force expended in producing it, is fast becoming a common place of science; and whoever duly weighs the evidence will see, that nothing but an overwhelming bias in favour of a pre-conceived theory, can explain its non-acceptance. How this metamorphosis takes place�how a force existing as motion, heat, or light, can become a mode of consciousness�how it is possible for aerial vibrations to generate the sensation we call sound, or for the forces liberated by chemical changes in the brain to give rise to emotion�these are mysteries which it is impossible to fathom. But they are not profounder mysteries than the transformations of the physical forces into each other. They are not more completely beyond our comprehension than the natures of Mind and Matter. They have simply the same insolubility as all other ultimate questions. We can learn nothing more than that here is one of the uniformities in the order of phenomena. * * * * * § 83. Of course if the law of correlation and equivalence holds of the forces we class as vital and mental, it must hold also of those which we class as social. Whatever takes place in a society is due to organic or inorganic agencies, or to a combination of the two�results either from the undirected physical forces around, from these physical forces as directed by men, or from the forces of the men themselves. No change can occur in its organization, its modes of activity, or the effects it produces on the face of the Earth, but what proceeds, mediately or immediately, from these. Let us consider first the correlation between the phenomena which societies display, and the vital phenomena. Social power and life varies, other things equal, with the population. Though different races, differing widely in their fitness for combination, show us that the forces manifested in a society are not necessarily proportionate to the number of people; yet we see that under given conditions, the forces manifested are confined within the limits which the number of people imposes. A small society, no matter how superior the character of its members, cannot exhibit the same quantity of social action as a large one. The production and distribution of commodities must be on a comparatively small scale. A multitudinous press, a prolific literature, or a massive political agitation, is not possible. And there can be but a small total of results in the shape of art-products and scientific discoveries. The correlation of the social with the physical forces through the intermediation of the vital ones, is, however, most clearly shown in the different amounts of activity displayed by the same society according as its members are supplied with different amounts of force from the external world. In the effects of good and bad harvests, we yearly see this relation illustrated. A greatly deficient yield of wheat is soon followed by a diminution of business. Factories are worked half-time, or close entirely; railway traffic falls; retailers find their sales much lessened; house-building is almost suspended; and if the scarcity rises to famine, a thinning of the population still more diminishes the industrial vivacity. Conversely, an unusually abundant harvest, occurring under conditions not otherwise unfavourable, both excites the old producing and distributing agencies and sets up new ones. The surplus social energy finds vent in speculative enterprises. Capital seeking investment carries out inventions that have been lying unutilized. Labour is expended in opening new channels of communication. There is increased encouragement to those who furnish the luxuries of life and minister to the æsthetic faculties. There are more marriages, and a greater rate of increase in population. Thus the social organism grows larger, more complex, and more active. When, as happens with most civilized nations, the whole of the materials for subsistence are not drawn from the area inhabited, but are partly imported, the people are still supported by certain harvests elsewhere grown at the expense of certain physical forces. Our own cotton-spinners and weavers supply the most conspicuous instance of a section in one nation living, in great part, on imported commodities, purchased by the labour they expend on other imported commodities. But though the social activities of Lancashire are due chiefly to materials not drawn from our own soil, they are none the less evolved from physical forces elsewhere stored up in fit forms and then brought here. If we ask whence come these physical forces from which, through the intermediation of the vital forces, the social forces arise, the reply is of course as heretofore�the solar radiations. Based as the life of a society is on animal and vegetal products; and dependent as these animal and vegetal products are on the light and heat of the sun; it follows that the changes going on in societies are effects of forces having a common origin with those which produce all the other orders of changes that have been analyzed. Not only is the force expended by the horse harnessed to the plough, and by the labourer guiding it, derived from the same reservoir as is the force of the falling cataract and the roaring hurricane; but to this same reservoir are eventually traceable those subtler and more complex manifestations of force which humanity, as socially embodied, evolves. The assertion is a startling one, and by many will be thought ludicrous; but it is an unavoidable deduction which cannot here be passed over. Of the physical forces that are directly transformed into social ones, the like is to be said. Currents of air and water, which before the use of steam were the only agencies brought in aid of muscular effort for the performance of industrial processes, are, as we have seen, generated by the heat of the sun. And the inanimate power that now, to so vast an extent, supplements human labour, is similarly derived. The late George Stephenson was one of the first to recognize the fact that the force impelling his locomotive, originally emanated from the sun. Step by step we go back�from the motion of the piston to the evaporation of the water; thence to the heat evolved during the oxidation of coal; thence to the assimilation of carbon by the plants of whose imbedded remains coal consists; thence to the carbonic acid from which their carbon was obtained; and thence to the rays of light that de-oxidized this carbonic acid. Solar forces millions of years ago expended on the Earth�s vegetation, and since locked up beneath its surface, now smelt the metals required for our machines, turn the lathes by which the machines are shaped, work them when put together, and distribute the fabrics they produce. And in so far as economy of labour makes possible the support of a larger population; gives a surplus of human power that would else be absorbed in manual occupations; and so facilitates the development of higher kinds of activity; it is clear that these social forces which are directly correlated with physical forces anciently derived from the sun, are only less important than those whose correlates are the vital forces recently derived from it. * * * * * § 84. Regarded as an induction, the doctrine set forth in this chapter will most likely be met by a demurrer. Many who admit that among physical phenomena at least, the correlation of forces is now established, will probably say that inquiry has not yet gone far enough to enable us to predicate equivalence. And in respect of the forces classed as vital, mental, and social, the evidence assigned, however little to be explained away, they will consider by no means conclusive even of correlation, much less of equivalence. To those who think thus, it must now however be pointed out, that the universal truth above illustrated under its various aspects, is a necessary corollary from the persistence of force. Setting out with the proposition that force can neither come into existence, nor cease to exist, the several foregoing general conclusions inevitably follow. Each manifestation of force can be interpreted only as the effect of some antecedent force: no matter whether it be an inorganic action, an animal movement, a thought, or a feeling. Either this must be conceded, or else it must be asserted that our successive states of consciousness are self-created. Either mental energies, as well as bodily ones, are quantitatively correlated to certain energies expended in their production, and to certain other energies which they initiate; or else nothing must become something and something must become nothing. The alternatives are, to deny the persistence of force, or to admit that every physical and psychial change is generated by certain antecedent forces, and that from given amounts of such forces neither more nor less of such physical and psychial changes can result. And since the persistence of force, being a datum of consciousness, cannot be denied, its unavoidable corollary must be accepted. This corollary cannot indeed be made more certain by accumulating illustrations. The truth as arrived at deductively, cannot be inductively confirmed. For every one of such facts as those above detailed, is established only through the indirect assumption of that persistence of force, from which it really follows as a direct consequence. The most exact proof of correlation and equivalence which it is possible to reach by experimental inquiry, is that based on measurement of the forces expended and the forces produced. But, as was shown in the last chapter, any such process of measurement implies the use of some unit of force which is assumed to remain constant; and for this assumption there can be no warrant but that it is a corollary from the persistence of force. How then can any reasoning based on this corollary, prove the equally direct corollary that when a given quantity of force ceases to exist under one form, an equal quantity must come into existence under some other form or forms? Clearly the _à priori_ truth expressed in this last corollary, cannot be more firmly established by any _à posteriori_ proofs which the first corollary helps us to. �What then,� it may be asked, �is the use of these investigations by which the correlation and equivalence of forces is sought to be established as an inductive truth? Surely it will not be alleged that they are useless. Yet if this correlation cannot be made more certain by them than it is already, does not their uselessness necessarily follow?� No. They are of value as disclosing the many particular implications which the general truth does not specify. They are of value as teaching us how much of one mode of force is the equivalent of so much of another mode. They are of value as determining under what conditions each metamorphosis occurs. And they are of value as leading us to inquire in what shape the remnant of force has escaped, when the apparent results are not equivalent to the cause. CHAPTER X. THE DIRECTION OF MOTION. § 85. The Absolute Cause of changes, inclusive of those constituting Evolution, is not less incomprehensible in respect of the unity or duality of its action, than in all other respects. We cannot decide between the alternative suppositions, that phenomena are due to the variously-conditioned workings of a single force, and that they are due to the conflict of two forces. Whether, as some contend, everything is explicable on the hypothesis of universal pressure, whence what we call tension results differentially from inequalities of pressure in opposite directions; or whether, as might be with equal propriety contended, things are to be explained on the hypothesis of universal tension, from which pressure is a differential result; or whether, as most physicists hold, pressure and tension everywhere co-exist; are questions which it is impossible to settle. Each of these three suppositions makes the facts comprehensible, only by postulating an inconceivability. To assume a universal pressure, confessedly requires us to assume an infinite plenum�an unlimited space full of something which is everywhere pressed by something beyond; and this assumption cannot be mentally realized. That universal tension is the immediate agency to which phenomena are due, is an idea open to a parallel and equally fatal objection. And however verbally intelligible may be the proposition that pressure and tension everywhere co-exist, yet we cannot truly represent to ourselves one ultimate unit of matter as drawing another while resisting it. Nevertheless, this last belief is one which we are compelled to entertain. Matter cannot be conceived except as manifesting forces of attraction and repulsion. Body is distinguished in our consciousness from Space, by its opposition to our muscular energies; and this opposition we feel under the two-fold form of a cohesion that hinders our efforts to rend, and a resistance that hinders our efforts to compress. Without resistance there can be merely empty extension. Without cohesion there can be no resistance. Probably this conception of antagonistic forces, is originally derived from the antagonism of our flexor and extensor muscles. But be this as it may, we are obliged to think of all objects as made up of parts that attract and repel each other; since this is the form of our experience of all objects. By a higher abstraction results the conception of attractive and repulsive forces pervading space. We cannot dissociate force from occupied extension, or occupied extension from force; because we have never an immediate consciousness of either in the absence of the other. Nevertheless, we have abundant proof that force is exercised through what appears to our senses a vacuity. Mentally to represent this exercise, we are hence obliged to fill the apparent vacuity with a species of matter�an etherial medium. The constitution we assign to this etherial medium, however, like the constitution we assign to solid substance, is necessarily an abstract of the impressions received from tangible bodies. The opposition to pressure which a tangible body offers to us, is not shown in one direction only, but in all directions; and so likewise is its tenacity. Suppose countless lines radiating from its centre on every side, and it resists along each of these lines and coheres along each of these lines. Hence the constitution of those ultimate units through the instrumentality of which phenomena are interpreted. Be they atoms of ponderable matter or molecules of ether, the properties we conceive them to possess are nothing else than these perceptible properties idealized. Centres of force attracting and repelling each other in all directions, are simply insensible portions of matter having the endowments common to sensible portions of matter�endowments of which we cannot by any mental effort divest them. In brief, they are the invariable elements of the conception of matter, abstracted from its variable elements�size, form, quality, &c. And so to interpret manifestations of force which cannot be tactually experienced, we use the terms of thought supplied by our tactual experiences; and this for the sufficient reason that we must use these or none. After all that has been before shown, and after the hint given above, it needs scarcely be said that these universally co-existent forces of attraction and repulsion, must not be taken as realities, but as our symbols of the reality. They are the forms under which the workings of the Unknowable are cognizable by us�modes of the Unconditioned as presented under the conditions of our consciousness. But while knowing that the ideas thus generated in us are not absolutely true, we may unreservedly surrender ourselves to them as relatively true; and may proceed to evolve a series of deductions having a like relative truth. * * * * * § 86. From universally co-existent forces of attraction and repulsion, there result certain laws of direction of all movement. Where attractive forces alone are concerned, or rather are alone appreciable, movement takes place in the direction of their resultant; which may, in a sense, be called the line of greatest traction. Where repulsive forces alone are concerned, or rather are alone appreciable, movement takes place along their resultant; which is usually known as the line of least resistance. And where both attractive and repulsive forces are concerned, or are appreciable, movement takes place along the resultant of all the tractions and resistances. Strictly speaking, this last is the sole law; since, by the hypothesis, both forces are everywhere in action. But very frequently the one kind of force is so immensely in excess that the effect of the other kind may be left out of consideration. Practically we may say that a body falling to the Earth, follows the line of greatest traction; since, though the resistance of the air must, if the body be irregular, cause some divergence from this line, (quite perceptible with feathers and leaves,) yet ordinarily the divergence is so slight that we may omit it. In the same manner, though the course taken by the steam from an exploding boiler, differs somewhat from that which it would take were gravitation out of the question; yet, as gravitation affects its course infinitesimally, we are justified in asserting that the escaping steam follows the line of least resistance. Motion then, we may say, always follows the line of greatest traction, or the line of least resistance, or the resultant of the two: bearing in mind that though the last is alone strictly true, the others are in many cases sufficiently near the truth for practical purposes. Movement set up in any direction is itself a cause of further movement in that direction, since it is the embodiment of a surplus force in that direction. This holds equally with the transit of matter through space, the transit of matter through matter, and the transit through matter of any kind of vibration. In the case of matter moving through space, this principle is expressed in the law of inertia�a law on which the calculations of physical astronomy are wholly based. In the case of matter moving through matter, we trace the same truth under the familiar experience that any breach made by one solid through another, or any channel formed by a fluid through a solid, becomes a route along which, other things equal, subsequent movements of like nature take place. And in the case of motion passing through matter under the form of an impulse communicated from part to part, the facts of magnetization go to show that the establishment of undulations along certain lines, determines their continuance along those lines. It further follows from the conditions, that the direction of movement can rarely if ever be perfectly straight. For matter in motion to pursue continuously the exact line in which it sets out, the forces of attraction and repulsion must be symmetrically disposed around its path; and the chances against this are infinitely great. The impossibility of making an absolutely true edge to a bar of metal�the fact that all which can be done by the best mechanical appliances, is to reduce the irregularities of such an edge to amounts that cannot be perceived without magnifiers�sufficiently exemplifies how, in consequence of the unsymmetrical distribution of forces around the line of movement, the movement is rendered more or less indirect. It may be well to add that in proportion as the forces at work are numerous and varied, the curve a moving body describes is necessarily complex: witness the contrast between the flight of an arrow and the gyrations of a stick tossed about by breakers. We have now to trace these laws of direction of movement throughout the process of Evolution, under its various forms. We have to note how every change in the arrangement of parts, takes place along the line of greatest traction, of least resistance, or of their resultant; how the setting up of motion along a certain line, becomes a cause of its continuance along that line; how, nevertheless, change of relations to external forces, always renders this line indirect; and how the degree of its indirectness increases with every addition to the number of influences at work. * * * * * § 87. If we assume the first stage in nebular condensation to be the precipitation into flocculi of denser matter previously diffused through a rarer medium, (a supposition both physically justified, and in harmony with certain astronomical observations,) we shall find that nebular motion is interpretable in pursuance of the above general laws. Each portion of such vapour-like matter must begin to move towards the common centre of gravity. The tractive forces which would of themselves carry it in a straight line to the centre of gravity, are opposed by the resistant forces of the medium through which it is drawn. The direction of movement must be the resultant of these�a resultant which, in consequence of the unsymmetrical form of the flocculus, must be a curve directed, not to the centre of gravity, but towards one side of it. And it may be readily shown that in an aggregation of such flocculi, severally thus moving, there must, by composition of forces, eventually result a rotation of the whole nebula in one direction. Merely noting this hypothetical illustration for the purpose of showing how the law applies to the case of nebular evolution, supposing it to have taken place, let us pass to the phenomena of the Solar System as now exhibited. Here the general principles above set forth are every instant exemplified. Each planet and satellite has a momentum which would, if acting alone, carry it forward in the direction it is at any instant pursuing. This momentum hence acts as a resistance to motion in any other direction. Each planet and satellite, however, is drawn by a force which, if unopposed, would take it in a straight line towards its primary. And the resultant of these two forces is that curve which it describes�a curve manifestly consequent on the unsymmetrical distribution of the forces around its path. This path, when more closely examined, supplies us with further illustrations. For it is not an exact circle or ellipse; which it would be were the tangential and centripetal forces the only ones concerned. Adjacent members of the Solar System, ever varying in their relative positions, cause what we call perturbations; that is, slight divergences in various directions from that circle or ellipse which the two chief forces would produce. These perturbations severally show us in minor degrees, how the line of movement is the resultant of all the forces engaged; and how this line becomes more complicated in proportion as the forces are multiplied. If instead of the motions of the planets and satellites as wholes, we consider the motions of their parts, we meet with comparatively complex illustrations. Every portion of the Earth�s substance in its daily rotation, describes a curve which is in the main a resultant of that resistance which checks its nearer approach to the centre of gravity, that momentum which would carry it off at a tangent, and those forces of gravitation and cohesion which keep it from being so carried off. If this axial motion be compounded with the orbital motion, the course of each part is seen to be a much more involved one. And we find it to have a still greater complication on taking into account that lunar attraction which mainly produces the tides and the precession of the equinoxes. * * * * * § 88. We come next to terrestrial changes: present ones as observed, and past ones as inferred by geologists. Let us set out with the hourly-occurring alterations in the Earth�s atmosphere; descend to the slower alterations in progress on its surface; and then to the still slower ones going on beneath. Masses of air, absorbing heat from surfaces warmed by the sun, expand, and so lessen the weight of the atmospheric columns of which they are parts. Hence they offer to adjacent atmospheric columns, diminished lateral resistance; and these, moving in the directions of the diminished resistance, displace the expanded air; while this, pursuing an upward course, displays a motion along that line in which there is least pressure. When again, by the ascent of such heated masses from extended areas like the torrid zone, there is produced at the upper surface of the atmosphere, a protuberance beyond the limits of equilibrium�when the air forming this protuberance begins to overflow laterally towards the poles; it does so because, while the tractive force of the Earth is nearly the same, the lateral resistance is greatly diminished. And throughout the course of each current thus generated, as well as throughout the course of each counter-current flowing: into the vacuum that is left, the direction is always the resultant of the Earth�s tractive force and the resistance offered by the surrounding masses of air: modified only by conflict with other currents similarly determined, and by collision with prominences on the Earth�s crust. The movements of water, in both its gaseous and liquid states, furnish further examples. In conformity with the mechanical theory of heat, it may be shown that evaporation is the escape of particles of water in the direction of least resistance; and that as the resistance (which is due to the pressure of the water diffused in a gaseous state) diminishes, the evaporation increases. Conversely, that rushing together of particles called condensation, which takes place when any portion of atmospheric vapour has its temperature much lowered, may be interpreted as a diminution of the mutual pressure among the condensing particles, while the pressure of surrounding particles remains the same; and so is a motion taking place in the direction of lessened resistance. In the course followed by the resulting rain-drops, we have one of the simplest instances of the joint effect of the two antagonist forces. The Earth�s attraction, and the resistance of atmospheric currents ever varying in direction and intensity, give as their resultants, lines which incline to the horizon in countless different degrees and undergo perpetual variations. More clearly still is the law exemplified by these same rain-drops when they reach the ground. In the course they take while trickling over its surface, in every rill, in every larger stream, and in every river, we see them descending as straight as the antagonism of surrounding objects permits. From moment to moment, the motion of water towards the Earth�s centre is opposed by the solid matter around and under it; and from moment to moment its route is the resultant of the lines of greatest traction and least resistance. So far from a cascade furnishing, as it seems to do, an exception, it furnishes but another illustration. For though all solid obstacles to a vertical fall of the water are removed, yet the water�s horizontal momentum is an obstacle; and the parabola in which the stream leaps from the projecting ledge, is generated by the combined gravitation and momentum. It may be well just to draw attention to the degree of complexity here produced in the line of movement by the variety of forces at work. In atmospheric currents, and still more clearly in water-courses (to which might be added ocean-streams), the route followed is too complex to be defined, save as a curve of three dimensions with an ever varying equation. The Earth�s solid crust undergoes changes that supply another group of illustrations. The denudation of lands and the depositing of the removed sediment in new strata at the bottoms of seas and lakes, is a process throughout which motion is obviously determined in the same way as is that of the water effecting the transport. Again, though we have no direct inductive proof that the forces classed as igneous, expend themselves along lines of least resistance; yet what little we know of them is in harmony with the belief that they do so. Earthquakes continually revisit the same localities, and special tracts undergo for long periods together successive elevations or subsidences,�facts which imply that already-fractured portions of the Earth�s crust are those most prone to yield under the pressure caused by further contractions. The distribution of volcanoes along certain lines, as well as the frequent recurrence of eruptions from the same vents, are facts of like meaning. * * * * * § 89. That organic growth takes place in the direction of least resistance, is a proposition that has been set forth and illustrated by Mr. James Hinton, in the _Medico-Chirurgical Review_ for October, 1858. After detailing a few of the early observations which led him to this generalization, he formulates it thus:� �Organic form is the result of motion.� �Motion takes the direction of least resistance.� �Therefore organic form is the result of motion in the direction of least resistance.� After an elucidation and defence of this position, Mr. Hinton proceeds to interpret, in conformity with it, sundry phenomena of development. Speaking of plants he says:� �The formation of the root furnishes a beautiful illustration of the law of least resistance, for it grows by insinuating itself, cell by cell, through the interstices of the soil; it is by such minute additions that it increases, winding and twisting whithersoever the obstacles it meets in its path determine, and growing there most, where the nutritive materials are added to it most abundantly. As we look on the roots of a mighty tree, it appears to us as if they had forced themselves with giant violence into the solid earth. But it is not so; they were led on gently, cell added to cell, softly as the dews descended, and the loosened earth made way. Once formed, indeed, they expand with an enormous power, but the spongy condition of the growing radicles utterly forbids the supposition that they are forced into the earth. Is it not probable, indeed, that the enlargement of the roots already formed may crack the surrounding soil, and help to make the interstices into which the new rootlets grow?� * * * �Throughout almost the whole of organic nature the spiral form is more or less distinctly marked. Now, motion under resistance takes a spiral direction, as may be seen by the motion of a body rising or falling through water. A bubble rising rapidly in water describes a spiral closely resembling a corkscrew, and a body of moderate specific gravity dropped into water may be seen to fall in a curved direction, the spiral tendency of which may be distinctly observed. * * * In this prevailing spiral form of organic bodies, therefore, it appears to me, that there is presented a strong _prima facie_ case for the view I have maintained. * * * The spiral form of the branches of many trees is very apparent, and the universally spiral arrangement of the leaves around the stem of plants needs only to be referred to. * * * The heart commences as a spiral turn, and in its perfect form a manifest spiral may be traced through the left ventricle, right ventricle, right auricle, left auricle and appendix. And what is the spiral turn in which the heart commences but a necessary result of the lengthening, under a limit, of the cellular mass of which it then consists?� * * * �Every one must have noticed the peculiar curling up of the young leaves of the common fern. The appearance is as if the leaf were rolled up, but in truth this form is merely a phenomenon of growth. The curvature results from the increase of the leaf, it is only another form of the wrinkling up, or turning at right angles by extension under limit.� �The rolling up or imbrication of the petals in many flower-buds is a similar thing; at an early period the small petals may be seen lying side by side, afterwards growing within the capsule, they become folded round one another.� * * * �If a flower-bud be opened at a sufficiently early period, the stamens will be found as if moulded in the cavity between the pistil and the corolla, which cavity the antlers exactly fill; the stalks lengthen at an after period. I have noticed also in a few instances, that in those flowers in which the petals are imbricated, or twisted together, the pistil is tapering as growing up between the petals; in some flowers which have the petals so arranged in the bud as to form a dome (as the hawthorn; e. g.), the pistil is flattened at the apex, and in the bud occupies a space precisely limited by the stamens below, and the enclosing petals above and at the sides. I have not, however, satisfied myself that this holds good in all cases.� Without endorsing all Mr. Hinton�s illustrations, to some of which exception might be taken, his conclusion may be accepted as a large instalment of the truth. It is, however, to be remarked, that in the case of organic growth, as in all other cases, the line of movement is in strictness the resultant of tractive and resistant forces; and that the tractive forces here form so considerable an element that the formula is scarcely complete without them. The shapes of plants are manifestly modified by gravitation: the direction of each branch is not what it would have been were the tractive force of the Earth absent; and every flower and leaf is somewhat altered in the course of development by the weight of its parts. Though in animals such effects are less conspicuous, yet the instances in which flexible organs have their directions in great measure determined by gravity, justify the assertion that throughout the whole organism the forms of parts must be affected by this force. The organic movements which constitute growth, are not, however, the only organic movements to be interpreted. There are also those which constitute function. And throughout these the same general principles are discernible. That the vessels along which blood, lymph, bile, and all the secretions, find their ways, are channels of least resistance, is a fact almost too conspicuous to be named as an illustration. Less conspicuous, however, is the truth, that the currents setting along these vessels are affected by the tractive force of the Earth: witness varicose veins; witness the relief to an inflamed part obtained by raising it; witness the congestion of head and face produced by stooping. And in the fact that dropsy in the legs gets greater by day and decreases at night, while, conversely, that �dematous fullness under the eyes common in debility, grows worse during the hours of reclining and decreases after getting up, shows us how the transudation of fluid through the walls of the capillaries, varies according as change of position changes the effect of gravity in different parts of the body. It may be well in passing just to note the bearing of the principle on the development of species. From a dynamic point of view, �natural selection� is the evolution of Life along lines of least resistance. The multiplication of any kind of plant or animal in localities that are favourable to it, is a growth where the antagonistic forces are less than elsewhere. And the preservation of varieties that succeed better than their allies in coping with surrounding conditions, is the continuance of vital movement in those directions where the obstacles to it are most eluded. * * * * * § 90. Throughout the phenomena of mind the law enunciated is not so readily established. In a large part of them, as those of thought and emotion, there is no perceptible movement. Even in sensation and volition, which show us in one part of the body an effect produced by a force applied to another part, the intermediate movement is inferential rather than visible. Such indeed are the difficulties that it is not possible here to do more than briefly indicate the proofs which might be given did space permit. Supposing the various forces throughout an organism to be previously in equilibrium, then any part which becomes the seat of a further force, added or liberated, must be one from which the force, being resisted by smaller forces around, will initiate motion towards some other part of the organism. If elsewhere in the organism there is a point at which force is being expended, and which so is becoming minus a force which it before had, instead of plus a force which it before had not, and thus is made a point at which the re-action against surrounding forces is diminished; then, manifestly, a motion taking place between the first and the last of these points is a motion along the line of least resistance. Now a sensation implies a force added to, or evolved in, that part of the organism which is its seat; while a mechanical movement implies an expenditure or loss of force in that part of the organism which is its seat. Hence if, as we find to be the fact, motion is habitually propagated from those parts of an organism to which the external world adds forces in the shape of nervous impressions, to those parts of an organism which react on the external world through muscular contractions, it is simply a fulfilment of the law above enunciated. From this general conclusion we may pass to a more special one. When there is anything in the circumstances of an animal�s life, involving that a sensation in one particular place is habitually followed by a contraction in another particular place�when there is thus a frequently-repeated motion through the organism between these places; what must be the result as respects the line along which the motions take place? Restoration of equilibrium between the points at which the forces have been increased and decreased, must take place through some channel. If this channel is affected by the discharge�if the obstructive action of the tissues traversed, involves any reaction upon them, deducting from their obstructive power; then a subsequent motion between these two points will meet with less resistance along this channel than the previous motion met with; and will consequently take this channel still more decidedly. If so, every repetition will still further diminish the resistance offered by this route; and hence will gradually be formed between the two a permanent line of communication, differing greatly from the surrounding tissue in respect of the ease with which force traverses it. We see, therefore, that if between a particular impression and a particular motion associated with it, there is established a connexion producing what is called reflex action, the law that motion follows the line of least resistance, and that, if the conditions remain constant, resistance in any direction is diminished by motion occurring in that direction, supplies an explanation. Without further details it will be manifest that a like interpretation may be given to the succession of all other nervous changes. If in the surrounding world there are objects, attributes, or actions, that usually occur together, the effects severally produced by them in the organism will become so connected by those repetitions which we call experience, that they also will occur together. In proportion to the frequency with which any external connexion of phenomena is experienced, will be the strength of the answering internal connexion of nervous states. Thus there will arise all degrees of cohesion among nervous states, as there are all degrees of commonness among the surrounding co-existences and sequences that generate them: whence must result a general correspondence between associated ideas and associated actions in the environment.[13] The relation between emotions and actions may be similarly construed. As a first illustration let us observe what happens with emotions that are undirected by volitions. These, like feelings in general, expend themselves in generating organic changes, and chiefly in muscular contractions. As was pointed out in the last chapter, there result movements of the involuntary and voluntary muscles, that are great in proportion as the emotions are strong. It remains here to be pointed out, however, that the order in which these muscles are affected is explicable only on the principle above set forth. Thus, a pleasurable or painful state of mind of but slight intensity, does little more than increase the pulsations of the heart. Why? For the reason that the relation between nervous excitement and vascular contraction, being common to every genus and species of feeling, is the one of most frequent repetition; that hence the nervous connexion is, in the way above shown, the one which offers the least resistance to a discharge; and is therefore the one along which a feeble force produces motion. A sentiment or passion that is somewhat stronger, affects not only the heart but the muscles of the face, and especially those around the mouth. Here the like explanation applies; since these muscles, being both comparatively small, and, for purposes of speech, perpetually used, offer less resistance than other voluntary muscles to the nerve-motor force. By a further increase of emotion the respiratory and vocal muscles become perceptibly excited. Finally, under strong passion, the muscles in general of the trunk and limbs are violently contracted. Without saying that the facts can be thus interpreted in all their details (a task requiring data impossible to obtain) it may be safely said that the order of excitation is from muscles that are small and frequently acted on, to those which are larger and less frequently acted on. The single instance of laughter, which is an undirected discharge of feeling that affects first the muscles round the mouth, then those of the vocal and respiratory apparatus, then those of the limbs, and then those of the spine;[14] suffices to show that when no special route is opened for it, a force evolved in the nervous centres produces motion along channels which offer the least resistance, and if it is too great to escape by these, produces motion along channels offering successively greater resistance. Probably it will be thought impossible to extend this reasoning so as to include volitions. Yet we are not without evidence that the transition from special desires to special muscular acts, conforms to the same principle. It may be shown that the mental antecedents of a voluntary movement, are antecedents which temporarily make the line along which this movement takes place, the line of least resistance. For a volition, suggested as it necessarily is by some previous thought connected with it by associations that determine the transition, is itself a representation of the movements that are willed, and of their sequences. But to represent in consciousness certain of our own movements, is partially to arouse the sensations accompanying such movements, inclusive of those of muscular tension�is partially to excite the appropriate motor-nerves and all the other nerves implicated. That is to say, the volition is itself an incipient discharge along a line which previous experiences have rendered a line of least resistance. And the passing of volition into action is simply a completion of the discharge. One corollary from this must be noted before proceeding; namely, that the particular set of muscular movements by which any object of desire is reached, are movements implying the smallest total of forces to be overcome. As each feeling generates motion along the line of least resistance, it is tolerably clear that a group of feelings, constituting a more or less complex desire, will generate motion along a series of lines of least resistance. That is to say, the desired end will be achieved with the smallest expenditure of effort. Should it be objected that through want of knowledge or want of skill, a man often pursues the more laborious of two courses, and so overcomes a larger total of opposing forces than was necessary; the reply is, that relatively to his mental state the course he takes is that which presents the fewest difficulties. Though there is another which in the abstract is easier, yet his ignorance of it, or inability to adopt it, is, physically considered, the existence of an insuperable obstacle to the discharge of his energies in that direction. Experience obtained by himself, or communicated by others, has not established in him such channels of nervous communication as are required to make this better course the course of least resistance to him. * * * * * § 91. As in individual animals, inclusive of man, motion follows lines of least resistance, it is to be inferred that among aggregations of men, the like will hold good. The changes in a society, being due to the joint actions of its members, the courses of such changes will be determined as are those of all other changes wrought by composition of forces. Thus when we contemplate a society as an organism, and observe the direction of its growth, we find this direction to be that in which the average of opposing forces is the least. Its units have energies to be expended in self-maintenance and reproduction. These energies are met by various environing energies that are antagonistic to them�those of geological origin, those of climate, of wild animals, of other human races with whom they are at enmity or in competition. And the tracts the society spreads over, are those in which there is the smallest total antagonism. Or, reducing the matter to its ultimate terms, we may say that these social units have jointly and severally to preserve themselves and their offspring from those inorganic and organic forces which are ever tending to destroy them (either indirectly by oxidation and by undue abstraction of heat, or directly by bodily mutilation); that these forces are either counteracted by others which are available in the shape of food, clothing, habitations, and appliances of defence, or are, as far as may be, eluded; and that population spreads in whichever directions there is the readiest escape from these forces, or the least exertion in obtaining the materials for resisting them, or both. For these reasons it happens that fertile valleys where water and vegetal produce abound, are early peopled. Sea-shores, too, supplying a large amount of easily-gathered food, are lines along which mankind have commonly spread. The general fact that, so far as we can judge from the traces left by them, large societies first appeared in those tropical regions where the fruits of the earth are obtainable with comparatively little exertion, and where the cost of maintaining bodily heat is but slight, is a fact of like meaning. And to these instances may be added the allied one daily furnished by emigration; which we see going on towards countries presenting the fewest obstacles to the self-preservation of individuals, and therefore to national growth. Similarly with that resistance to the movements of a society which neighbouring societies offer. Each of the tribes or nations inhabiting any region, increases in numbers until it outgrows its means of subsistence. In each there is thus a force ever pressing outwards on to adjacent areas�a force antagonized by like forces in the tribes or nations occupying those areas. And the ever-recurring wars that result�the conquests of weaker tribes or nations, and the over-running of their territories by the victors, are instances of social movements taking place in the directions of least resistance. Nor do the conquered peoples, when they escape extermination or enslavement, fail to show us movements that are similarly determined. For migrating as they do to less fertile regions�taking refuge in deserts or among mountains�moving in a direction where the resistance to social growth is comparatively great; they still do this only under an excess of pressure in all other directions: the physical obstacles to self-preservation they encounter, being really less than the obstacles offered by the enemies from whom they fly. Internal social movements may also be thus interpreted. Localities naturally fitted for producing particular commodities�that is, localities in which such commodities are got at the least cost of force�that is, localities in which the desires for these commodities meet with the least resistance; become localities especially devoted to the obtainment of these commodities. Where soil and climate render wheat a profitable crop, or a crop from which the greatest amount of life-sustaining power is gained by a given quantity of effort, the growth of wheat becomes the dominant industry. Where wheat cannot be economically produced, oats, or rye, or maize, or rice, or potatoes, is the agricultural staple. Along sea-shores men support themselves with least effort by catching fish; and hence choose fishing as an occupation. And in places that are rich in coal or metallic ores, the population, finding that labour devoted to the raising of these materials brings a larger return of food and clothing than when otherwise directed, becomes a population of miners. This last instance introduces us to the phenomena of exchange; which equally illustrate the general law. For the practice of barter begins as soon as it facilitates the fulfilment of men�s desires, by diminishing the exertion needed to reach the objects of those desires. When instead of growing his own corn, weaving his own cloth, sewing his own shoes, each man began to confine himself to farming, or weaving, or shoemaking; it was because each found it more laborious to make everything he wanted, than to make a great quantity of one thing and barter the surplus for the rest: by exchange, each procured the necessaries of life without encountering so much resistance. Moreover, in deciding what commodity to produce, each citizen was, as he is at the present day, guided in the same manner. For besides those local conditions which determine whole sections of a society towards the industries easiest for them, there are also individual conditions and individual aptitudes which to each citizen render certain occupations preferable; and in choosing those forms of activity which their special circumstances and faculties dictate, these social units are severally moving towards the objects of their desires in the directions which present to them the fewest obstacles. The process of transfer which commerce pre-supposes, supplies another series of examples. So long as the forces to be overcome in procuring any necessary of life in the district where it is consumed, are less than the forces to be overcome in procuring it from an adjacent district, exchange does not take place. But when the adjacent district produces it with an economy that is not out-balanced by cost of transit�when the distance is so small and the route so easy that the labour of conveyance plus the labour of production is less than the labour of production in the consuming district, transfer commences. Movement in the direction of least resistance is also seen in the establishment of the channels along which intercourse takes place. At the outset, when goods are carried on the backs of men and horses, the paths chosen are those which combine shortness with levelness and freedom from obstacles�those which are achieved with the smallest exertion. And in the subsequent formation of each highway, the course taken is that which deviates horizontally from a straight line so far only as is needful to avoid vertical deviations entailing greater labour in draught. The smallest total of obstructive forces determines the route, even in seemingly exceptional cases; as where a detour is made to avoid the opposition of a landowner. All subsequent improvements, ending in macadamized roads, canals, and railways, which reduce the antagonism of friction and gravity to a minimum, exemplify the same truth. After there comes to be a choice of roads between one point and another, we still see that the road chosen is that along which the cost of transit is the least: cost being the measure of resistance. Even where, time being a consideration, the more expensive route is followed, it is so because the loss of time involves loss of force. When, division of labour having been carried to a considerable extent and means of communication made easy, there arises a marked localization of industries, the relative growths of the populations devoted to them may be interpreted on the same principle. The influx of people to each industrial centre, as well as the rate of multiplication of those already inhabiting it, is determined by the payment for labour; that is�by the quantity of commodities which a given amount of effort will obtain. To say that artisans flock to places where, in consequence of facilities for production, an extra proportion of produce can be given in the shape of wages; is to say that they flock to places where there are the smallest obstacles to the support of themselves and families. Hence, the rapid increase of number which occurs in such places, is really a social growth at points where the opposing forces are the least. Nor is the law less clearly to be traced in those functional changes daily going on. The flow of capital into businesses yielding the largest returns; the buying in the cheapest market and selling in the dearest; the introduction of more economical modes of manufacture; the development of better agencies for distribution; and all those variations in the currents of trade that are noted in our newspapers and telegrams from hour to hour; exhibit movement taking place in directions where it is met by the smallest total of opposing forces. For if we analyze each of these changes�if instead of interest on capital we read surplus of products which remains after maintenance of labourers; if we so interpret large interest or large surplus to imply labour expended with the greatest results; and if labour expended with the greatest results means muscular action so directed as to evade obstacles as far as possible; we see that all these commercial phenomena are complicated motions set up along lines of least resistance. Objections of two opposite kinds will perhaps be made to these sociological applications of the law. By some it may be said that the term force as here used, is used metaphorically�that to speak of men as _impelled_ in certain directions by certain desires, is a figure of speech and not the statement of a physical fact. The reply is, that the foregoing illustrations are to be interpreted literally, and that the processes described _are_ physical ones. The pressure of hunger is an actual force�a sensation implying some state of nervous tension; and the muscular action which the sensation prompts is really a discharge of it in the shape of bodily motion�a discharge which, on analyzing the mental acts involved, will be found to follow lines of least resistance. Hence the motions of a society whose members are impelled by this or any other desire, are actually, and not metaphorically, to be understood in the manner shown. An opposite objection may possibly be, that the several illustrations given are elaborated truisms; and that the law of direction of motion being once recognized, the fact that social movements, in common with all others, must conform to it, follows inevitably. To this it may be rejoined, that a mere abstract assertion that social movements must do this, would carry no conviction to the majority; and that it is needful to show _how_ they do it. For social evolution to be interpreted after the method proposed, it is requisite that such generalisations as those of political economy shall be reduced to equivalent propositions expressed in terms of force and motion. Social movements of these various orders severally conform to the two derivative principles named at the outset. In the first place we may observe how, once set up in given directions, such movements, like all others, tend to continue in these directions. A commercial mania or panic, a current of commodities, a social custom, a political agitation, or a popular delusion, maintains its course for a long time after its original source has ceased; and requires antagonistic forces to arrest it. In the second place it is to be noted that in proportion to the complexity of social forces is the tortuousness of social movements. The involved series of muscular contractions gone through by the artizan, that he may get the wherewithal to buy a loaf lying at the baker�s next door, show us how extreme becomes the indirectness of motion when the agencies at work become very numerous�a truth still better illustrated by the more public social actions; as those which end in bringing a successful man of business, towards the close of his life, into parliament. * * * * * § 92. And now of the general truth set forth in this chapter, as of that dealt with in the last, let us ask�what is our ultimate evidence? Must we accept it simply as an empirical generalization? or is it to be established as a corollary from a still deeper truth? The reader will anticipate the answer. We shall find it deducible from that datum of consciousness which underlies all science. Suppose several tractive forces, variously directed, to be acting on a given body. By what is known among mathematicians as the composition of forces, there may be found for any two of these, a single force of such amount and direction as to produce on the body an exactly equal effect. If in the direction of each of them there be drawn a straight line, and if the lengths of these two straight lines be made proportionate to the amounts of the forces; and if from the end of each line there be drawn a line parallel to the other, so as to complete a parallelogram; then the diagonal of this parallelogram represents the amount and direction of a force that is equivalent to the two. Such a resultant force, as it is called, may be found for any pair of forces throughout the group. Similarly, for any pair of such resultants a single resultant may be found. And by repeating this course, all of them may be reduced to two. If these two are equal and opposite�that is, if there is no line of greatest traction, motion does not take place. If they are opposite but not equal, motion takes place in the direction of the greater. And if they are neither equal nor opposite, motion takes place in the direction of their resultant. For in either of these cases there is an unantagonized force in one direction. And this residuary force that is not neutralized by an opposing one, must move the body in the direction in which it is acting. To assert the contrary is to assert that a force can be expended without effect�without generating an equivalent force; and by so implying that force can cease to exist, this involves a denial of the persistence of force. It needs scarcely be added that if in place of tractions we take resistances, the argument equally holds; and that it holds also where both tractions and resistances are concerned. Thus the law that motion follows the line of greatest traction, or the line of least resistance, or the resultant of the two, is a necessary deduction from that primordial truth which transcends proof. Reduce the proposition to its simplest form, and it becomes still more obviously consequent on the persistence of force. Suppose two weights suspended over a pulley or from the ends of an equal-armed lever; or better still�suppose two men pulling against each other. In such cases we say that the heavier weight will descend, and that the stronger man will draw the weaker towards him. But now, if we are asked how we know which is the heavier weight or the stronger man; we can only reply that it is the one producing motion in the direction of its pull. Our only evidence of excess of force is the movement it produces. But if of two opposing tractions we can know one as greater than the other only by the motion it generates in its own direction, then the assertion that motion occurs in the direction of greatest traction is a truism. When, going a step further back, we seek a warrant for the assumption that of the two conflicting forces, that is the greater which produces motion in its own direction, we find no other than the consciousness that such part of the greater force as is unneutralized by the lesser, must produce its effect�the consciousness that this residuary force cannot disappear, but must manifest itself in some equivalent change�the consciousness that force is persistent. Here too, as before, it may be remarked that no amount of varied illustrations, like those of which this chapter mainly consists, can give greater certainty to the conclusion thus immediately drawn from the ultimate datum of consciousness. For in all cases, as in the simple ones just given, we can identify the greatest force only by the resulting motion. It is impossible for us ever to get evidence of the occurrence of motion in any other direction than that of the greatest force; since our measure of relative greatness among forces is their relative power of generating motion. And clearly, while the comparative greatness of forces is thus determined, no multiplication of instances can add certainty to a law of direction of movement which follows immediately from the persistence of force. From this same primordial truth, too, may be deduced the principle that motion once set up along any line, becomes itself a cause of subsequent motion along that line. The mechanical axiom that, if left to itself, matter moving in any direction will continue in that direction with undiminished velocity, is but an indirect assertion of the persistence of force; since it is an assertion that the force manifested in the transfer of a body along a certain length of a certain line in a certain time, cannot disappear without producing some equal manifestation�a manifestation which, in the absence of conflicting forces, must be a further transfer in the same direction at the same velocity. In the case of matter traversing matter the like inference is necessitated. Here indeed the actions are much more complicated. A liquid that follows a certain channel through or over a solid, as water along the Earth�s surface, loses part of its motion in the shape of heat, through friction and collision with the matters forming its bed. A further amount of its motion may be absorbed in overcoming forces which it liberates; as when it loosens a mass which falls into, and blocks up, its channel. But after these deductions by transformation into other modes of force, any further deduction from the motion of the water is at the expense of a reaction on the channel, which by so much diminishes its obstructive power: such reaction being shown in the motion acquired by the detached portions which are carried away. The cutting out of river-courses is a perpetual illustration of this truth. Still more involved is the case of motion passing through matter by impulse from part to part; as a nervous discharge through animal tissue. Some chemical change may be wrought along the route traversed, which may render it less fit than before for conveying a current. Or the motion may itself be in part metamorphosed into some obstructive form of force; as in metals, the conducting power of which is, for the time, decreased by the heat which the passage of electricity itself generates. The real question is, however, what structural modification, if any, is produced throughout the matter traversed, apart from _incidental_ disturbing forces�apart from everything but the _necessary_ resistance of the matter: that, namely, which results from the inertia of its units. If we confine our attention to that part of the motion which, escaping transformation, continues its course, then it is a corollary from the persistence of force that as much of this remaining motion as is taken up in changing the positions of the units, must leave these by so much less able to obstruct subsequent motion in the same direction. Thus in all the changes heretofore and at present displayed by the Solar System; in all those that have gone on and are still going on in the Earth�s crust; in all processes of organic development and function; in all mental actions and the effects they work on the body; and in all modifications of structure and activity in societies; the implied movements are of necessity determined in the manner above set forth. Every alteration in the arrangement of parts, constituting Evolution under each of its phases, must conform to this universal principle. Wherever we see motion, its direction must be that of the greatest force. And wherever we see the greatest force to be acting in a given direction, in that direction motion must ensue. ----- Footnote 13: This paragraph is a re-statement, somewhat amplified, of an idea set forth in the _Medico-Chirurgical Review_ for January, 1859 (pp. 189 and 190); and contains the germ of the intended fifth part of the _Principles of Psychology_, which was withheld for the reasons given in the preface to that work. Footnote 14: For details see a paper on �The Physiology of Laughter,� published in _Macmillan�s Magazine_ for March 1860. CHAPTER XI. THE RHYTHM OF MOTION. § 93. When the pennant of a vessel lying becalmed first shows the coming breeze, it does so by gentle undulations that travel from its fixed to its free end. Presently the sails begin to flap; and their blows against the mast increase in rapidity as the breeze rises. Even when, being fully bellied out, they are in great part steadied by the strain of the yards and cordage, their free edges tremble with each stronger gust. And should there come a gale, the jar that is felt on laying hold of the shrouds shows that the rigging vibrates; while the rush and whistle of the wind prove that in it, also, rapid undulations are generated. Ashore the conflict between the current of air and the things it meets results in a like rhythmical action. The leaves all shiver in the blast; each branch oscillates; and every exposed tree sways to and fro. The blades of grass and dried bents in the meadows, and still better the stalks in the neighbouring corn-fields, exhibit the same rising and falling movement. Nor do the more stable objects fail to do the like, though in a less manifest fashion; as witness the shudder that may be felt throughout a house during the paroxysms of a violent storm. Streams of water produce in opposing objects the same general effects as do streams of air. Submerged weeds growing in the middle of a brook, undulate from end to end. Branches brought down by the last flood, and left entangled at the bottom where the current is rapid, are thrown into a state of up and down movement that is slow or quick in proportion as they are large or small; and where, as in great rivers like the Mississippi, whole trees are thus held, the name �sawyers,� by which they are locally known, sufficiently describes the rhythm produced in them. Note again the effect of the antagonism between the current and its channel. In shallow places, where the action of the bottom on the water flowing over it is visible, we see a ripple produced�a series of undulations. And if we study the action and re-action going on between the moving fluid and its banks, we still find the principle illustrated, though in a different way. For in every rivulet, as in the mapped-out course of every great river, the bends of the stream from side to side throughout its tortuous course constitute a lateral undulation�an undulation so inevitable that even an artificially straightened channel is eventually changed into a serpentine one. Analogous phenomena may be observed where the water is stationary and the solid matter moving. A stick drawn laterally through the water with much force, proves by the throb which it communicates to the hand that it is in a state of vibration. Even where the moving body is massive, it only requires that great force should be applied to get a sensible effect of like kind: instance the screw of a screw-steamer, which instead of a smooth rotation falls into a rapid rhythm that sends a tremor through the whole vessel. The sound which results when a bow is drawn over a violin-string, shows us vibrations produced by the movement of a solid over a solid. In lathes and planing machines, the attempt to take off a thick shaving causes a violent jar of the whole apparatus, and the production of a series of waves on the iron or wood that is cut. Every boy in scraping his slate-pencil finds it scarcely possible to help making a ridged surface. If you roll a ball along the ground or over the ice, there is always more or less up and down movement�a movement that is visible while the velocity is considerable, but becomes too small and rapid to be seen by the unaided eye as the velocity diminishes. However smooth the rails, and however perfectly built the carriages, a railway-train inevitably gets into oscillations, both lateral and vertical. Even where moving matter is suddenly arrested by collision, the law is still illustrated; for both the body striking and the body struck are made to tremble; and trembling is rhythmical movement. Little as we habitually observe it, it is yet certain that the impulses our actions impress from moment to moment on surrounding objects, are propagated through them in vibrations. It needs but to look through a telescope of high power, to be convinced that each pulsation of the heart gives a jar to the whole room. If we pass to motions of another order�those namely which take place in the etherial medium�we still find the same thing. Every fresh discovery confirms the hypothesis that light consists of undulations. The rays of heat, too, are now found to have a like fundamental nature; their undulations differing from those of light only in their comparative length. Nor do the movements of electricity fail to furnish us with an illustration; though one of a different order. The northern aurora may often be observed to pulsate with waves of greater brightness; and the electric discharge through a vacuum shows us by its stratified appearance that the current is not uniform, but comes in gushes of greater and lesser intensity. Should it be said that at any rate there are some motions, as those of projectiles, which are not rhythmical, the reply is, that the exception is apparent only; and that these motions would be rhythmical if they were not interrupted. It is common to assert that the trajectory of a cannon ball is a parabola; and it is true that (omitting atmospheric resistance) the curve described differs so slightly from a parabola that it may practically be regarded as one. But, strictly speaking, it is a portion of an extremely eccentric ellipse, having the Earth�s centre of gravity for its remoter focus; and but for its arrest by the substance of the Earth, the cannon ball would travel round that focus and return to the point whence it started; again to repeat this slow rhythm. Indeed, while seeming at first sight to do the reverse, the discharge of a cannon furnishes one of the best illustrations of the principle enunciated. The explosion produces violent undulations in the surrounding air. The whizz of the shot, as it flies towards its mark, is due to another series of atmospheric undulations. And the movement to and from the Earth�s centre, which the cannon ball is beginning to perform, being checked by solid matter, is transformed into a rhythm of another order; namely, the vibration which the blow sends through neighbouring bodies.[15] Rhythm is very generally not simple but compound. There are usually at work various forces, causing undulations differing in rapidity; and hence it continually happens that besides the primary rhythms there are secondary rhythms, produced by the periodic coincidence and antagonism of the primary ones. Double, triple, and even quadruple rhythms, are thus generated. One of the simplest instances is afforded by what in acoustics are known as �beats:� recurring intervals of sound and silence which are perceived when two notes of nearly the same pitch are struck together; and which are due to the alternate correspondence and antagonism of the atmospheric waves. In like manner the various phenomena due to what is called interference of light, severally result from the periodic agreement and disagreement of etherial undulations�undulations which, by alternately intensifying and neutralizing each other, produce intervals of increased and diminished light. On the sea-shore may be noted sundry instances of compound rhythm. We have that of the tides, in which the daily rise and fall undergoes a fortnightly increase and decrease, due to the alternate coincidence and antagonism of the solar and lunar attractions. We have again that which is perpetually furnished by the surface of the sea: every large wave bearing smaller ones on its sides, and these still smaller ones; with the result that each flake of foam, along with the portion of water bearing it, undergoes minor ascents and descents of several orders while it is being raised and lowered by the greater billows. A quite different and very interesting example of compound rhythm, occurs in the little rills which, at low tide, run over the sand out of the shingle banks above. Where the channel of one of these is narrow, and the stream runs strongly, the sand at the bottom is raised into a series of ridges corresponding to the ripple of the water. On watching for a short time, it will be seen that these ridges are being raised higher and the ripple growing stronger; until at length, the action becoming violent, the whole series of ridges is suddenly swept away, the stream runs smoothly, and the process commences afresh. Instances of still more complex rhythms might be added; but they will come more appropriately in connexion with the several forms of Evolution, hereafter to be dealt with. From the ensemble of the facts as above set forth, it will be seen that rhythm results wherever there is a conflict of forces not in equilibrium. If the antagonist forces at any point are balanced, there is rest; and in the absence of motion there can of course be no rhythm. But if instead of a balance there is an excess of force in one direction�if, as necessarily follows, motion is set up in that direction; then for that motion to continue uniformly in that direction, it is requisite that the moving matter should, notwithstanding its unceasing change of place, present unchanging relations to the sources of force by which its motion is produced and opposed. This however is impossible. Every further transfer through space must alter the ratio between the forces concerned�must increase or decrease the predominance of one force over the other�must prevent uniformity of movement. And if the movement cannot be uniform, then, in the absence of acceleration or retardation continued through infinite time and space, (results which cannot be conceived) the only alternative is rhythm. A secondary conclusion must not be omitted. In the last chapter we saw that motion is never absolutely rectilinear; and here it remains to be added that, as a consequence, rhythm is necessarily incomplete. A truly rectilinear rhythm can arise only when the opposing forces are in exactly the same line; and the probabilities against this are infinitely great. To generate a perfectly circular rhythm, the two forces concerned must be exactly at right angles to each other, and must have exactly a certain ratio; and against this the probabilities are likewise infinitely great. All other proportions and directions of the two forces will produce an ellipse of greater or less eccentricity. And when, as indeed always happens, above two forces are engaged, the curve described must be more complex; and cannot exactly repeat itself. So that in fact throughout nature, this action and re-action of forces never brings about a complete return to a previous state. Where the movement is very involved, and especially where it is that of some aggregate whose units are partially independent, anything like a regular curve is no longer traceable; we see nothing more than a general oscillation. And on the completion of any periodic movement, the degree in which the state arrived at differs from the state departed from, is usually marked in proportion as the influences at work are numerous. * * * * * § 94. That spiral arrangement so general among the more diffused nebulæ�an arrangement which must be assumed by matter moving towards a centre of gravity through a resisting medium�shows us the progressive establishment of revolution, and therefore of rhythm; in those remote spaces which the nebulæ occupy. Double stars, moving round common centres of gravity in periods some of which are now ascertained, exhibit settled rhythmical actions in distant parts of our sidereal system. And another fact which, though of a different order, has a like general significance, is furnished by variable stars�stars which alternately brighten and fade. The periodicities of the planets, satellites, and comets, are so familiar that it would be inexcusable to name them, were it not needful here to point out that they are so many grand illustrations of this general law of movement. But besides the revolutions of these bodies in their orbits (all more or less excentric) and their rotations on their axes, the Solar System presents us with various rhythms of a less manifest and more complex kind. In each planet and satellite there is the revolution of the nodes�a slow change in the position of the orbit-plane, which after completing itself commences afresh. There is the gradual alteration in the length of the axis major of the orbit; and also of its excentricity: both of which are rhythmical alike in the sense that they alternate between maxima and minima, and in the sense that the progress from one extreme to the other is not uniform, but is made with fluctuating velocity. Then, too, there is the revolution of the line of apsides, which in course of time moves round the heavens�not regularly, but through complex oscillations. And further we have variations in the directions of the planetary axes�that known as nutation, and that larger gyration which, in the case of the Earth, causes the precession of the equinoxes. These rhythms, already more or less compound, are compounded with each other. Such an instance as the secular acceleration and retardation of the moon, consequent on the varying excentricity of the Earth�s orbit, is one of the simplest. Another, having more important consequences, results from the changing direction of the axes of rotation in planets whose orbits are decidedly excentric. Every planet, during a certain long period, presents more of its northern than of its southern hemisphere to the sun at the time of its nearest approach to him; and then again, during a like period, presents more of its southern hemisphere than of its northern�a recurring coincidence which, though causing in some planets no sensible alterations of climate, involves in the case of the Earth an epoch of 21,000 years, during which each hemisphere goes through a cycle of temperate seasons, and seasons that are extreme in their heat and cold. Nor is this all. There is even a variation of this variation. For the summers and winters of the whole Earth become more or less strongly contrasted, as the excentricity of its orbit increases and decreases. Hence during increase of the excentricity, the epochs of moderately contrasted seasons and epochs of strongly contrasted seasons, through which alternately each hemisphere passes, must grow more and more different in the degrees of their contrasts; and contrariwise during decrease of the excentricity. So that in the quantity of light and heat which any portion of the Earth receives from the sun, there goes on a quadruple rhythm: that of day and night; that of summer and winter; that due to the changing position of the axis at perihelion and aphelion, taking 21,000 years to complete; and that involved by the variation of the orbit�s excentricity, gone through in millions of years. * * * * * § 95. Those terrestrial processes whose dependence on the solar heat is direct, of course exhibit a rhythm that corresponds to the periodically changing amount of heat which each part of the Earth receives. The simplest, though the least obtrusive, instance is supplied by the magnetic variations. In these there is a diurnal increase and decrease, an annual increase and decrease, and a decennial increase and decrease; the latter answering to a period during which the solar spots become alternately abundant and scarce: besides which known variations there are probably others corresponding with the astronomical cycles just described. More obvious examples are furnished by the movements of the ocean and the atmosphere. Marine currents from the equator to the poles above, and from the poles to the equator beneath, show us an unceasing backward and forward motion throughout this vast mass of water�a motion varying in amount according to the seasons, and compounded with smaller like motions of local origin. The similarly-caused general currents in the air, have similar annual variations similarly modified. Irregular as they are in detail, we still see in the monsoons and other tropical atmospheric disturbances, or even in our own equinoctial gales and spring east winds, a periodicity sufficiently decided. Again, we have an alternation of times during which evaporation predominates with times during which condensation predominates: shown in the tropics by strongly marked rainy seasons and seasons of drought, and in the temperate zones by corresponding changes of which the periodicity, though less definite, is still traceable. The diffusion and precipitation of water, besides the slow alternations answering to different parts of the year, furnish us with examples of rhythm of a more rapid kind. During wet weather, lasting, let us say, over some weeks, the tendency to condense, though greater than the tendency to evaporate, does not show itself in continuous rain; but the period is made up of rainy days and days that are wholly or partially fair. Nor is it in this rude alternation only that the law is manifested. During any day throughout this wet weather a minor rhythm is traceable; and especially so when the tendencies to evaporate and to condense are nearly balanced. Among mountains this minor rhythm and its causes may be studied to great advantage. Moist winds, which do not precipitate their contained water in passing over the comparatively warm lowlands, lose so much heat when they reach the cold mountain peaks, that condensation rapidly takes place. Water, however, in passing from the gaseous to the fluid state, gives out a considerable amount of heat; and hence the resulting clouds are warmer than the air that precipitates them, and much warmer than the high rocky surfaces round which they fold themselves. Hence in the course of the storm, these high rocky surfaces are raised in temperature, partly by radiation from the enwrapping cloud, partly by contact of the falling rain-drops. Giving off more heat than before, they no longer lower so greatly the temperature of the air passing over them; and so cease to precipitate its contained water. The clouds break; the sky begins to clear; and a gleam of sunshine promises that the day is going to be fine. But the small supply of heat which the cold mountain�s sides have received, is soon lost: especially when the dispersion of the clouds permits free radiation into space. Very soon, therefore, these elevated surfaces, becoming as cold as at first, (or perhaps even colder in virtue of the evaporation set up,) begin again to condense the vapour in the air above; and there comes another storm, followed by the same effects as before. In lowland regions this action and reaction is usually less conspicuous, because the contrast of temperatures is less marked. Even here, however, it may be traced; and that not only on showery days, but on days of continuous rain; for in these we do not see uniformity: always there are fits of harder and gentler rain that are probably caused as above explained. Of course these meteorologic rhythms involve something corresponding to them in the changes wrought by wind and water on the Earth�s surface. Variations in the quantities of sediment brought down by rivers that rise and fall with the seasons, must cause variations in the resulting strata�alternations of colour or quality in the successive laminæ. Beds formed from the detritus of shores worn down and carried away by the waves, must similarly show periodic differences answering to the periodic winds of the locality. In so far as frost influences the rate of denudation, its recurrence is a factor in the rhythm of sedimentary deposits. And the geological changes produced by glaciers and icebergs must similarly have their alternating periods of greater and less intensity. There is evidence also that modifications in the Earth�s crust due to igneous action have a certain periodicity. Volcanic eruptions are not continuous but intermittent, and as far as the data enable us to judge, have a certain average rate of recurrence; which rate of recurrence is complicated by rising into epochs of greater activity and falling into epochs of comparative quiescence. So too is it with earthquakes and the elevations or depressions caused by them. At the mouth of the Mississippi, the alternation of strata gives decisive proof of successive sinkings of the surface, that have taken place at tolerably equal intervals. Everywhere, in the extensive groups of conformable strata that imply small subsidences recurring with a certain average frequency, we see a rhythm in the action and reaction between the Earth�s crust and its molten contents�a rhythm compounded with those slower ones shown in the termination of groups of strata, and the commencement of other groups not conformable to them. There is even reason for suspecting a geological periodicity that is immensely slower and far wider in its effects; namely, an alternation of those vast upheavals and submergencies by which continents are produced where there were oceans, and oceans where there were continents. For supposing, as we may fairly do, that the Earth�s crust is throughout of tolerably equal thickness, it is manifest that such portions of it as become most depressed below the average level, must have their inner surfaces most exposed to the currents of molten matter circulating within, and will therefore undergo a larger amount of what may be called igneous denudation; while, conversely, the withdrawal of the inner surfaces from these currents where the Earth�s crust is most elevated, will cause a thickening more or less compensating the aqueous denudation going on externally. Hence those depressed areas over which the deepest oceans lie, being gradually thinned beneath and not covered by much sedimentary deposit above, will become areas of least resistance, and will then begin to yield to the upward pressure of the Earth�s contents; whence will result, throughout such areas, long-continued elevations, ceasing only when the reverse state of things has been brought about. Whether this speculation be well or ill founded, does not however affect the general conclusion. Apart from it we have sufficient evidence that geologic processes are rhythmical. * * * * * § 96. Perhaps nowhere are the illustrations of rhythm so numerous and so manifest as among the phenomena of life. Plants do not, indeed, usually show us any decided periodicities, save those determined by day and night and by the seasons. But in animals we have a great variety of movements in which the alternation of opposite extremes goes on with all degrees of rapidity. The swallowing of food is effected by a wave of constriction passing along the �sophagus; its digestion is accompanied by a muscular action of the stomach that is also undulatory; and the peristaltic motion of the intestines is of like nature. The blood obtained from this food is propelled not in a uniform current but in pulses; and it is aerated by lungs that alternately contract and expand. All locomotion results from oscillating movements: even where it is apparently continuous, as in many minute forms, the microscope proves the vibration of cilia to be the agency by which the creature is moved smoothly forwards. Primary rhythms of the organic actions are compounded with secondary ones of longer duration. These various modes of activity have their recurring periods of increase and decrease. We see this in the periodic need for food, and in the periodic need for repose. Each meal induces a more rapid rhythmic action of the digestive organs; the pulsation of the heart is accelerated; and the inspirations become more frequent. During sleep, on the contrary, these several movements slacken. So that in the course of the twenty-four hours, those small undulations of which the different kinds of organic action are constituted, undergo one long wave of increase and decrease, complicated with several minor waves. Experiments have shown that there are still slower rises and falls of functional activity. Waste and assimilation are not balanced by every meal, but one or other maintains for some time a slight excess; so that a person in ordinary health is found to undergo an increase and decrease of weight during recurring intervals of tolerable equality. Besides these regular periods there are still longer and comparatively irregular ones; namely, those alternations of greater and less vigour, which even healthy people experience. So inevitable are these oscillations that even men in training cannot be kept stationary at their highest power, but when they have reached it begin to retrograde. Further evidence of rhythm in the vital movements is furnished by invalids. Sundry disorders are named from the intermittent character of their symptoms. Even where the periodicity is not very marked, it is mostly traceable. Patients rarely if ever get uniformly worse; and convalescents have usually their days of partial relapse or of less decided advance. Aggregates of living creatures illustrate the general truth in other ways. If each species of organism be regarded as a whole, it displays two kinds of rhythm. Life as it exists in all the members of such species, is an extremely complex kind of movement, more or less distinct from the kinds of movement which constitutes life in other species. In each individual of the species, this extremely complex kind of movement begins, rises to its climax, declines, and ceases in death. And every successive generation thus exhibits a wave of that peculiar activity characterizing the species as a whole. The other form of rhythm is to be traced in that variation of number which each tribe of animals and plants is ever undergoing. Throughout the unceasing conflict between the tendency of a species to increase and the antagonistic tendencies, there is never an equilibrium: one always predominates. In the case even of a cultivated plant or domesticated animal, where artificial means are used to maintain the supply at a uniform level, we still see that oscillations of abundance and scarcity cannot be avoided. And among the creatures uncared for by man, such oscillations are usually more marked. After a race of organisms has been greatly thinned by enemies or lack of food, its surviving members become more favourably circumstanced than usual. During the decline in their numbers their food has grown relatively more abundant; while their enemies have diminished from want of prey. The conditions thus remain for some time favourable to their increase; and they multiply rapidly. By and by their food is rendered relatively scarce, at the same time that their enemies have become more numerous; and the destroying influences being thus in excess, their number begins to diminish again. Yet one more rhythm, extremely slow in its action, may be traced in the phenomena of Life, contemplated under their most general aspect. The researches of palæontologists show, that there have been going on, during the vast period of which our sedimentary rocks bear record, successive changes of organic forms. Species have appeared, become abundant, and then disappeared. Genera, at first constituted of but few species, have for a time gone on growing more multiform; and then have begun to decline in the number of their subdivisions; leaving at last but one or two representatives, or none at all. During longer epochs whole orders have thus arisen, culminated, and dwindled away. And even those wider divisions containing many orders have similarly undergone a gradual rise, a high tide, and a long-continued ebb. The stalked _Crinoidea_, for example, which, during the carboniferous epoch, became abundant, have almost disappeared: only a single species being extant. Once a large family of molluscs, the _Brachiopoda_ have now become rare. The shelled Cephalopods, at one time dominant among the inhabitants of the ocean, both in number of forms and of individuals, are in our day nearly extinct. And after an �age of reptiles,� there has come an age in which reptiles have been in great measure supplanted by mammals. Whether these vast rises and falls of different kinds of life ever undergo anything approaching to repetitions, (which they may possibly do in correspondence with those vast cycles of elevation and subsidence that produce continents and oceans,) it is sufficiently clear that Life on the Earth has not progressed uniformly, but in immense undulations. * * * * * § 97. It is not manifest that the changes of consciousness are in any sense rhythmical. Yet here, too, analysis proves both that the mental state existing at any moment is not uniform, but is decomposable into rapid oscillations; and also that mental states pass through longer intervals of increasing and decreasing intensity. Though while attending to any single sensation, or any group of related sensations constituting the consciousness of an object, we seem to remain for the time in a persistent and homogeneous condition of mind, a careful self-examination shows that this apparently unbroken mental state is in truth traversed by a number of minor states, in which various other sensations and perceptions are rapidly presented and disappear. From the admitted fact that thinking consists in the establishment of relations, it is a necessary corollary that the maintenance of consciousness in any one state to the entire exclusion of other states, would be a cessation of thought, that is, of consciousness. So that any seemingly continuous feeling, say of pressure, really consists of portions of that feeling perpetually recurring after the momentary intrusion of other feelings and ideas�quick thoughts concerning the place where it is felt, the external object producing it, its consequences, and other things suggested by association. Thus there is going on an extremely rapid departure from, and return to, that particular mental state which we regard as persistent. Besides the evidence of rhythm in consciousness which direct analysis thus affords, we may gather further evidence from the correlation between feeling and movement. Sensations and emotions expend themselves in producing muscular contractions. If a sensation or emotion were strictly continuous, there would be a continuous discharge along those motor nerves acted upon. But so far as experiments with artificial stimuli enable us to judge, a continuous discharge along the nerve leading to a muscle, does not contract it: a broken discharge is required�a rapid succession of shocks. Hence muscular contraction pre-supposes that rhythmic state of consciousness which direct observation discloses. A much more conspicuous rhythm, having longer waves, is seen during the outflow of emotion into dancing, poetry, and music. The current of mental energy that shows itself in these modes of bodily action, is not continuous, but falls into a succession of pulses. The measure of a dance is produced by the alternation of strong muscular contractions with weaker ones; and, save in measures of the simplest order such as are found among barbarians and children, this alternation is compounded with longer rises and falls in the degree of muscular excitement. Poetry is a form of speech which results when the emphasis is regularly recurrent; that is, when the muscular effort of pronunciation has definite periods of greater and less intensity�periods that are complicated with others of like nature answering to the successive verses. Music, in still more various ways, exemplifies the law. There are the recurring bars, in each of which there is a primary and a secondary beat. There is the alternate increase and decrease of muscular strain, implied by the ascents and descents to the higher and lower notes�ascents and descents composed of smaller waves, breaking the rises and falls of the larger ones, in a mode peculiar to each melody. And then we have, further, the alternation of _piano_ and _forte_ passages. That these several kinds of rhythm, characterizing æsthetic expression, are not, in the common sense of the word, artificial, but are intenser forms of an undulatory movement habitually generated by feeling in its bodily discharge, is shown by the fact that they are all traceable in ordinary speech; which in every sentence has its primary and secondary emphases, and its cadence containing a chief rise and fall complicated with subordinate rises and falls; and which is accompanied by a more or less oscillatory action of the limbs when the emotion is great. Still longer undulations may be observed by every one, in himself and in others, on occasions of extreme pleasure or extreme pain. Note, in the first place, that pain having its origin in bodily disorder, is nearly always perceptibly rhythmical. During hours in which it never actually ceases, it has its variations of intensity�fits or paroxysms; and then after these hours of suffering there usually come hours of comparative ease. Moral pain has the like smaller and larger waves. One possessed by intense grief does not utter continuous moans, or shed tears with an equable rapidity; but these signs of passion come in recurring bursts. Then after a time during which such stronger and weaker waves of emotion alternate, there comes a calm�a time of comparative deadness; to which again succeeds another interval, when dull sorrow rises afresh into acute anguish, with its series of paroxysms. Similarly in great delight, especially as manifested by children who have its display less under control, there are visible variations in the intensity of feeling shown�fits of laughter and dancing about, separated by pauses in which smiles, and other slight manifestations of pleasure, suffice to discharge the lessened excitement. Nor are there wanting evidences of mental undulations greater in length than any of these�undulations which take weeks, or months, or years, to complete themselves. We continually hear of moods which recur at intervals. Very many persons have their epochs of vivacity and depression. There are periods of industry following periods of idleness; and times at which particular subjects or tastes are cultivated with zeal, alternating with times at which they are neglected. Respecting which slow oscillations, the only qualification to be made is, that being affected by numerous influences, they are comparatively irregular. * * * * * § 98. In nomadic societies the changes of place, determined as they usually are by exhaustion or failure of the supply of food, are periodic; and in many cases show a recurrence answering to the seasons. Each tribe that has become in some degree fixed in its locality, goes on increasing, till under the pressures of unsatisfied desires, there results migration of some part of it to a new region�a process repeated at intervals. From such excesses of population, and such successive waves of migration, come conflicts with other tribes; which are also increasing and tending to diffuse themselves. This antagonism, like all others, results not in an uniform motion, but in an intermittent one. War, exhaustion, recoil�peace, prosperity, and renewed aggression:�see here the alternation more or less discernible in the military activities of both savage and civilized nations. And irregular as is this rhythm, it is not more so than the different sizes of the societies, and the extremely involved causes of variation in their strengths, would lead us to anticipate. Passing from external to internal changes, we meet with this backward and forward movement under many forms. In the currents of commerce it is especially conspicuous. Exchange during early times is almost wholly carried on at fairs, held at long intervals in the chief centres of population. The flux and reflux of people and commodities which each of these exhibits, becomes more frequent as national development leads to greater social activity. The more rapid rhythm of weekly markets begins to supersede the slow rhythm of fairs. And eventually the process of exchange becomes at certain places so active, as to bring about daily meetings of buyers and sellers�a daily wave of accumulation and distribution of cotton, or corn, or capital. If from exchange we turn to production and consumption, we see undulations, much longer indeed in their periods, but almost equally obvious. Supply and demand are never completely adapted to each other; but each of them from time to time in excess, leads presently to an excess of the other. Farmers who have one season produced wheat very abundantly, are disgusted with the consequent low price; and next season, sowing a much smaller quantity, bring to market a deficient crop; whence follows a converse effect. Consumption undergoes parallel undulations that need not be specified. The balancing of supplies between different districts, too, entails analogous oscillations. A place at which some necessary of life is scarce, becomes a place to which currents of it are set up from other places where it is relatively abundant; and these currents from all sides lead to a wave of accumulation where they meet�a glut: whence follows a recoil�a partial return of the currents. But the undulatory character of these actions is perhaps best seen in the rises and falls of prices. These, given in numerical measures which may be tabulated and reduced to diagrams, show us in the clearest manner how commercial movements are compounded of oscillations of various magnitudes. The price of consols or the price of wheat, as thus represented, is seen to undergo vast ascents and descents whose highest and lowest points are reached only in the course of years. These largest waves of variation are broken by others extending over periods of perhaps many months. On these again come others having a week or two�s duration. And were the changes marked in greater detail, we should have the smaller undulations that take place each day, and the still smaller ones which brokers telegraph from hour to hour. The whole outline would show a complication like that of a vast ocean-swell, on whose surface there rise large billows, which themselves bear waves of moderate size, covered by wavelets, that are roughened by a minute ripple. Similar diagrammatic representations of births, marriages, and deaths, of disease, of crime, of pauperism, exhibit involved conflicts of rhythmical motions throughout society under these several aspects. There are like characteristics in social changes of a more complex kind. Both in England and among continental nations, the action and reaction of political progress have come to be generally recognized. Religion, besides its occasional revivals of smaller magnitude, has its long periods of exaltation and depression�generations of belief and self-mortification, following generations of indifference and laxity. There are poetical epochs, and epochs in which the sense of the beautiful seems almost dormant. Philosophy, after having been awhile predominant, lapses for a long season into neglect; and then again slowly revives. Each science has its eras of deductive reasoning, and its eras when attention is chiefly directed to collecting and colligating facts. And how in such minor but more obtrusive phenomena as those of fashion, there are ever going on oscillations from one extreme to the other, is a trite observation. As may be foreseen, social rhythms well illustrate the irregularity that results from combination of many causes. Where the variations are those of one simple element in national life, as the supply of a particular commodity, we do indeed witness a return, after many involved movements, to a previous condition�the price may become what it was before: implying a like relative abundance. But where the action is one into which many factors enter, there is never a recurrence of exactly the same state. A political reaction never brings round just the old form of things. The rationalism of the present day differs widely from the rationalism of the last century. And though fashion from time to time revives extinct types of dress, these always re-appear with decided modifications. * * * * * § 99. The universality of this principle suggests a question like that raised in foregoing cases. Rhythm being manifested in all forms of movement, we have reason to suspect that it is determined by some primordial condition to action in general. The tacit implication is that it is deducible from the persistence of force. This we shall find to be the fact. When the prong of a tuning-fork is pulled on one side by the finger, a certain extra tension is produced among its cohering particles; which resist any force that draws them out of their state of equilibrium. As much force as the finger exerts in pulling the prong aside, so much opposing force is brought into play among the cohering particles. Hence, when the prong is liberated, it is urged back by a force equal to that used in deflecting it. When, therefore, the prong reaches its original position, the force impressed on it during its recoil, has generated in it a corresponding amount of momentum�an amount of momentum nearly equivalent, that is, to the force originally impressed (nearly, we must say, because a certain portion has gone in communicating motion to the air, and a certain other portion has been transformed into heat). This momentum carries the prong beyond the position of rest, nearly as far as it was originally drawn in the reverse direction; until at length, being gradually used up in producing an opposing tension among the particles, it is all lost. The opposing tension into which the expended momentum has been transformed, then generates a second recoil; and so on continually�the vibration eventually ceasing only because at each movement a certain amount of force goes in creating atmospheric and etherial undulations. Now it needs but to contemplate this repeated action and reaction, to see that it is, like every action and reaction, a consequence of the persistence of force. The force exerted by the finger in bending the prong cannot disappear. Under what form then does it exist? It exists under the form of that cohesive tension which it has generated among the particles. This cohesive tension cannot cease without an equivalent result. What is its equivalent result? The momentum generated in the prong while being carried back to its position of rest. This momentum too�what becomes of it? It must either continue as momentum, or produce some correlative force of equal amount. It cannot continue as momentum, since change of place is resisted by the cohesion of the parts; and thus it gradually disappears by being transformed into tension among these parts. This is re-transformed into the equivalent momentum; and so on continuously. If instead of motion that is directly antagonized by the cohesion of matter, we consider motion through space, the same truth presents itself under another form. Though here no opposing force seems at work, and therefore no cause of rhythm is apparent, yet its own accumulated momentum must eventually carry the moving body beyond the body attracting it; and so must become a force at variance with that which generated it. From this conflict, rhythm necessarily results as in the foregoing case. The force embodied as momentum in a given direction, cannot be destroyed; and if it eventually disappears, it re-appears in the reaction on the retarding body; which begins afresh to draw the now arrested mass back from its aphelion. The only conditions under which there could be absence of rhythm�the only conditions, that is, under which there could be a continuous motion through space in the same straight line for ever, would be the existence of an infinity void of everything but the moving body. And neither of these conditions can be represented in thought. Infinity is inconceivable; and so also is a motion which never had a commencement in some pre-existing source of power. Thus, then, rhythm is a necessary characteristic of all motion. Given the coexistence everywhere of antagonist forces�a postulate which, as we have seen, is necessitated by the form of our experience�and rhythm is an inevitable corollary from the persistence of force. Hence, throughout that re-arrangement of parts which constitutes Evolution, we must nowhere expect to see the change from one position of things to another, effected by continuous movement in the same direction. Be it in that kind of Evolution which the inorganic creation presents, or in that presented by the organic creation, we shall everywhere find a periodicity of action and reaction�a backward and forward motion, of which progress is a differential result. ----- Footnote 15: After having for some years supposed myself alone in the belief that all motion is rhythmical, I discovered that my friend Professor Tyndall also held this doctrine. CHAPTER XII. THE CONDITIONS ESSENTIAL TO EVOLUTION. § 100. One more preliminary is needful before proceeding. We have still to study the conditions under which alone, Evolution can take place. The process to be interpreted is, as already said, a certain change in the arrangement of parts. That increase of heterogeneity commonly displayed throughout Evolution, is not an increase in the number of kinds of ultimate or undecomposable units which an aggregate contains; but it is a change in the distribution of such units. If it be assumed that what we call chemical elements, are absolutely simple (which is, however, an hypothesis having no better warrant than the opposite one); then it must be admitted that in respect to the number of kinds of matter contained in it, the Earth is not more heterogeneous at present than it was at first�that in this respect, it would be as heterogeneous were all its undecomposable parts uniformly mixed, as it is now, when they are arranged and combined in countless different ways. But the increase of heterogeneity with which we have to deal, and of which alone our senses can take cognizance, is that produced by the passage from unity of distribution to variety of distribution. Given an aggregate consisting of several orders of primitive units that are unchangeable; then, these units may be so uniformly dispersed among each other, that any portion of the mass shall be like any other portion in its sensible properties; or they may be so segregated, simply and in endless combinations, that the various portions of the mass shall not be like each other in their sensible properties. A transformation of one of these arrangements into the other, is that which constitutes Evolution. We have to analyze the process through which structural uniformity becomes structural multiformity�to ascertain how the originally equal relations of position among the mixed units, pass into relations of position that are more and more unequal, and more and more numerous in their kinds of inequality; and how this takes place throughout all the ascending grades of compound units, until we come even to those of which societies are made up. Change in the relations of position among the component units, simple or complex, being the phenomenon we have to interpret; we must first inquire what are the circumstances which prevent its occurrence, and what are the circumstances which facilitate it. * * * * * § 101. The constituents of an aggregate cannot be re-arranged, unless they are moveable: manifestly, they must not be so firmly bound together that the incident force fails to alter their positions. No bodies are, indeed, possessed of this absolute rigidity; since an incident force in being propagated through a body, always produces temporary alterations in the relative positions of its units, if not permanent alterations. It is true also, that even permanent re-arrangements of the units may be thus wrought throughout the interiors of comparatively dense masses, without any outward sign: as happens with certain crystals, which, on exposure to sunlight, undergo molecular changes so great as to alter their planes of cleavage. Nevertheless, since total immobility of the parts must totally negative their re-arrangement; and since that comparative immobility which we see in very coherent matter, is a great obstacle to re-arrangement; it is self-evident that Evolution can be exhibited in any considerable degree, only where there is comparative mobility of parts. On the other hand, those definite distributive changes which constitute Evolution, cannot be extensively or variously displayed, where the mobility of the parts is extreme. In liquids, the cohesion of the units is so slight that there is no permanency in their relations of position to each other. Such re-arrangement as any incident force generates, is immediately destroyed again by the momentum of the constituents moved; and so, nothing but that temporary heterogeneity seen in circulating currents, can be produced. The like still more obviously holds of gases. Thus, while the theoretical limits between which Evolution is possible, are absolute immobility of parts and absolute mobility of parts; we may say that practically, Evolution cannot go on to any considerable extent where the mobility is very great or very little. A few examples will facilitate the realization of this truth. The highest degrees of Evolution are found in semi-solid bodies, or bodies that come midway between the two extremes specified. Even semi-solid bodies of the inorganic class, exhibit the segregation of mixed units with comparative readiness: witness the fact to which attention was first drawn by Mr. Babbage, that when the pasty mixture of ground flints and kaolin, prepared for the manufacture of porcelain, is kept some time, it becomes gritty and unfit for use, in consequence of the particles of silica separating themselves from the rest, and uniting together in grains; or witness the fact known to every housewife, that in long-kept currant-jelly the sugar takes the shape of imbedded crystals. While throughout the immense majority of the semi-solid bodies, namely, the organic bodies, the proclivity to a re-arrangement of parts is so comparatively great, as to be usually taken for a distinctive characteristic of them. Among organic bodies themselves, we may trace contrasts having a like significance. It is an accepted generalization that, other things equal, the rate of Evolution is greatest where the plasticity is most marked. In that portion of an egg which displays the formative processes during the early stages of incubation, the changes of arrangement are more rapid than those which an equal portion of the body of a hatched chick undergoes. As may be inferred from their respective powers to acquire habits and aptitudes, the structural modifiability of a child is greater than that of an adult man; and the structural modifiability of an adult man is greater than that of an old man: contrasts which are accompanied by corresponding contrasts in the densities of the tissues; since the ratio of water to solid matter diminishes with advancing age. The most decisive proof, however, is furnished by those marked retardations or arrests of organic change, that take place when the tissues suffer a great loss of water. Certain of the lower animals, as the _Rotifera_, may be rendered apparently lifeless by desiccation, and will yet revive when wetted: as their substance passes from the fluid-solid to the solid state, it ceases to be the seat of those changes which constitute functional activity and cause structural advance; and such changes recommence as their substance passes from the solid to the fluid-solid state. Analogous instances occur among much higher animals. When the African rivers which it inhabits are dried up, the _Lepidosiren_ remains torpid in the hardened mud, until the return of the rainy season brings water. Humboldt states that during the summer drought, the alligators of the Pampas lie buried in a state of suspended animation beneath the parched surface, and struggle up out of the earth as soon as it becomes humid. Now though we have no proof that these partial arrests of vital activity, are consequent on the reduction of the fluid-solid tissues to a more solid form; yet their occurrence along with a cessation in the supply of water, is reason for suspecting that this is the case. And similarly, though in the more numerous instances where loss of water leads to complete arrest of vital activity, we are unable to say that the immediate cause is a stoppage of molecular changes that results from a diminution of molecular mobility; yet it seems not improbable that this is the rationale of death by thirst. Probably few will expect to find this same condition to Evolution, illustrated in aggregates so widely different in kind as societies. Yet even here it may be shown that no considerable degree of Evolution is exhibited, where there is either great mobility of the parts, or great immobility of them. In such tribes as those inhabiting Australia, we see extremely little cohesion among the units: there is neither that partial fixity of relative positions which results from the commencement of agriculture, nor that partial fixity of relative positions implied by the establishment of social grades. And along with this want of cohesion, we find an absence of permanent differentiations. Conversely, in societies of the oriental type, where accumulated traditions, laws, and usages, and long-fixed class-arrangements, exercise great restraining power over individual actions, we find Evolution almost stopped. Through the medium of institutions and opinions, the forces brought to bear on each unit by the rest, are so great as to prevent the units from sensibly yielding to forces tending to re-arrange them. The condition most favourable to increase of social heterogeneity, is a medium coherence among the parts�a moderate facility of change in the relations of citizens, joined with a moderate resistance to such change�a considerable freedom of individual actions, qualified by a considerable restraint over individual actions�a certain attachment to pre-established arrangements, and a certain readiness to be impelled by new influences into new arrangements�a compromise between fixity and unfixity such as that which we, perhaps as much as any nation, exhibit. * * * * * § 102. Another condition to Evolution, of the same order as the last though of a different genus, must be noted. We have found that permanent re-arrangement among the units of an aggregate, can take place only when they have neither extreme immobility nor extreme mobility. The mobility and immobility thus far considered (at least in all aggregates except social ones) are those due to mechanical cohesion. There is, however, what we must call chemical cohesion, which also influences the mobility of the units, and consequently the re-arrangement of them. Manifestly, if two or more kinds of units contained in any aggregate, are united by powerful affinities, an incident force, failing to destroy their cohesions, will not cause such various re-arrangements as it would, could it produce new chemical combinations as well as new mechanical adjustments. On the other hand, chemical affinities that are easily overcome, must be favourable to multiplied re-arrangements of the units. This condition, as well as the preceding one, is fulfilled in the highest degree, by those aggregates which most variously display the transformation of the uniform into the multiform. Organic bodies are on the average distinguished from inorganic bodies, by the readiness with which the compounds they consist of undergo decomposition, and recomposition: the chemical cohesions of their components are so comparatively small, that small incident forces suffice to overcome them and cause transpositions of the components. Further, between the two great divisions of organisms, we find a contrast in the degree of Evolution co-existing with a contrast in the degree of chemical modifiability. As a class, the nitrogenous compounds are peculiarly unstable; and, speaking generally, these are present in much larger quantities in animal tissues than they are in vegetal tissues; while, speaking generally, animals are much more heterogeneous than plants. Under this head it may be well also to point out that, other things equal, the structural variety which is possible in any aggregate, must bear a relation to the number of kinds of units contained in the aggregate. A body made up of units of one order, cannot admit of so many different re-arrangements, as one made up of units of two orders. And each additional order of units must increase, in a geometrical proportion, the number of re-arrangements that may be made. * * * * * § 103. Yet one more condition to be specified, is the state of agitation in which the constituents of an aggregate are kept. A familiar expedience will introduce us to this condition. When a vessel has been filled to the brim with loose fragments, shaking the vessel causes them to settle down into less space, so that more may be put in. And when among these fragments, there are some of much greater specific gravity than the rest, these will, in the course of a prolonged shaking, find their way to the bottom. What now is the meaning of these two results, when expressed in general terms? We have a group of units acted on by an incident force�the attraction of the Earth. So long as these units are not agitated, this incident force produces no changes in their relative positions; agitate them, and immediately their loose arrangement passes into a more compact arrangement. Again, so long as they are not agitated, the incident force cannot separate the heavier units from the lighter; agitate them, and immediately the heavier units begin to segregate. By these illustrations, a rude idea will be conveyed of the effect which vibration has in facilitating those re-arrangements which constitute Evolution. What here happens with visible units subject to visible oscillations, happens also with invisible units subject to invisible oscillations. One or two cases in which these oscillations are of mechanical origin, may first be noted. When a bar of steel is suspended in the magnetic meridian, and repeatedly so struck as to send vibrations through it, it becomes magnetized: the magnetic force of the Earth, which does not permanently affect it while undisturbed, alters its internal state when a mechanical agitation is propagated among its particles; and the alteration is believed by physicists, to be a molecular re-arrangement. It may be fairly objected that this re-arrangement is hypothetical; and did the fact stand alone, it would be of little worth. It gains significance, however, when joined with the fact that in the same substance, long-continued mechanical vibrations are followed by molecular re-arrangements that are abundantly visible. A piece of iron which, when it leaves the workshop, is fibrous in structure, will become crystalline if exposed to a perpetual jar. Though the polar forces mutually exercised by the atoms, fail to change their disorderly arrangement into an orderly arrangement while the atoms are relatively quiescent, these forces produce this change when the atoms are kept in a state of intestine disturbance. But the effects which visible oscillations and oscillations sensible to touch, have in facilitating the re-arrangement of parts by an incident force, are insignificant compared with the effects which insensible oscillations have in aiding such change of structure. It is a doctrine now generally accepted among men of science, that the particles of tangible matter, as well as the particles of ether, undulate. As interpreted in conformity with this doctrine, the heat of a body is simply its state of molecular motion. A mass which feels cold, is one having but slight molecular motion, and conveying but slight molecular motion to the surrounding medium or to the hand touching it. A mass hot enough to radiate a sensible warmth, is one of which the more violently agitated molecules, communicate increased undulations to the surrounding ethereal medium; while the burn inflicted by it on the skin, is the expression of increased undulations of the organic molecules. Such further heat as produces softening and a consequent distortion of the mass, is an agitation so much augmented that the units can no longer completely maintain their relative positions. Fusion is an agitation so extreme, that the relative positions of the units are changeable with ease. When, finally, at a still higher temperature, the liquid is transformed into a gas, the explanation is, that the oscillations are so violent as to overbalance that force which held the units in close contiguity�so violent as to keep the units at those relatively great distances apart to which they are now thrown. Since the establishment of the correlation between heat and motion first gave probability to this hypothesis, it has been receiving various confirmations�especially by recent remarkable discoveries respecting the absorption of heat by gases. Prof. Tyndall has proved that the quantity of heat which any gas takes up from rays of heat passing through it, has a distinct relation to the complexity of the atoms composing the gas. The simple gases abstract but little; the gases composed of binary atoms abstract, say in round numbers, a hundred times as much; while the gases composed of atoms severally containing three, four, or more simple ones, abstract something like a thousand times as much. These differences Prof. Tyndall regards as due to the different abilities of the different atoms to take up, in the increase of their own undulations, those undulations of the ethereal medium which constitute heat�an interpretation in perfect accordance with the late results of spectrum-analysis; which go to show that the various elementary atoms, when in an aeriform state, intercept those luminiferous vibrations of the ether which are in unison or harmony with their own. And since it holds of solid as of gaseous matters, that those consisting of simple units transmit heat far more readily than those consisting of complex units; we get confirmation of the inference otherwise reached, that the units of matter in whatever state of aggregation they exist, oscillate, and that variations of temperature are variations in the amounts of their oscillations. Proceeding on this hypothesis, which it would be out of place here to defend at greater length, we have now to note how the re-arrangement of parts is facilitated by these insensible vibrations, as we have seen it to be by sensible vibrations. One or two cases of physical re-arrangement may first be noted. When some molten glass is dropped into water, and when its outside is thus, by sudden solidification, prevented from partaking in that contraction which the subsequent cooling of the inside tends to produce; the units are left in such a state of tension, that the mass flies into fragments if a small portion of it be broken off. But now, if this mass be kept for a day or two at a considerable heat, though a heat not sufficient to alter its form or produce any sensible diminution of hardness, this extreme brittleness disappears: the component particles being thrown into greater agitation, the tensile forces are enabled to re-arrange them into a state of equilibrium. An illustration of another order is furnished by the subsidence of fine precipitates. These sink down very slowly from solutions that are cold; while warm solutions deposit them with comparative rapidity. That is to say, an increase of molecular vibration throughout the mass, allows the suspended particles to separate more readily from the particles of fluid. The effect of heat on chemical re-arrangement is so familiar, that examples are scarcely needed. Be the substances concerned gaseous, liquid, or solid, it equally holds that their chemical unions and disunions are aided by a rise of temperature. Affinities which do not suffice to effect the re-arrangement of mixed units that are in a state of feeble agitation, suffice to effect it when the agitation is raised to a certain point. And so long as this molecular motion is not great enough to prevent those chemical cohesions which the affinities tend to produce, increase of it gives increased facility of chemical re-arrangement. This condition, in common with the preceding ones, is fulfilled most completely in those aggregates which exhibit the phenomena of Evolution in the highest degree; namely, the organic aggregates. And throughout the various orders and states of these, we find minor contrasts showing the relation between amount of molecular vibration and activity of the metamorphic changes. Such contrasts may be arranged in the several following groups. Speaking generally, the phenomena of Evolution are manifested in a much lower degree throughout the vegetal kingdom than throughout the animal kingdom; and speaking generally, the heat of plants is less than that of animals. Among plants themselves, the organic changes vary in rate as the temperature varies. Though light is the agent which effects those molecular changes causing vegetal growth, yet we see that in the absence of heat, such changes are not effected: in winter there is enough light, but the heat being insufficient, plant-life is suspended. That this is the sole cause of the suspension, is proved by the fact that at the same season, plants contained in hot-houses, where they receive even a smaller amount of light, go on producing leaves and flowers. A comparison of the several divisions of the animal kingdom with each other, shows among them parallel relations. Regarded as a whole, vertebrate animals are higher in temperature than invertebrate ones; and they are as a whole higher in organic activity and development. Between subdivisions of the vertebrata themselves, like differences in the state of molecular vibration, accompany like differences in the degree of evolution. The least heterogeneous of the vertebrata are the fishes; and in most cases, the heat of fishes is nearly the same as that of the water in which they swim: only some of them being decidedly warmer. Though we habitually speak of reptiles as cold-blooded; and though they have not much more power than fishes of maintaining a temperature above that of their medium; yet since their medium (which is, in the majority of cases, the air of warm climates) is on the average warmer than the medium inhabited by fishes, the temperature of the class of reptiles is higher than that of the class of fishes; and we see in them a correspondingly higher complexity. The much more active molecular agitation in mammals and birds, is associated with a considerably greater multiformity of structure and a very much greater vivacity. And though birds, which are hotter blooded than mammals, do not show us a greater multiformity; yet, judging from their apparently greater locomotive powers, we may infer more rapid functional changes, which, equally with structural changes, imply molecular re-arrangement. The most instructive contrasts, however, are those presented by the same organic aggregates at different temperatures. Thus we see that ova undergoing development, must be kept more or less warm�that in the absence of a certain molecular vibration, the re-arrangement of parts does not go on. We see, again, that in hybernating animals, loss of heat carried to a particular point, results in extreme retardation of the organic changes. Yet further, we see that in animals which do not hybernate, as in man, prolonged exposure to extreme cold, produces an irresistible tendency to sleep (which implies a lowering of the functional activity); and then, if the abstraction of heat continues, this sleep ends in death, or arrest of functional activity. Lastly, we see that when the temperature is lowered till the contained water solidifies, there is a stoppage not only of those molecular re-arrangements which constitute life and development, but also of those molecular re-arrangements which constitute decomposition. Evidently then, both sensible and insensible agitations among the components of an aggregate, facilitate any re-distributions to which there may be a tendency. When that rhythmic change in the relative positions of the units which constitutes vibration, is considerable, the relative positions of the units more readily undergo permanent changes through the action of incident forces. * * * * * § 104. These special conditions to Evolution, are clearly but different forms of one general condition. The abstract proposition, that a permanent re-arrangement of units is possible only when they have neither absolute immobility nor absolute mobility with respect to each other, we saw to be practically equivalent to the proposition, that extreme cohesion and extreme want of cohesion among the units are unfavourable to Evolution. Be this cohesion or want of cohesion that which physically characterizes the matter as we ordinarily know it; be it that cohesion or want of cohesion distinguished as chemical; or be it that cohesion or want of cohesion consequent on the degree of molecular vibration; matters not, in so far as the general conclusion is concerned. Inductively as well as deductively, we find that the genesis of such permanent changes in the relative positions of parts, as can be effected without destroying the continuity of the aggregate, implies a medium stability in the relative positions of the parts: be this stability physical, chemical, or that which varies with the state of agitation. And as might be anticipated _à priori_, it is proved _à posteriori_, that this re-arrangement of parts goes on most actively in those aggregates whose units are moderately influenced by all these forces which affect their mobility. Here also may properly be added the remark, that to effect these changes in the relative positions of parts, the incident forces must range within certain limits. It is wholly a question of the ratio between those agencies which hold the units in their positions, and those agencies which tend to change their positions. Having given intensities in the powers that oppose re-arrangement, there need proportionate intensities in the powers that work re-arrangement. As there must be neither too great nor too little cohesion; so there must be neither too little nor too great amounts of the influences antagonistic to cohesion. While a slight mechanical strain produces no lasting alterations in the relative positions of parts, an excessive mechanical strain causes disruption�causes so great an alteration in the relative positions of parts as to destroy their union in one aggregate. While a very feeble chemical affinity brought to bear on the associated units, fails to work any re-arrangement of them; a chemical affinity that is extremely intense, destroys their structural continuity, and reduces such complex re-arrangements as have been made, to comparatively simple ones. And while in the absence of adequate thermal undulations, the units have not freedom enough to obey the re-arranging influences impressed on them, the incidence of violent thermal undulations gives them such extreme freedom that they break their connexions, and the aggregate lapses into a liquid or gaseous form. On the one hand, therefore, the statical forces which uphold the state of aggregation must not be so great as wholly to prevent those changes of relative position among the units which the dynamical forces tend to produce; and, on the other hand, the dynamical forces must not be so great as wholly to overcome the statical forces, and destroy the state of aggregation. The excess of the dynamical forces must be sufficient to produce Evolution, but not sufficient to produce Dissolution. * * * * * § 105. And now we are naturally introduced to a consideration which, though it does not come quite within the limits of this chapter as expressed in its title, may yet be more conveniently dealt with here than elsewhere. Hitherto we have studied the metamorphosis of things, only as exhibited in the changed distribution of matter. It remains to look at it as exhibited in the changed distribution of motion. The definition of Evolution in its material aspect, has to be supplemented by a definition of Evolution in its dynamical aspect. On inquiring the source of the sensible motions seen in every kind of Evolution, we find them all traceable to insensible motions; either of that tangible matter which we perceive as constituting the objects around us, or of that intangible matter which we infer as occupying space. A brief reconsideration of the facts will make this obvious. The formation of celestial bodies, supposing it caused by the union of dispersed units, must, from the beginning, have involved a diminished motion of these units with respect to each other; and such motion as each resulting body acquired, must previously have existed in the motions of its units. If concrete matter has arisen by the aggregation of diffused matter, then concrete motion has arisen by the aggregation of diffused motion. That which now exists as the movement of masses, implies the cessation of an equivalent molecular movement. Those transpositions of matter which constitute geological changes, are clearly referable to the same source. As before shown, the denudation of lands and deposit of new strata, are effected by water in the course of its descent from the clouds to the sea, or during the arrest of those undulations produced on it by winds; and, as before shown, the elevation of water to the height whence it fell, is due to solar heat, as is also the genesis of those aerial currents which drift it about when evaporated and agitate its surface when condensed. That is to say, the molecular motion of the etherial medium, is transformed into the motion of gases, thence into the motion of liquids, and thence into the motion of solids�stages in each of which, successively, a certain amount of molecular motion is lost and an equivalent motion of masses produced. If we seek the origin of vital movements, we soon reach a like conclusion. The actinic rays issuing from the Sun, enable the plant to reduce special elements existing in gaseous combination around it, to a solid form,�enable the plant, that is, to grow and carry on its functional changes. And since growth, equally with circulation of sap, is a mode of sensible motion, while those rays which have been expended in generating it consist of insensible motions, we have here, too, a transformation of the kind alleged. Animals, derived as their forces are, directly or indirectly, from plants, carry this transformation a step further. The automatic movements of the viscera, together with the voluntary movements of the limbs and body at large, arise at the expense of certain molecular movements throughout the nervous and muscular tissues; and these originally arose at the expense of certain other molecular movements propagated by the Sun to the Earth; so that both the structural and functional motions which organic Evolution displays, are motions of aggregates generated by the arrested motions of units. Even with the aggregates of these aggregates the same rule holds. For among associated men, the progress is ever towards a merging of individual actions in the actions of corporate bodies. An undeveloped society is composed of members between whom there is little concert: they fulfil their several wants without mutual aid; and only on occasions of aggression or defence, act together�occasions on which their combination, small as it is in extent, frequently fails because it is so imperfect. In the course of civilization, however, co-operation becomes step by step more decided. As tribes grow into nations, there result larger aggregates, each of which has a joint political life�a common policy and movement with respect to other aggregates. Legislative and administrative progress, involves an increase in the number of restraining agents brought into united and simultaneous action. In military organization, we see an advance from small undisciplined hordes of armed men, to vast bodies of regular troops, so drilled that the movements of the units are entirely subordinated to the movements of the masses. Nor does industrial development fail to show parallel changes. Beginning with independent workers, and passing step by step to the employment of several assistants by one master, there has ever been, and still is, a progress towards the co-operation of greater masses of labourers in the same establishment, and towards the union of capitalists into more numerous and larger companies: in both which kinds of combined action, equivalent amounts of individual action disappear. Under all its forms, then, Evolution, considered dynamically, is a decrease in the relative movements of parts, and an increase in the relative movements of wholes�using the words parts and wholes in their widest senses. From the infinitesimal motions of those infinitesimal units composing the etherial medium, to the larger though still insensible motions of the larger though still insensible units composing gaseous, fluid, and solid matter, and thence to the visible motions of visible aggregates, the advance is from molecular motion to the motion of masses. But now what of the converse process? If the foregoing proposition is true, then a change from the motion of masses to molecular motion, is the opposite to Evolution�is Dissolution. Is this so? Of inorganic dissolution we have but little experience; or at least, our experience of it is on too small a scale to exhibit it as the antithesis of Evolution. We know, indeed, that when solids are dissolved in liquids, their dissolution implies increased movements of their units, at the expense of diminished movements among the units of their solvents; and we know that when a liquid evaporates, its dissipation or dissolution similarly implies greater relative movements of the units, and decrease of such combined movement as they before had. But since these small aggregates of inorganic matter, do not exhibit the phenomena of Evolution, save in the form of simple integration; so they do not exhibit the phenomena of dissolution, save in the form of simple disintegration. Of organic dissolution, however, our experience suffices to show that it is a decrease of combined motion, and an increase in the motion of uncombined parts. The gradual cessation of functions, vegetal or animal, is a cessation of the sensible movements of fluids and solids. In animals, the impulsions of the body from place to place, first cease; presently the limbs cannot be stirred; later still the respiratory actions stop; finally the heart becomes stationary, and, with it, the circulating fluids. That is, the transformation of molecular motion into the motion of masses, comes to an end. What next takes place? We cannot say that sensible movements are transformed into insensible movements; for sensible movements no longer exist. Nevertheless, the process of decay involves an increase of insensible movements; since this is far greater in the gases generated by decomposition, than it is in the fluid-solid matters generating them. Indeed, it might be contended that as, during Dissolution, there is a change from the vibration of large compound atoms to the vibration of small and comparatively simple ones, the process is strictly antithetical to that of Evolution. In conformity with the now current conception lately explained, each of the highly complex chemical units composing an organic body, possesses a rhythmic movement�a movement in which its many component units jointly partake. When decomposition breaks up these highly complex atoms, and their constituents assume a gaseous form, there is both an increase of molecular motion implied by the diffusion, and a further increase implied by the resolving of such motions as the aggregate atoms possessed, into motions of their constituent atoms. So that in organic dissolution we have, first, an end put to that transformation of the motion of units into the motion of aggregates, which constitutes Evolution, dynamically considered; and we have also, though in a subtler sense, a transformation of the motion of aggregates into the motion of units. The formula equally applies to the dissolution of a society. When social ties, be they governmental or industrial, are destroyed, the combined actions of citizens lapse into uncombined actions. Those general forces which restrained individual doings, having disappeared, the only remaining restraints are those separately exercised by individuals on each other. There are no longer any of the joint operations by which men satisfy their wants; and, in so far as they can, they satisfy their wants by separate operations. That is to say, the movement of parts replaces the movement of wholes. Under its dynamical aspect then, Evolution, so far as we can trace it, is a change from molecular motion to the motion of masses; while Dissolution, so far as we can trace it, is a change from the motion of masses to molecular motion. * * * * * § 106. To these abstract definitions may be added concrete ones. Besides an integration of motions corresponding to the integration of masses, Evolution involves an increase in the multiformity of the motions, corresponding to the increase in the multiformity of the masses. If, contemplating it as materially displayed, we find Evolution to consist in the change from an indefinite, homogeneous distribution of parts to a definite, heterogeneous distribution of parts; then, contemplating Evolution as dynamically displayed, it consists in a change from indefinite, homogeneous motions to definite, heterogeneous motions. This change takes place under the form of an increased variety of rhythms. We have already seen that all motion is rhythmical, from the infinitesimal vibrations of infinitesimal molecules, up to those vast oscillations between perihelion and aphelion performed by vast celestial bodies. And as the contrast between these extreme cases suggests, a multiplication of rhythms must accompany a multiplication in the degrees and modes of aggregation, and in the relations of the aggregated masses to incident forces. The degree or mode of aggregation will not, indeed, affect the rate or extent of rhythm where the incident force increases as the aggregate increases, which is the case with gravitation: here the only cause of variation in rhythm, is difference of relation to the incident forces; as we see in a pendulum, which, though unaffected in its movements by a change in the weight of the bob, alters its rate of oscillation when taken to the equator. But in all cases where the incident forces do not vary as the masses, every new order of aggregation initiates a new order of rhythm: witness the conclusion drawn from the recent researches into radiant heat and light, that the atoms of different gases have different rates of undulation. So that increased multiformity in the arrangement of matter, has necessarily generated increased multiformity of rhythm; both through increased variety in the sizes and forms of aggregates, and through increased variety in their relations to the forces which move them. The advancing heterogeneity of motion, thus entailed by advancing heterogeneity in the distribution of matter, does not, however, end here. Besides multiplication in the kinds of rhythm, there is a progressing complexity in their combinations. As there arise wholes composed of heterogeneous parts, each of which has its own rhythm, there must arise compound rhythms proportionately heterogeneous. We before saw that this is visible even in the cyclical perturbations of the Solar System�simple as are its structure and movements. And when we contemplate highly-developed organic bodies, we find the complication of rhythms so great, that it defies definite analysis, and from moment to moment works out in resultants that are incalculable. This conception of Evolution forms a needful complement to that on which we have hitherto chiefly dwelt. To comprehend the phenomena in their entirety, we have to contemplate both the increasing multiformity of parts, and the increasing multiformity of the actions simultaneously assumed by these parts. At the same time that there are differentiations and integrations of the matter, there are differentiations and integrations of its motion. And this increasingly heterogeneous distribution of motion, constitutes Evolution _functionally_ considered; as distinguished from that increasingly heterogeneous distribution of matter, which constitutes Evolution _structurally_ considered. While of course, Dissolution exhibits the transition to a reverse distribution, both structurally and functionally. * * * * * § 107. One other preliminary must be set down. When specifically interpreting Evolution, we shall have to consider under their concrete forms, the various resolutions of force that follow its conflict with matter. Here it will be well to contemplate such resolutions under their most general or abstract forms. Any incident force is primarily resolvable or divisible into its _effective_ and _non-effective_ portions. In mechanical impact, the entire momentum of a striking body is never communicated to the body struck: even under those most favourable conditions in which the striking body loses all its sensible motion, there still remains with it a portion of the original momentum, under the shape of that insensible motion produced among its particles by the collision. Of the light or heat falling on any mass, a part, more or less considerable, is reflected; and only the remaining part works molecular changes in the mass. Next it is to be noted that the effective force, is itself divisible into the _temporarily effective_ and the _permanently effective_. The units of an aggregate acted on, may undergo those rhythmical changes of relative position which constitute increased vibration, as well as other changes of relative position which are not from instant to instant neutralized by opposite ones. Of these, the first, disappearing in the shape of radiating undulations, leave the molecular arrangement as it originally was; while the second conduce to that re-arrangement constituting Evolution. Yet a further distinction has to be made. The permanently effective force works out changes of relative position of two kinds�the _insensible_ and the _sensible_. The insensible transpositions among the units are those constituting what we call chemical composition and decomposition; and it is these which we recognize as the qualitative differences that arise in an aggregate. The sensible transpositions are such as result when certain of the units, instead of being put into different relations with their immediate neighbours, are carried away from them and united together elsewhere. Concerning these divisions and sub-divisions of any force affecting an aggregate, the fact which it chiefly concerns us to observe, is, that they are complementary to each other. Of the whole incident force, the effective must be that which remains after deducting the non-effective. The two parts of the effective force must vary inversely as each other: where much of it is temporarily effective, little of it can be permanently effective; and _vice versâ_. Lastly, the permanently effective force, being expended in working both the insensible re-arrangements which constitute chemical modification, and the sensible re-arrangements which result in structure, must generate of either kind an amount that is great or small in proportion as it has generated a small or great amount of the other. * * * * * § 108. And now of the propositions grouped together in this chapter, it may be well to remark that, in common with foregoing propositions, they have for their warrant the fundamental truth with which our synthesis set out. That when a given force falls on any aggregate, the permanently effective part of it will produce an amount of re-arrangement that is inversely proportional to the cohesion existing among the parts of the aggregate, is demonstrable _à priori_. Whether the cohesion be mechanical or chemical, or whether it be temporarily modified by a changed degree of molecular vibration, matters not to the general conclusion. In all these cases it follows from the persistence of force, that in proportion as the units offer great resistance to alteration in their relative positions, must the amount of motion which a given force impresses on them be small. The proposition is in fact an identical one; since the cohesion of units is known to be great or small, only by the smallness or greatness of the re-arrangement which a given incident force produces. The continuity of motion we found to be a corollary from the persistence of force; and from the continuity of motion, it follows that molecular motion and the motion of masses can be respectively increased only at each other�s expense. Hence, if in the course of Evolution there arises a motion of masses that did not before exist, there must have ceased an equivalent molecular motion; and if in the course of Dissolution there arises a molecular motion that did not before exist, an equivalent motion of masses must have disappeared. Equally necessary is the conclusion that the several results of the force expended on any aggregate, must be complementary to each other. It is not less obviously a corollary from the persistence of force, that of the whole incident force the effective is the part which remains after deducting the non-effective; than it is, that of the effective force, whatever does not work permanent results, works temporary results, and that such amount of the permanently effective force as is not absorbed in producing insensible re-arrangements, will produce sensible re-arrangements. CHAPTER XIII. THE INSTABILITY OF THE HOMOGENEOUS.[16] § 109. Thus far our steps towards the interpretation of Evolution have been preparatory. We have dealt with the factors of the process, rather than the process itself. After the ultimate truth that, Matter, Motion, and Force, as cognizable by human intelligence, can neither come into existence nor cease to exist, we have considered certain other ultimate truths concerning the modes in which Force and Motion are manifested during the changes they produce in Matter. Now we have to study the changes themselves. We have here to analyze that re-arrangement in the parts of Matter, which occurs under the influence of Force, that is unchangeable in quantity though changeable in form, through the medium of Motion taking place rhythmically along lines of least resistance. The proposition which comes first in logical order, is, that some re-arrangement must result; and this proposition may be best dealt with under the more specific shape, that the condition of homogeneity is a condition of unstable equilibrium. First, as to the meaning of the terms; respecting which some readers may need explanation. The phrase _unstable equilibrium_ is one used in mechanics to express a balance of forces of such kind, that the interference of any further force, however minute, will destroy the arrangement previously subsisting; and bring about a totally different arrangement. Thus, a stick poised on its lower end is in unstable equilibrium: however exactly it may be placed in a perpendicular position, as soon as it is left to itself it begins, at first imperceptibly, to lean on one side, and with increasing rapidity falls into another attitude. Conversely, a stick suspended from its upper end is in stable equilibrium: however much disturbed, it will return to the same position. The proposition is, then, that the state of homogeneity, like the state of the stick poised on its lower end, is one that cannot be maintained. Let us take a few illustrations. Of mechanical ones the most familiar is that of the scales. If they be accurately made, and not clogged by dirt or rust, it is impossible to keep a pair of scales perfectly balanced: eventually one scale will descend and the other ascend�they will assume a heterogeneous relation. Again, if we sprinkle over the surface of a fluid a number of equal-sized particles, having an attraction for each other, they will, no matter how uniformly distributed, by and by concentrate irregularly into one or more groups. Were it possible to bring a mass of water into a state of perfect homogeneity�a state of complete quiescence, and exactly equal density throughout�yet the radiation of heat from neighbouring bodies, by affecting differently its different parts, would inevitably produce inequalities of density and consequent currents; and would so render it to that extent heterogeneous. Take a piece of red-hot matter, and however evenly heated it may at first be, it will quickly cease to be so: the exterior, cooling faster than the interior, will become different in temperature from it. And the lapse into heterogeneity of temperature, so obvious in this extreme case, takes place more or less in all cases. The action of chemical forces supplies other illustrations. Expose a fragment of metal to air or water, and in course of time it will be coated with a film of oxide, carbonate, or other compound: that is�its outer parts will become unlike its inner parts. Usually the heterogeneity produced by the action of chemical forces on the surfaces of masses, is not striking; because the changed portions are soon washed away, or otherwise removed. But if this is prevented, comparatively complex structures result. Quarries of trap-rock contain some striking examples. Not unfrequently a piece of trap may be found reduced, by the action of the weather, to a number of loosely-adherent coats, like those of an onion. Where the block has been quite undisturbed, we may trace the whole series of these, from the angular, irregular outer one, through successively included ones in which the shape becomes gradually rounded, ending finally in a spherical nucleus. On comparing the original mass of stone with this group of concentric coats, each of which differs from the rest in form, and probably in the state of decomposition at which it has arrived, we get a marked illustration of the multiformity to which, in lapse of time, a uniform body may be brought by external chemical action. The instability of the homogeneous is equally seen in the changes set up throughout the interior of a mass, when it consists of units that are not rigidly bound together. The atoms of a precipitate never remain separate, and equably distributed through the fluid in which they make their appearance. They aggregate either into crystalline grains, each containing an immense number of atoms, or they aggregate into flocculi, each containing a yet larger number; and where the mass of fluid is great, and the process prolonged, these flocculi do not continue equidistant, but break up into groups. That is to say, there is a destruction of the balance at first subsisting among the diffused particles, and also of the balance at first subsisting among the groups into which these particles unite. Certain solutions of non-crystalline substances in highly volatile liquids, exhibit in the course of half an hour a whole series of changes that are set up in the alleged way. If for example a little shell-lac-varnish (made by dissolving shell-lac in coal-naphtha until it is of the consistence of cream) be poured on a piece of paper, the surface of the varnish will shortly become marked by polygonal divisions, which, first appearing round the edge of the mass, spread towards its centre. Under a lense these irregular polygons of five or more sides, are seen to be severally bounded by dark lines, on each side of which there are light-coloured borders. By the addition of matter to their inner edges, the borders slowly broaden, and thus encroach on the areas of the polygons; until at length there remains nothing but a dark spot in the centre of each. At the same time the boundaries of the polygons become curved; and they end by appearing like spherical sacs pressed together; strangely simulating (but only simulating) a group of nucleated cells. Here a rapid loss of homogeneity is exhibited in three ways:�First, in the formation of the film, which is the seat of these changes; second, in the formation of the polygonal sections into which this film divides; and third, in the contrast that arises between the polygonal sections round the edge, where they are small and early formed, and those in the centre which are larger and formed later. The instability thus variously illustrated is obviously consequent on the fact, that the several parts of any homogeneous aggregation are necessarily exposed to different forces�forces that differ either in kind or amount; and being exposed to different forces they are of necessity differently modified. The relations of outside and inside, and of comparative nearness to neighbouring sources of influence, imply the reception of influences that are unlike in quantity or quality, or both; and it follows that unlike changes will be produced in the parts thus dissimilarly acted upon. For like reasons it is manifest that the process must repeat itself in each of the subordinate groups of units that are differentiated by the modifying forces. Each of these subordinate groups, like the original group, must gradually, in obedience to the influences acting upon it, lose its balance of parts�must pass from a uniform into a multiform state. And so on continuously. Whence indeed it is clear that not only must the homogeneous lapse into the non-homogeneous, but that the more homogeneous must tend ever to become less homogeneous. If any given whole, instead of being absolutely uniform throughout, consist of parts distinguishable from each other�if each of these parts, while somewhat unlike other parts, is uniform within itself; then, each of them being in unstable equilibrium, it follows that while the changes set up within it must render it multiform, they must at the same time render the whole more multiform than before. The general principle, now to be followed out in its applications, is thus somewhat more comprehensive than the title of the chapter implies. No demurrer to the conclusions drawn, can be based on the ground that perfect homogeneity nowhere exists; since, whether that state with which we commence be or be not one of perfect homogeneity, the process must equally be towards a relative heterogeneity. * * * * * § 110. The stars are distributed with a three-fold irregularity. There is first the marked contrast between the plane of the milky way and other parts of the heavens, in respect of the quantities of stars within given visual areas. There are secondary contrasts of like kind in the milky way itself, which has its thick and thin places; as well as throughout the celestial spaces in general, which are much more closely strewn in some regions than in others. And there is a third order of contrasts produced by the aggregation of stars into small clusters. Besides this heterogeneity of distribution of the stars in general, considered without distinction of kinds, a further such heterogeneity is disclosed when they are classified by their differences of colour, which doubtless answer to differences of physical constitution. While the yellow stars are found in all parts of the heavens, the red and blue stars are not so: there are wide regions in which both red and blue stars are rare; there are regions in which the blue occur in considerable numbers, and there are other regions in which the red are comparatively abundant. Yet one more irregularity of like significance is presented by the nebulæ,�aggregations of matter which, whatever be their nature, most certainly belong to our sidereal system. For the nebulæ are not dispersed with anything like uniformity; but are abundant around the poles of the galactic circle and rare in the neighbourhood of its plane. No one will expect that anything like a definite interpretation of this structure can be given on the hypothesis of Evolution, or any other hypothesis. The most that can be looked for is some reason for thinking that irregularities, not improbably of these kinds, would occur in the course of Evolution, supposing it to have taken place. Any one called on to assign such reason might argue, that if the matter of which stars and all other celestial bodies consist, be assumed to have originally existed in a diffused form throughout a space far more vast even than that which our sidereal system now occupies, the instability of the homogeneous would negative its continuance in that state. In default of an absolute balance among the forces with which the dispersed particles acted on each other (which could not exist in any aggregation having limits) he might show that motion and consequent changes of distribution would necessarily result. The next step in the argument would be that in matter of such extreme tenuity and feeble cohesion there would be motion towards local centres of gravity, as well as towards the general centre of gravity; just as, to use a humble illustration, the particles of a precipitate aggregate into flocculi at the same time that they sink towards the earth. He might urge that in the one case as in the other, these smallest and earliest local aggregations must gradually divide into groups, each concentrating to its own centre of gravity,�a process which must repeat itself on a larger and larger scale. In conformity with the law that motion once set up in any direction becomes itself a cause of subsequent motion in that direction, he might further infer that the heterogeneities thus set up would tend ever to become more pronounced. Established mechanical principles would justify him in the conclusion that the motions of these irregular masses of slightly aggregated nebular matter towards their common centre of gravity must be severally rendered curvelinear, by the resistance of the medium from which they were precipitated; and that in consequence of the irregularities of distribution already set up, such conflicting curvelinear motions must, by composition of forces, end in a rotation of the incipient sidereal system. He might without difficulty show that the resulting centrifugal force must so far modify the process of general aggregation, as to prevent anything like uniform distribution of the stars eventually formed�that there must arise a contrast such as we see between the galactic circle and the rest of the heavens. He might draw the further not unwarrantable inference, that differences in the process of local concentration would probably result from the unlikeness between the physical conditions existing around the general axis of rotation and those existing elsewhere. To which he might add, that after the formation of distinct stars, the ever-increasing irregularities of distribution due to continuance of the same causes would produce that patchiness which distinguishes the heavens in both its larger and smaller areas. We need not here however commit ourselves to such far-reaching speculations. For the purposes of the general argument it is needful only to show, that any finite mass of diffused matter, even though vast enough to form our whole sidereal system, could not be in stable equilibrium; that in default of absolute sphericity, absolute uniformity of composition, and absolute symmetry of relation to all forces external to it; its concentration must go on with an ever-increasing irregularity; and that thus the present aspect of the heavens is not, so far as we can judge, incongruous with the hypothesis of a general evolution consequent on the instability of the homogeneous. Descending to that more limited form of the nebular hypothesis which regards the solar system as having resulted by gradual concentration; and assuming this concentration to have advanced so far as to produce a rotating spheroid of nebulous matter; let us consider what further consequence the instability of the homogeneous necessitates. Having become oblate in figure, unlike in the densities of its centre and surface, unlike in their temperatures, and unlike in the velocities with which its parts move round their common axis, such a mass can no longer be called homogeneous; and therefore any further changes exhibited by it as a whole, can illustrate the general law, only as being changes from a more homogeneous to a less homogeneous state. Changes of this kind are to be found in the transformations of such of its parts as are still homogeneous within themselves. If we accept the conclusion of Laplace, that the equatorial portion of this rotating and contracting spheroid will at successive stages acquire a centrifugal force great enough to prevent any nearer approach to the centre round which it rotates, and will so be left behind by the inner parts of the spheroid in its still-continued contraction; we shall find, in the fate of the detached ring, a fresh exemplification of the principle we are following out. Consisting of gaseous matter, such a ring, even if absolutely uniform at the time of its detachment, cannot continue so. To maintain its equilibrium there must be an almost perfect uniformity in the action of all external forces upon it (almost, we must say, because the cohesion, even of extremely attenuated matter, might suffice to neutralize very minute disturbances); and against this the probabilities are immense. In the absence of equality among the forces, internal and external, acting on such a ring, there must be a point or points at which the cohesion of its parts is less than elsewhere�a point or points at which rupture will therefore take place. Laplace assumed that the ring would rupture at one place only; and would then collapse on itself. But this is a more than questionable assumption�such at least I know to be the opinion of an authority second to none among those now living. So vast a ring, consisting of matter having such feeble cohesion, must break up into many parts. Nevertheless, it is still inferrable from the instability of the homogeneous, that the ultimate result which Laplace predicted would take place. For even supposing the masses of nebulous matter into which such a ring separated, were so equal in their sizes and distances as to attract each other with exactly equal forces (which is infinitely improbable); yet the unequal action of external disturbing forces would inevitably destroy their equilibrium�there would be one or more points at which adjacent masses would begin to part company. Separation once commenced, would with ever-accelerating speed lead to a grouping of the masses. And obviously a like result would eventually take place with the groups thus formed; until they at length aggregated into a single mass. Leaving the region of speculative astronomy, let us consider the Solar System as it at present exists. And here it will be well, in the first place, to note a fact which may be thought at variance with the foregoing argument�namely, the still-continued existence of Saturn�s rings; and especially of the internal nebulous ring lately discovered. To the objection that the outer rings maintain their equilibrium, the reply is that the comparatively great cohesion of liquid or solid substance would suffice to prevent any slight tendency to rupture from taking effect. And that a nebulous ring here still preserves its continuity, does not really negative the foregoing conclusion; since it happens under the quite exceptional influence of those symmetrically disposed forces which the external rings exercise on it. Here indeed it deserves to be noted, that though at first sight the Saturnian system appears at variance with the doctrine that a state of homogeneity is one of unstable equilibrium, it does in reality furnish a curious confirmation of this doctrine. For Saturn is not quite concentric with his rings; and it has been proved mathematically that were he and his rings concentrically situated, they could not remain so: the homogeneous relation being unstable, would gravitate into a heterogeneous one. And this fact serves to remind us of the allied one presented throughout the whole Solar System. All orbits, whether of planets or satellites, are more or less excentric�none of them are perfect circles; and were they perfect circles they would soon become ellipses. Mutual perturbations would inevitably generate excentricities. That is to say, the homogeneous relations would lapse into heterogeneous ones. * * * * * § 111. Already so many references have been made to the gradual formation of a crust over the originally incandescent Earth, that it may be thought superfluous again to name it. It has not, however, been before considered in connexion with the general principle under discussion. Here then it must be noted as a necessary consequence of the instability of the homogeneous. In this cooling down and solidification of the Earth�s surface, we have one of the simplest, as well as one of the most important, instances, of that change from a uniform to a multiform state which occurs in any mass through exposure of its different parts to different conditions. To the differentiation of the Earth�s exterior from its interior thus brought about, we must add one of the most conspicuous differentiations which the exterior itself afterwards undergoes, as being similarly brought about. Were the conditions to which the surface of the Earth is exposed, alike in all directions, there would be no obvious reason why certain of its parts should become permanently unlike the rest. But being unequally exposed to the chief external centre of force�the Sun�its main divisions become unequally modified: as the crust thickens and cools, there arises that contrast, now so decided, between the polar and equatorial regions. Along with these most marked physical differentiations of the Earth, which are manifestly consequent on the instability of the homogeneous, there have been going on numerous chemical differentiations, admitting of similar interpretation. Without raising the question whether, as some think, the so-called simple substances are themselves compounded of unknown elements (elements which we cannot separate by artificial heat, but which existed separately when the heat of the Earth was greater than any which we can produce),�without raising this question, it will suffice the present purpose to show how, in place of that comparative homogeneity of the Earth�s crust, chemically considered, which must have existed when its temperature was high, there has arisen, during its cooling, an increasing chemical heterogeneity: each element or compound, being unable to maintain its homogeneity in presence of various surrounding affinities, having fallen into heterogeneous combinations. Let us contemplate this change somewhat in detail. There is every reason to believe that at an extreme heat, the bodies we call elements cannot combine. Even under such heat as can be generated artificially, some very strong affinities yield; and the great majority of chemical compounds are decomposed at much lower temperatures. Whence it seems not improbable that, when the Earth was in its first state of incandescence, there were no chemical combinations at all. But without drawing this inference, let us set out with the unquestionable fact that the compounds which can exist at the highest temperatures, and which must therefore have been the first formed as the Earth cooled, are those of the simplest constitutions. The protoxides�including under that head the alkalies, earths, &c.�are, as a class, the most fixed compounds known: the majority of them resisting decomposition by any heat we can generate. These, consisting severally of one atom of each component element, are combinations of the simplest order�are but one degree less homogeneous than the elements themselves. More heterogeneous than these, more decomposable by heat, and therefore later in the Earth�s history, are the deutoxides, tritoxides, peroxides, &c.; in which two, three, four, or more atoms of oxygen are united with one atom of metal or other base. Still less able to resist heat, are the salts; which present us with compound atoms each made up of five, six, seven, eight, ten, twelve, or more atoms, of three, if not more, kinds. Then there are the hydrated salts, of a yet greater heterogeneity, which undergo partial decomposition at much lower temperatures. After them come the further-complicated supersalts and double salts, having a stability again decreased; and so throughout. After making a few unimportant qualifications demanded by peculiar affinities, I believe no chemist will deny it to be a general law of these inorganic combinations that, other things equal, the stability decreases as the complexity increases. And then when we pass to the compounds that make up organic bodies, we find this general law still further exemplified: we find much greater complexity and much less stability. An atom of albumen, for instance, consists of 482 ultimate atoms of five different kinds. Fibrine, still more intricate in constitution, contains in each atom, 298 atoms of carbon, 49 of nitrogen, 2 of sulphur, 228 of hydrogen, and 92 of oxygen�in all, 660 atoms; or, more strictly speaking�equivalents. And these two substances are so unstable as to decompose at quite moderate temperatures; as that to which the outside of a joint of roast meat is exposed. Possibly it will be objected that some inorganic compounds, as phosphuretted hydrogen and chloride of nitrogen, are more decomposable than most organic compounds. This is true. But the admission may be made without damage to the argument. The proposition is not that _all_ simple combinations are more fixed than _all_ complex ones. To establish our inference it is necessary only to show that, as an _average fact_, the simple combinations can exist at a higher temperature than the complex ones. And this is wholly beyond question. Thus it is manifest that the present chemical heterogeneity of the Earth�s surface has arisen by degrees as the decrease of heat has permitted; and that it has shown itself in three forms�first, in the multiplication of chemical compounds; second, in the greater number of different elements contained in the more modern of these compounds; and third, in the higher and more varied multiples in which these more numerous elements combine. Without specifying them, it will suffice just to name the meteorologic processes eventually set up in the Earth�s atmosphere, as further illustrating the alleged law. They equally display that destruction of a homogeneous state which results from unequal exposure to incident forces. * * * * * § 112. Take a mass of unorganized but organizable matter�either the body of one of the lowest living forms, or the germ of one of the higher. Consider its circumstances. Either it is immersed in water or air, or it is contained within a parent organism. Wherever placed, however, its outer and inner parts stand differently related to surrounding agencies�nutriment, oxygen, and the various stimuli. But this is not all. Whether it lies quiescent at the bottom of the water or on the leaf of a plant; whether it moves through the water preserving some definite attitude; or whether it is in the inside of an adult; it equally results that certain parts of its surface are more exposed to surrounding agencies than other parts�in some cases more exposed to light, heat, or oxygen, and in others to the maternal tissues and their contents. Hence must follow the destruction of its original equilibrium. This may take place in one of two ways. Either the disturbing forces may be such as to overbalance the affinities of the organic elements, in which case there result those changes which are known as decomposition; or, as is ordinarily the case, such changes are induced as do not destroy the organic compounds, but only modify them: the parts most exposed to the modifying forces being most modified. To elucidate this, suppose we take a few cases. Note first what appear to be exceptions. Certain minute animal forms present us either with no appreciable differentiations or with differentiations so obscure as to be made out with great difficulty. In the Rhizopods, the substance of the jelly-like body remains throughout life unorganized, even to the extent of having no limiting membrane; as is proved by the fact that the thread-like processes protruded by the mass, coalesce on touching each other. Whether or not the nearly allied _Am�ba_, of which the less numerous and more bulky processes do not coalesce, has, as lately alleged, something like a cell-wall and a nucleus, it is clear that the distinction of parts is very slight; since particles of food pass bodily into the inside through any part of the periphery, and since when the creature is crushed to pieces, each piece behaves as the whole did. Now these cases, in which there is either no contrast of structure between exterior and interior or very little, though seemingly opposed to the above inference, are really very significant evidences of its truth. For what is the peculiarity of this division of the _Protozoa_? Its members undergo perpetual and irregular changes of form�they show no persistent relation of parts. What lately formed a portion of the interior is now protruded, and, as a temporary limb, is attached to some object it happens to touch. What is now a part of the surface will presently be drawn, along with the atom of nutriment sticking to it, into the centre of the mass. Either the relations of inner and outer have no permanent existence, or they are very slightly marked. But by the hypothesis, it is only because of their unlike positions with respect to modifying forces, that the originally like units of a living mass become unlike. We must therefore expect no established differentiation of parts in creatures which exhibit no established differences of position in their parts; and we must expect extremely little differentiation of parts where the differences of position are but little determined�which is just what we find. This negative evidence is borne out by positive evidence. When we turn from these proteiform specks of living jelly to organisms having an unchanging distribution of substance, we find differences of tissue corresponding to differences of relative position. In all the higher _Protozoa_, as also in the _Protophyta_, we meet with a fundamental differentiation into cell-membrane and cell-contents; answering to that fundamental contrast of conditions implied by the terms outside and inside. On passing from what are roughly classed as unicellular organisms, to the lowest of those which consist of aggregated cells, we equally observe the connection between structural differences and differences of circumstance. Negatively, we see that in the sponge, permeated throughout by currents of sea-water, the indefiniteness of organization corresponds with the absence of definite unlikeness of conditions: the peripheral and central portions are as little contrasted in structure as in exposure to surrounding agencies. While positively, we see that in a form like the _Thalassicolla_, which, though equally humble, maintains its outer and inner parts in permanently unlike circumstances, there is displayed a rude structure obviously subordinated to the primary relations of centre and surface: in all its many and important varieties, the parts exhibit a more or less concentric arrangement. After this primary modification, by which the outer tissues are differentiated from the inner, the next in order of constancy and importance is that by which some part of the outer tissues is differentiated from the rest; and this corresponds with the almost universal fact that some part of the outer tissues is more exposed to certain environing influences than the rest. Here, as before, the apparent exceptions are extremely significant. Some of the lowest vegetal organisms, as the _Hematococci_ and _Protococci_, evenly imbedded in a mass of mucus, or dispersed through the Arctic snow, display no differentiations of surface; the several parts of their surfaces being subjected to no definite contrasts of conditions. Ciliated spheres such as the _Volvox_ have no parts of their periphery unlike other parts; and it is not to be expected that they should have; since, as they revolve in all directions, they do not, in traversing the water, permanently expose any part to special conditions. But when we come to organisms that are either fixed, or while moving preserve definite attitudes, we no longer find uniformity of surface. The most general fact which can be asserted with respect to the structures of plants and animals, is, that however much alike in shape and texture the various parts of the exterior may at first be, they acquire unlikenesses corresponding to the unlikenesses of their relations to surrounding agencies. The ciliated germ of a Zoophyte, which, during its locomotive stage, is distinguishable only into outer and inner tissues, no sooner becomes fixed, than its upper end begins to assume a different structure from its lower. The disc-shaped _gemmæ_ of the _Marchantia_, originally alike on both surfaces, and falling at random with either side uppermost, immediately begin to develop rootlets on the under side, and _stomata_ on the upper side: a fact proving beyond question, that this primary differentiation is determined by this fundamental contrast of conditions. Of course in the germs of higher organisms, the metamorphoses immediately due to the instability of the homogeneous, are soon masked by those due to the assumption of the hereditary type. Such early changes, however, as are common to all classes of organisms, and so cannot be ascribed to heredity, entirely conform to the hypothesis. A germ which has undergone no developmental modifications, consists of a spheroidal group of homogeneous cells. Universally, the first step in its evolution is the establishment of a difference between some of the peripheral cells and the cells which form the interior�some of the peripheral cells, after repeated spontaneous fissions, coalesce into a membrane; and by continuance of the process this membrane spreads until it speedily invests the entire mass, as in mammals, or, as in birds, stops short of that for some time. Here we have two significant facts. The first is, that the primary unlikeness arises between the exterior and the interior. The second is, that the change which thus initiates development, does not take place simultaneously over the whole exterior; but commences at one place, and gradually involves the rest. Now these facts are just those which might be inferred from the instability of the homogeneous. The surface must, more than any other part, become unlike the centre, because it is most dissimilarly conditioned; and all parts of the surface cannot simultaneously exhibit this differentiation, because they cannot be exposed to the incident forces with absolute uniformity. One other general fact of like implication remains. Whatever be the extent of this peripheral layer of cells, or blastoderm as it is called, it presently divides into two layers�the serous and mucous; or, as they have been otherwise called, the ectoderm and the endoderm. The first of these is formed from that portion of the layer which lies in contact with surrounding agents; and the second of them is formed from that portion of the layer which lies in contact with the contained mass of yelk. That is to say, after the primary differentiation, more or less extensive, of surface from centre, the resulting superficial portion undergoes a secondary differentiation into inner and outer parts�a differentiation which is clearly of the same order with the preceding, and answers to the next most marked contrast of conditions. But, as already hinted, this principle, understood in the simple form here presented, supplies no key to the detailed phenomena of organic development. It fails entirely to explain generic and specific peculiarities; and indeed leaves us equally in the dark respecting those more important distinctions by which families and orders are marked out. Why two ova, similarly exposed in the same pool, should become the one a fish, and the other a reptile, it cannot tell us. That from two different eggs placed under the same hen, should respectively come forth a duckling and a chicken, is a fact not to be accounted for on the hypothesis above developed. We have here no alternative but to fall back upon the unexplained principle of hereditary transmission. The capacity possessed by an unorganized germ of unfolding into a complex adult, which repeats ancestral traits in the minutest details, and that even when it has been placed in conditions unlike those of its ancestors, is a capacity we cannot at present understand. That a microscopic portion of seemingly structureless matter should embody an influence of such kind, that the resulting man will in fifty years after become gouty or insane, is a truth which would be incredible were it not daily illustrated. Should it however turn out, as we shall hereafter find reason for suspecting, that these complex differentiations which adults exhibit, are themselves the slowly accumulated and transmitted results of a process like that seen in the first changes of the germ; it will follow that even those embryonic changes due to hereditary influence, are remote consequences of the alleged law. Should it be shown that the slight modifications wrought during life on each adult, and bequeathed to offspring along with all like preceding modifications, are themselves unlikenesses of parts that are produced by unlikenesses of conditions; then it will follow that the modifications displayed in the course of embryonic development, are partly direct consequences of the instability of the homogeneous, and partly indirect consequences of it. To give reasons for entertaining this hypothesis, however, is not needful for the justification of the position here taken. It is enough that the most conspicuous differentiations which incipient organisms universally display, correspond to the most marked differences of conditions to which their parts are subject. It is enough that the habitual contrast between outside and inside, which we _know_ is produced in inorganic masses by unlikeness of exposure to incident forces, is strictly paralleled by the first contrast that makes its appearance in all organic masses. It remains to point out that in the assemblage of organisms constituting a species, the principle enunciated is equally traceable. We have abundant materials for the induction that each species will not remain uniform, but is ever becoming to some extent multiform; and there is ground for the deduction that this lapse from homogeneity to heterogeneity is caused by the subjection of its members to unlike sets of circumstances. The fact that in every species, animal and vegetal, the individuals are never quite alike; joined with the fact that there is in every species a tendency to the production of differences marked enough to constitute varieties; form a sufficiently wide basis for the induction. While the deduction is confirmed by the familiar experience that varieties are most numerous and decided where, as among cultivated plants and domestic animals, the conditions of life depart from the original ones, most widely and in the most numerous ways. Whether we regard �natural selection� as wholly, or only in part, the agency through which varieties are established, matters not to the general conclusion. For as the survival of any variety proves its constitution to be in harmony with a certain aggregate of surrounding forces�as the multiplication of a variety and the usurpation by it of an area previously occupied by some other part of the species, implies different effects produced by such aggregate of forces on the two, it is clear that this aggregate of forces is the real cause of the differentiation�it is clear that if the variety supplants the original species in some localities but not in others, it does so because the aggregate of forces in the one locality is unlike that in the other�it is clear that the lapse of the species from a state of homogeneity to a state of heterogeneity arises from the exposure of its different parts to different aggregates of forces. * * * * * § 113. Among mental phenomena it is difficult to establish the alleged law without an analysis too extensive for the occasion. To show satisfactorily how states of consciousness, originally homogeneous, become heterogeneous through differences in the changes wrought by different forces, would require us carefully to trace out the organization of early experiences. Were this done it would become manifest that the development of intelligence, is, under one of its chief aspects, a dividing into separate classes, the unlike things previously confounded together in one class�a formation of sub-classes and sub-sub-classes, until the once confused aggregate of objects known, is resolved into an aggregate which unites extreme heterogeneity among its multiplied groups, with complete homogeneity among the members of each group. If, for example, we followed, through ascending grades of creatures, the genesis of that vast structure of knowledge acquired by sight, we should find that in the first stage, where eyes suffice for nothing beyond the discrimination of light from darkness, the only possible classifications of objects seen, must be those based on the manner in which light is obstructed, and the degree in which it is obstructed. We should find that by such undeveloped visual organs, the shadows traversing the rudimentary retina would be merely distinguished into those of the stationary objects which the creature passed during its own movements, and those of the moving objects which came near the creature while it was at rest; and that so the extremely general classification of visible things into stationary and moving, would be the earliest formed. We should find that whereas the simplest eyes are not fitted to distinguish between an obstruction of light caused by a small object close to, and an obstruction caused by a large object at some distance, eyes a little more developed must be competent to such a distinction; whence must result a vague differentiation of the class of moving objects, into the nearer and the more remote. We should find that such further improvements in vision as those which make possible a better estimation of distances by adjustment of the optic axes, and those which, through enlargement and subdivision of the retina, make possible the discrimination of shapes, must have the effects of giving greater definiteness to the classes already formed, and of sub-dividing these into smaller classes, consisting of objects less unlike. And we should find that each additional refinement of the perceptive organs, must similarly lead to a multiplication of divisions and a sharpening of the limits of each division. In every infant might be traced the analogous transformation of a confused aggregate of impressions of surrounding objects, not recognized as differing in their distances, sizes, and shapes, into separate classes of objects unlike each other in these and various other respects. And in the one case as in the other, it might be shown that the change from this first indefinite, incoherent and comparatively homogeneous consciousness, to a definite, coherent, and heterogeneous one, is due to differences in the actions of incident forces on the organism. These brief indications of what might be shown, did space permit, must here suffice. Probably they will give adequate clue to an argument by which each reader may satisfy himself that the course of mental evolution offers no exception to the general law. In further aid of such an argument, I will here add an illustration that is comprehensible apart from the process of mental evolution as a whole. It has been remarked (I am told by Coleridge, though I have been unable to find the passage) that with the advance of language, words which were originally alike in their meanings acquire unlike meanings�a change which he expresses by the formidable word �desynonymization.� Among indigenous words this loss of equivalence cannot be clearly shown; because in them the divergencies of meaning began before the dawn of literature. But among words that have been coined, or adopted from other languages, since the writing of books commenced, it is demonstrable. In the old divines, _miscreant_ is used in its etymological sense of _unbeliever_; but in modern speech it has entirely lost this sense. Similarly with _evil-doer_ and _malefactor_: exactly synonymous as these are by derivation, they are no longer synonymous by usage: by a _malefactor_ we now understand a convicted criminal, which is far from being the acceptation of _evil-doer_. The verb _produce_, bears in Euclid its primary meaning�to _prolong_, or _draw out_; but the now largely developed meanings of _produce_ have little in common with the meanings of _prolong_, or _draw out_. In the Church of England liturgy, an odd effect results from the occurrence of _prevent_ in its original sense�_to come before_, instead of its modern specialized sense�_to come before with the effect of arresting_. But the most conclusive cases are those in which the contrasted words consist of the same parts differently combined; as in _go under_ and _undergo_. We _go under_ a tree, and we _undergo_ a pain. But though, if analytically considered, the meanings of these expressions would be the same were the words transposed, habit has so far modified their meanings that we could not without absurdity speak of _undergoing_ a tree and _going under_ a pain. Countless such instances might be brought to show that between two words which are originally of like force, an equilibrium cannot be maintained. Unless they are daily used in exactly equal degrees, in exactly similar relations (against which there are infinite probabilities), there necessarily arises a habit of associating one rather than the other with particular acts, or objects. Such a habit, once commenced, becomes confirmed; and gradually their homogeneity of meaning disappears. In each individual we may see the tendency which inevitably leads to this result. A certain vocabulary and a certain set of phrases, distinguish the speech of each person: each person habitually uses certain words in places where other words are habitually used by other persons; and there is a continual recurrence of favourite expressions. This inability to maintain a balance in the use of verbal symbols, which characterizes every man, characterizes, by consequence, aggregates of men; and the desynonymization of words is the ultimate effect. Should any difficulty be felt in understanding how these mental changes exemplify a law of physical transformations that are wrought by physical forces, it will disappear on contemplating acts of mind as nervous functions. It will be seen that each loss of equilibrium above instanced, is a loss of functional equality between some two elements of the nervous system. And it will be seen that, as in other cases, this loss of functional equality is due to differences in the incidence of forces. * * * * * § 114. Masses of men, in common with all other masses, show a like proclivity similarly caused. Small combinations and large societies equally manifest it; and in the one, as in the other, both governmental and industrial differentiations are initiated by it. Let us glance at the facts under these two heads. A business partnership, balanced as the authorities of its members may theoretically be, practically becomes a union in which the authority of one partner is tacitly recognized as greater than that of the other or others. Though the shareholders have given equal powers to the directors of their company, inequalities of power soon arise among them; and usually the supremacy of some one director grows so marked, that his decisions determine the course which the board takes. Nor in associations for political, charitable, literary, or other purposes, do we fail to find a like process of division into dominant and subordinate parties; each having its leader, its members of less influence, and its mass of uninfluential members. These minor instances in which unorganized groups of men, standing in homogeneous relations, may be watched gradually passing into organized groups of men standing in heterogeneous relations, give us the key to social inequalities. Barbarous and civilized communities are alike characterized by separation into classes, as well as by separation of each class into more important and less important units; and this structure is manifestly the gradually-consolidated result of a process like that daily exemplified in trading and other combinations. So long as men are constituted to act on one another, either by physical force or by force of character, the struggles for supremacy must finally be decided in favour of some one; and the difference once commenced must tend to become ever more marked. Its unstable equilibrium being destroyed, the uniform must gravitate with increasing rapidity into the multiform. And so supremacy and subordination must establish themselves, as we see they do, throughout the whole structure of a society, from the great class-divisions pervading its entire body, down to village cliques, and even down to every posse of school-boys. Probably it will be objected that such changes result, not from the homogeneity of the original aggregations, but from their non-homogeneity�from certain slight differences existing among their units at the outset. This is doubtless the proximate cause. In strictness, such changes must be regarded as transformations of the relatively homogeneous into the relatively heterogeneous. But it is abundantly clear that an aggregation of men, absolutely alike in their endowments, would eventually undergo a similar transformation. For in the absence of perfect uniformity in the lives severally led by them�in their occupations, physical conditions, domestic relations, and trains of thought and feeling�there must arise differences among them; and these must finally initiate social differentiations. Even inequalities of health caused by accidents, must, by entailing inequalities of physical and mental power, disturb the exact balance of mutual influences among the units; and the balance once disturbed, must inevitably be lost. Whence, indeed, besides seeing that a body of men absolutely homogeneous in their governmental relations, must, like all other homogeneous bodies, become heterogeneous, we also see that it must do this from the same ultimate cause�unequal exposure of its parts to incident forces. The first industrial divisions of societies are much more obviously due to unlikenesses of external circumstances. Such divisions are absent until such unlikenesses are established. Nomadic tribes do not permanently expose any groups of their members to special local conditions; nor does a stationary tribe, when occupying only a small area, maintain from generation to generation marked contrasts in the local conditions of its members; and in such tribes there are no decided economical differentiations. But a community which, growing populous, has overspread a large tract, and has become so far settled that its members live and die in their respective districts, keeps its several sections in different physical circumstances; and then they no longer remain alike in their occupations. Those who live dispersed continue to hunt or cultivate the earth; those who spread to the sea-shore fall into maritime occupations; while the inhabitants of some spot chosen, perhaps for its centrality, as one of periodical assemblage, become traders, and a town springs up. Each of these classes undergoes a modification of character consequent on its function, and better fitting it to its function. Later in the process of social evolution these local adaptations are greatly multiplied. A result of differences in soil and climate, is that the rural inhabitants in different parts of the kingdom have their occupations partially specialized; and become respectively distinguished as chiefly producing cattle, or sheep, or wheat, or oats, or hops, or cyder. People living where coal-fields are discovered are transformed into colliers; Cornishmen take to mining because Cornwall is metalliferous; and the iron-manufacture is the dominant industry where ironstone is plentiful. Liverpool has assumed the office of importing cotton, in consequence of its proximity to the district where cotton goods are made; and for analogous reasons, Hull has become the chief port at which foreign wools are brought in. Even in the establishment of breweries, of dye-works, of slate-quarries, of brickyards, we may see the same truth. So that both in general and in detail, the specializations of the social organism which characterize separate districts, primarily depend on local circumstances. Those divisions of labour which under another aspect were interpreted as due to the setting up of motion in the directions of least resistance (§ 91), are here interpreted as due to differences in the incident forces; and the two interpretations are quite consistent with each other. For that which in each case _determines_ the direction of least resistance, is the distribution of the forces to be overcome; and hence unlikenesses of distribution in separate localities, entails unlikenesses in the course of human action in those localities�entails industrial differentiations. * * * * * § 115. In common with the general truths set forth in preceding chapters, the instability of the homogeneous is demonstrable _à priori_. It, like each of them, is a corollary from the persistence of force. Already this has been tacitly implied by assigning unlikeness in the exposure of its part to surrounding agencies, as the reason why a uniform mass loses its uniformity. But here it will be proper to expand this tacit implication into definite proof. On striking a mass of matter with such force as either to indent it or make it fly to pieces, we see both that the blow affects differently its different parts, and that the differences are consequent on the unlike relations of its parts to the force impressed. The part with which the striking body comes in contact, receiving the whole of the communicated momentum, is driven in towards the centre of the mass. It thus compresses and tends to displace the more centrally situated portions of the mass. These, however, cannot be compressed or thrust out of their places without pressing on all surrounding portions. And when the blow is violent enough to fracture the mass, we see, in the radial dispersion of its fragments, that the original momentum, in being distributed throughout it, has been divided into numerous minor momenta, unlike in their directions. We see that these directions are determined by the positions of the parts with respect to each other, and with respect to the point of impact. We see that the parts are differently affected by the disruptive force, because they are differently related to it in their directions and attachments�that the effects being the joint products of the cause and the conditions, cannot be alike in parts which are differently conditioned. A body on which radiant heat is falling, exemplifies this truth still more clearly. Taking the simplest case (that of a sphere) we see that while the part nearest to the radiating centre receives the rays at right angles, the rays strike the other parts of the exposed side at all angles from 90° down to 0°. Again, the molecular vibrations propagated through the mass from the surface which receives the heat, must proceed inwards at angles differing for each point. Further, the interior parts of the sphere affected by the vibrations proceeding from all points of the heated side, must be dissimilarly affected in proportion as their positions are dissimilar. So that whether they be on the recipient area, in the middle, or at the remote side, the constituent atoms are all thrown into states of vibration more or less unlike each other. But now, what is the ultimate meaning of the conclusion that a uniform force produces different changes throughout a uniform mass, because the parts of the mass stand in different relations to the force? Fully to understand this, we must contemplate each part as simultaneously subject to other forces�those of gravitation, of cohesion, of molecular motion, &c. The effect wrought by an additional force, must be a resultant of it and the forces already in action. If the forces already in action on two parts of any aggregate, are different in their directions, the effects produced on these two parts by like forces must be different in their directions. Why must they be different? They must be different because such unlikeness as exists between the two sets of factors, is made by the presence in the one of some specially-directed force that is not present in the other; and that this force will produce an effect, rendering the total result in the one case unlike that in the other, is a necessary corollary from the persistence of force. Still more manifest does it become that the dissimilarly-placed parts of any aggregate must be dissimilarly modified by an incident force, when we remember that the _quantities_ of the incident force to which they are severally subject, are not equal, as above supposed; but are nearly always very unequal. The outer parts of masses are usually alone exposed to chemical actions; and not only are their inner parts shielded from the affinities of external elements, but such affinities are brought to bear unequally on their surfaces; since chemical action sets up currents through the medium in which it takes place, and so brings to the various parts of the surface unequal quantities of the active agent. Again, the amounts of any external radiant force which the different parts of an aggregate receive, are widely contrasted: we have the contrast between the quantity falling on the side next the radiating centre, and the quantity, or rather no quantity, falling on the opposite side; we have contrasts in the quantities received by differently-placed areas on the exposed side; and we have endless contrasts between the quantities received by the various parts of the interior. Similarly when mechanical force is expended on any aggregate, either by collision, continued pressure, or tension, the amounts of strain distributed throughout the mass are manifestly unlike for unlike positions. But to say the different parts of an aggregate receive different quantities of any incident force, is to say that their states are modified by it in different degrees�is to say that if they were before homogeneous in their relations they must be rendered to a proportionate extent heterogeneous; since, force being persistent, the different quantities of it falling on the different parts, must work in them different quantities of effect�different changes. Yet one more kindred deduction is required to complete the argument. We may, by parallel reasoning, reach the conclusion that, even apart from the action of any external force, the equilibrium of a homogeneous aggregate must be destroyed by the unequal actions of its parts on each other. That mutual influence which produces aggregation (not to mention other mutual influences) must work different effects on the different parts; since they are severally exposed to it in unlike amounts and directions. This will be clearly seen on remembering that the portions of which the whole is made up, may be severally regarded as minor wholes; that on each of these minor wholes, the action of the entire aggregate then becomes an external incident force; that such external incident force must, as above shown, work unlike changes in the parts of any such minor whole; and that if the minor wholes are severally thus rendered heterogeneous, the entire aggregate is rendered heterogeneous. The instability of the homogeneous is thus deducible from that primordial truth which underlies our intelligence. One stable homogeneity only, is hypothetically possible. If centres of force, absolutely uniform in their powers, were diffused with absolute uniformity through unlimited space, they would remain in equilibrium. This however, though a verbally intelligible supposition, is one that cannot be represented in thought; since unlimited space is inconceivable. But all finite forms of the homogeneous�all forms of it which we can know or conceive, must inevitably lapse into heterogeneity. In three several ways does the persistence of force necessitate this. Setting external agencies aside, each unit of a homogeneous whole must be differently affected from any of the rest by the aggregate action of the rest upon it. The resultant force exercised by the aggregate on each unit, being in no two cases alike in both amount and direction, and usually not in either, any incident force, even if uniform in amount and direction, cannot produce like effects on the units. And the various positions of the parts in relation to any incident force, preventing them from receiving it in uniform amounts and directions, a further difference in the effects wrought on them is inevitably produced. One further remark is needed. To the conclusion that the changes with which Evolution _commences_, are thus necessitated, remains to be added the conclusion that these changes must _continue_. The absolutely homogeneous must lose its equilibrium; and the relatively homogeneous must lapse into the relatively less homogeneous. That which is true of any total mass, is true of the parts into which it segregates. The uniformity of each such part must as inevitably be lost in multiformity, as was that of the original whole; and for like reasons. And thus the continued changes which characterize Evolution, in so far as they are constituted by the lapse of the homogeneous into the heterogeneous, and of the less heterogeneous into the more heterogeneous, are necessary consequences of the persistence of force. ----- Footnote 16: The idea developed in this chapter originally formed part of an article on �Transcendental Physiology,� published in 1857. See _Essays_, pp. 279�290. CHAPTER XIV. THE MULTIPLICATION OF EFFECTS. § 116. To the cause of increasing complexity set forth in the last chapter, we have in this chapter to add another. Though secondary in order of time, it is scarcely secondary in order of importance. Even in the absence of the cause already assigned, it would necessitate a change from the homogeneous to the heterogeneous; and joined with it, it makes this change both more rapid and more involved. To come in sight of it, we have but to pursue a step further, that conflict between force and matter already delineated. Let us do this. When a uniform aggregate is subject to a uniform force, we have seen that its constituents, being differently conditioned, are differently modified. But while we have contemplated the various parts of the aggregate as thus undergoing unlike changes, we have not yet contemplated the unlike changes simultaneously produced on the various parts of the incident force. These must be as numerous and important as the others. Action and re-action being equal and opposite, it follows that in differentiating the parts on which it falls in unlike ways, the incident force must itself be correspondingly differentiated. Instead of being as before, a uniform force, it must thereafter be a multiform force�a group of dissimilar forces. A few illustrations will make this truth manifest. A single force is divided by conflict with matter into forces that widely diverge. In the case lately cited, of a body shattered by violent collision, besides the change of the homogeneous mass into a heterogeneous group of scattered fragments, there is a change of the homogeneous momentum into a group of momenta, heterogeneous in both amounts and directions. Similarly with the forces we know as light and heat. After the dispersion of these by a radiating body towards all points, they are re-dispersed towards all points by the bodies on which they fall. Of the Sun�s rays, issuing from him on every side, some few strike the Moon. These being reflected at all angles from the Moon�s surface, some few of them strike the Earth. By a like process the few which reach the Earth are again diffused through surrounding space. And on each occasion, such portions of the rays as are absorbed instead of reflected, undergo refractions that equally destroy their parallelism. More than this is true. By conflict with matter, a uniform force is in part changed into forces differing in their directions; and in part it is changed into forces differing in their kinds. When one body is struck against another, that which we usually regard as the effect, is a change of position or motion in one or both bodies. But a moment�s thought shows that this is a very incomplete view of the matter. Besides the visible mechanical result, sound is produced; or, to speak accurately, a vibration in one or both bodies, and in the surrounding air: and under some circumstances we call this the effect. Moreover, the air has not simply been made to vibrate, but has had currents raised in it by the transit of the bodies. Further, if there is not that great structural change which we call fracture, there is a disarrangement of the particles of the two bodies around their point of collision; amounting in some cases to a visible condensation. Yet more, this condensation is accompanied by disengagement of heat. In some cases a spark�that is, light�results, from the incandescence of a portion struck off; and occasionally this incandescence is associated with chemical combination. Thus, by the original mechanical force expended in the collision, at least five, and often more, different kinds of forces have been produced. Take, again, the lighting of a candle. Primarily, this is a chemical change consequent on a rise of temperature. The process of combination having once been set going by extraneous heat, there is a continued formation of carbonic acid, water, &c.�in itself a result more complex than the extraneous heat that first caused it. But along with this process of combination there is a production of heat; there is a production of light; there is an ascending column of hot gases generated; there are currents established in the surrounding air. Nor does the decomposition of one force into many forces end here. Each of the several changes worked becomes the parent of further changes. The carbonic acid formed, will by and by combine with some base; or under the influence of sunshine give up its carbon to the leaf of a plant. The water will modify the hygrometric state of the air around; or, if the current of hot gases containing it come against a cold body, will be condensed: altering the temperature, and perhaps the chemical state, of the surface it covers. The heat given out melts the subjacent tallow, and expands whatever it warms. The light, falling on various substances, calls forth from them reactions by which it is modified; and so divers colours are produced. Similarly even with these secondary actions, which may be traced out into ever-multiplying ramifications, until they become too minute to be appreciated. Universally, then, the effect is more complex than the cause. Whether the aggregate on which it falls be homogeneous or otherwise, an incident force is transformed by the conflict into a number of forces that differ in their amounts, or directions, or kinds; or in all these respects. And of this group of variously-modified forces, each ultimately undergoes a like transformation. Let us now mark how the process of evolution is furthered by this multiplication of effects. An incident force decomposed by the reactions of a body into a group of unlike forces�a uniform force thus reduced to a multiform force�becomes the cause of a secondary increase of multiformity in the body which decomposes it. In the last chapter we saw that the several parts of an aggregate are differently modified by any incident force. It has just been shown that by the reactions of the differently modified parts, the incident force itself must be divided into differently modified parts. Here it remains to point out that each differentiated division of the aggregate, thus becomes a centre from which a differentiated division of the original force is again diffused. And since unlike forces must produce unlike results, each of these differentiated forces must produce, throughout the aggregate, a further series of differentiations. This secondary cause of the change from homogeneity to heterogeneity, obviously becomes more potent in proportion as the heterogeneity increases. When the parts into which any evolving whole has segregated itself, have diverged widely in nature, they will necessarily react very diversely on any incident force�they will divide an incident force into so many strongly contrasted groups of forces. And each of them becoming the centre of a quite distinct set of influences, must add to the number of distinct secondary changes wrought throughout the aggregate. Yet another corollary must be added. The number of unlike parts of which an aggregate consists, as well as the degree of their unlikeness, is an important factor in the process. Every additional specialized division is an additional centre of specialized forces. If a uniform whole, in being itself made multiform by an incident force, makes the incident force multiform; if a whole consisting of two unlike sections, divides an incident force into two unlike groups of multiform forces; it is clear that each new unlike section must be a further source of complication among the forces at work throughout the mass�a further source of heterogeneity. The multiplication of effects must proceed in geometrical progression. Each stage of evolution must initiate a higher stage. * * * * * § 117. The force of aggregation acting on irregular masses of rare matter, diffused through a resisting medium, will not cause such masses to move in straight lines to their common centre of gravity; but, as before said, each will take a curvilinear path, directed to one or other side of the centre of gravity. All of them being differently conditioned, gravitation will impress on each a motion differing in direction, in velocity, and in the degree of its curvature�uniform aggregative force will be differentiated into multiform momenta. The process thus commenced, must go on till it produces a single mass of nebulous matter; and these independent curvilinear motions must result in a movement of this mass round its axis: a simultaneous condensation and rotation in which we see how two effects of the aggregative force, at first but slightly divergent, become at last widely differentiated. A gradual increase of oblateness in this revolving spheroid, must take place through the joint action of these two forces, as the bulk diminishes and the rotation grows more rapid; and this we may set down as a third effect. The genesis of heat, which must accompany augmentation of density, is a consequence of yet another order�a consequence by no means simple; since the various parts of the mass, being variously condensed, must be variously heated. Acting throughout a gaseous spheroid, of which the parts are unlike in their temperatures, the forces of aggregation and rotation must work a further series of changes: they must set up circulating currents, both general and local. At a later stage light as well as heat will be generated. Thus without dwelling on the likelihood of chemical combinations and electric disturbances, it is sufficiently manifest that, supposing matter to have originally existed in a diffused state, the once uniform force which caused its aggregation, must have become gradually divided into different forces; and that each further stage of complication in the resulting aggregate, must have initiated further subdivisions of this force�a further multiplication of effects, increasing the previous heterogeneity. This section of the argument may however be adequately sustained, without having recourse to any such hypothetical illustrations as the foregoing. The astronomical attributes of the Earth, will even alone suffice our purpose. Consider first the effects of its momentum round its axis. There is the oblateness of its form; there is the alternation of day and night; there are certain constant marine currents; and there are certain constant aërial currents. Consider next the secondary series of consequences due to the divergence of the Earth�s plane of rotation from the plane of its orbit. The many differences of the seasons, both simultaneous and successive, which pervade its surface, are thus caused. External attraction acting on this rotating oblate spheroid with inclined axis, produces the motion called nutation, and that slower and larger one from which follows the precession of the equinoxes, with its several sequences. And then by this same force are generated the tides, aqueous and atmospheric. Perhaps, however, the simplest way of showing the multiplication of effects among phenomena of this order, will be to set down the influences of any member of the Solar System on the rest. A planet directly produces in neighbouring planets certain appreciable perturbations, complicating those otherwise produced in them; and in the remoter planets it directly produces certain less visible perturbations. Here is a first series of effects. But each of the perturbed planets is itself a source of perturbations�each directly affects all the others. Hence, planet A having drawn planet B out of the position it would have occupied in A�s absence, the perturbations which B causes are different from what they would else have been; and similarly with C, D, E, &c. Here then is a secondary series of effects: far more numerous though far smaller in their amounts. As these indirect perturbations must to some extent modify the movements of each planet, there results from them a tertiary series; and so on continually. Thus the force exercised by any planet works a different effect on each of the rest; this different effect is from each as a centre partially broken up into minor different effects on the rest; and so on in ever multiplying and diminishing waves throughout the entire system. * * * * * § 118. If the Earth was formed by the concentration of diffused matter, it must at first have been incandescent; and whether the nebular hypothesis be accepted or not, this original incandescence of the Earth must now be regarded as inductively established�or, if not established, at least rendered so probable that it is a generally admitted geological doctrine. Several results of the gradual cooling of the Earth�as the formation of a crust, the solidification of sublimed elements, the precipitation of water, &c., have been already noticed�and I here again refer to them merely to point out that they are simultaneous effects of the one cause, diminishing heat. Let us now, however, observe the multiplied changes afterwards arising from the continuance of this one cause. The Earth, falling in temperature, must contract. Hence the solid crust at any time existing, is presently too large for the shrinking nucleus; and being unable to support itself, inevitably follows the nucleus. But a spheroidal envelope cannot sink down into contact with a smaller internal spheroid, without disruption: it will run into wrinkles, as the rind of an apple does when the bulk of its interior decreases from evaporation. As the cooling progresses and the envelope thickens, the ridges consequent on these contractions must become greater; rising ultimately into hills and mountains; and the later systems of mountains thus produced must not only be higher, as we find them to be, but they must be longer, as we also find them to be. Thus, leaving out of view other modifying forces, we see what immense heterogeneity of surface arises from the one cause, loss of heat�a heterogeneity which the telescope shows us to be paralleled on the Moon, where aqueous and atmospheric agencies have been absent. But we have yet to notice another kind of heterogeneity of surface, similarly and simultaneously caused. While the Earth�s crust was still thin, the ridges produced by its contraction must not only have been small, but the tracts between them must have rested with comparative smoothness on the subjacent liquid spheroid; and the water in those arctic and antarctic regions where it first condensed, must have been evenly distributed. But as fast as the crust grew thicker and gained corresponding strength, the lines of fracture from time to time caused in it, necessarily occurred at greater distances apart; the intermediate surfaces followed the contracting nucleus with less uniformity; and there consequently resulted larger areas of land and water. If any one, after wrapping an orange in wet tissue paper, and observing both how small are the wrinkles and how evenly the intervening spaces lie on the surface of the orange, will then wrap it in thick cartridge-paper, and note both the greater height of the ridges and the larger spaces throughout which the paper does not touch the orange, he will realize the fact, that as the Earth�s solid envelope thickened, the areas of elevation and depression became greater. In place of islands more or less homogeneously scattered over an all-embracing sea, there must have gradually arisen heterogeneous arrangements of continent and ocean, such as we now know. This double change in the extent and in the elevation of the lands, involved yet another species of heterogeneity�that of coast-line. A tolerably even surface raised out of the ocean will have a simple, regular sea-margin; but a surface varied by table-lands and intersected by mountain-chains, will, when raised out of the ocean, have an outline extremely irregular, alike in its leading features and in its details. Thus endless is the accumulation of geological and geographical results slowly brought about by this one cause�the escape of the Earth�s primitive heat. When we pass from the agency which geologists term igneous, to aqueous and atmospheric agencies, we see a like ever-growing complication of effects. The denuding actions of air and water have, from the beginning, been modifying every exposed surface: everywhere working many different changes. As already shown (§ 80) the original source of those gaseous and fluid motions which effect denudation, is the solar heat. The transformation of this into various modes of force, according to the nature and condition of the matter on which it falls, is the first stage of complication. The sun�s rays, striking at all angles a sphere, that from moment to moment presents and withdraws different parts of its surface, and each of them for a different time daily throughout the year, would produce a considerable variety of changes even were the sphere uniform. But falling as they do on a sphere surrounded by an atmosphere in some parts of which wide areas of cloud are suspended, and which here unveils vast tracts of sea, there of level land, there of mountains, there of snow and ice, they initiate in its several parts countless different movements. Currents of air of all sizes, directions, velocities, and temperatures, are set up; as are also marine currents similarly contrasted in their characters. In this region the surface is giving off water in the state of vapour; in that, dew is being precipitated; and in the other rain is descending�differences that arise from the ever-changing ratio between the absorption and radiation of heat in each place. At one hour, a rapid fall in temperature leads to the formation of ice, with an accompanying expansion throughout the moist bodies frozen; while at another, a thaw unlocks the dislocated fragments of these bodies. And then, passing to a second stage of complication, we see that the many kinds of motion directly or indirectly caused by the sun�s rays, severally produce results that vary with the conditions. Oxidation, drought, wind, frost, rain, glaciers, rivers, waves, and other denuding agents effect disintegrations that are determined in their amounts and qualities by local circumstances. Acting upon a tract of granite, such agents here work scarcely an appreciable effect; there cause exfoliations of the surface, and a resulting heap of _débris_ and boulders; and elsewhere, after decomposing the feldspar into a white clay, carry away this with the accompanying quartz and mica, and deposit them in separate beds, fluviatile and marine. When the exposed land consists of several unlike formations, sedimentary and igneous, changes proportionably more heterogeneous are wrought. The formations being disintegrable in different degrees, there follows an increased irregularity of surface. The areas drained by different rivers being differently constituted, these rivers carry down to the sea unlike combinations of ingredients; and so sundry new strata of distinct composition arise. And here indeed we may see very simply illustrated, the truth, that the heterogeneity of the effects increases in a geometrical progression, with the heterogeneity of the object acted upon. A continent of complex structure, presenting many strata irregularly distributed, raised to various levels, tilted up at all angles, must, under the same denuding agencies, give origin to immensely multiplied results: each district must be peculiarly modified; each river must carry down a distinct kind of detritus; each deposit must be differently distributed by the entangled currents, tidal and other, which wash the contorted shores; and every additional complication of surface must be the cause of more than one additional consequence. But not to dwell on these, let us, for the fuller elucidation of this truth in relation to the inorganic world, consider what would presently follow from some extensive cosmical revolution�say the subsidence of Central America. The immediate results of the disturbance would themselves be sufficiently complex. Besides the numberless dislocations of strata, the ejections of igneous matter, the propagation of earthquake vibrations thousands of miles around, the loud explosions, and the escape of gases, there would be the rush of the Atlantic and Pacific Oceans to supply the vacant space, the subsequent recoil of enormous waves, which would traverse both these oceans and produce myriads of changes along their shores, the corresponding atmospheric waves complicated by the currents surrounding each volcanic vent, and the electrical discharges with which such disturbances are accompanied. But these temporary effects would be insignificant compared with the permanent ones. The complex currents of the Atlantic and Pacific would be altered in directions and amounts. The distribution of heat achieved by these currents would be different from what it is. The arrangement of the isothermal lines, not only on the neighbouring continents, but even throughout Europe, would be changed. The tides would flow differently from what they do now. There would be more or less modification of the winds in their periods, strengths, directions, qualities. Rain would fall scarcely anywhere at the same times and in the same quantities as at present. In short, the meteorological conditions thousands of miles off, on all sides, would be more or less revolutionized. In these many changes, each of which comprehends countless minor ones, the reader will see the immense heterogeneity of the results wrought out by one force, when that force expends itself on a previously complicated area; and he will readily draw the corollary that from the beginning the complication has advanced at an increasing rate. * * * * * § 119. We have next to trace throughout organic evolution, this same all-pervading principle. And here, where the transformation of the homogeneous into the heterogeneous was first observed, the production of many changes by one cause is least easy to demonstrate. The development of a seed into a plant, or an ovum into an animal, is so gradual; while the forces which determine it are so involved, and at the same time so unobtrusive; that it is difficult to detect the multiplication of effects which is elsewhere so obvious. Nevertheless, by indirect evidence we may establish our proposition; spite of the lack of direct evidence. Observe, first, how numerous are the changes which any marked stimulus works on an adult organism�a human being, for instance. An alarming sound or sight, besides impressions on the organs of sense and the nerves, may produce a start, a scream, a distortion of the face, a trembling consequent on general muscular relaxation, a burst of perspiration, an excited action of the heart, a rush of blood to the brain, followed possibly by arrest of the heart�s action and by syncope; and if the system be feeble, an illness with its long train of complicated symptoms may set in. Similarly in cases of disease. A minute portion of the small-pox virus introduced into the system, will, in a severe case, cause, during the first stage, rigors, heat of skin, accelerated pulse, furred tongue, loss of appetite, thirst, epigastric uneasiness, vomiting, headache, pains in the back and limbs, muscular weakness, convulsions, delirium, &c.; in the second stage, cutaneous eruption, itching, tingling, sore throat, swelled fauces, salivation, cough, hoarseness, dyspn�a, &c.; and in the third stage, �dematous inflammations, pneumonia, pleurisy, diarrh�a, inflammation of the brain, ophthalmia, erysipelas, &c.: each of which enumerated symptoms is itself more or less complex. Medicines, special foods, better air, might in like manner be instanced as producing multiplied results. Now it needs only to consider that the many changes thus wrought by one force on an adult organism, must be partially paralleled in an embryo-organism, to understand how here also the production of many effects by one cause is a source of increasing heterogeneity. The external heat and other agencies which determine the first complications of the germ, will, by acting on these, superinduce further complications; on these still higher and more numerous ones; and so on continually: each organ as it is developed, serving, by its actions and reactions on the rest, to initiate new complexities. The first pulsations of the f�tal heart must simultaneously aid the unfolding of every part. The growth of each tissue, by taking from the blood special proportions of elements, must modify the constitution of the blood; and so must modify the nutrition of all the other tissues. The distributive actions, implying as they do a certain waste, necessitate an addition to the blood of effete matters, which must influence the rest of the system, and perhaps, as some think, initiate the formation of excretory organs. The nervous connections established among the viscera must further multiply their mutual influences. And so with every modification of structure�every additional part and every alteration in the ratios of parts. Still stronger becomes the proof when we call to mind the fact, that the same germ may be evolved into different forms according to circumstances. Thus, during its earlier stages, every embryo is sexless�becomes either male or female as the balance of forces acting on it determines. Again, it is well-known that the larva of a working-bee will develop into a queen-bee, if, before a certain period, its food be changed to that on which the larvæ of queen-bees are fed. Even more remarkable is the case of certain entozoa. The ovum of a tape-worm, getting into the intestine of one animal, unfolds into the form of its parent; but if carried into other parts of the system, or into the intestine of some unlike animal, it becomes one of the sac-like creatures, called by naturalists _Cysticerci_, or _C�nuri_, or _Echinococci_�creatures so extremely different from the tape-worm in aspect and structure, that only after careful investigations have they been proved to have the same origin. All which instances imply that each advance in embryonic complication results from the action of incident forces on the complication previously existing. Indeed, the now accepted doctrine of epigenesis necessitates the conclusion that organic evolution proceeds after this manner. For since it is proved that no germ, animal or vegetal, contains the slightest rudiment, trace, or indication of the future organism�since the microscope has shown us that the first process set up in every fertilized germ is a process of repeated spontaneous fissions, ending in the production of a mass of cells, not one of which exhibits any special character; there seems no alternative but to conclude that the partial organization at any moment subsisting in a growing embryo, is transformed by the agencies acting on it into the succeeding phase of organization, and this into the next, until, through ever-increasing complexities, the ultimate form is reached. Thus, though the subtlety of the forces and the slowness of the metamorphosis, prevent us from _directly_ tracing the genesis of many changes by one cause, throughout the successive stages which every embryo passes through; yet, _indirectly_, we have strong evidence that this is a source of increasing heterogeneity. We have marked how multitudinous are the effects which a single agency may generate in an adult organism; that a like multiplication of effects must happen in the unfolding organism, we have inferred from sundry illustrative cases; further, it has been pointed out that the ability which like germs have to originate unlike forms, implies that the successive transformations result from the new changes superinduced on previous changes; and we have seen that structureless as every germ originally is, the development of an organism out of it is otherwise incomprehensible. Doubtless we are still in the dark respecting those mysterious properties which make the germ, when subject to fit influences, undergo the special changes beginning this series of transformations. All here contended is, that given a germ possessing these mysterious properties, the evolution of an organism from it depends, in part, on that multiplication of effects which we have seen to be a cause of evolution in general, so far as we have yet traced it. When, leaving the development of single plants and animals, we pass to that of the Earth�s flora and fauna, the course of the argument again becomes clear and simple. Though, as before admitted, the fragmentary facts Palæontology has accumulated, do not clearly warrant us in saying that, in the lapse of geologic time, there have been evolved more heterogeneous organisms, and more heterogeneous assemblages of organisms; yet we shall now see that there _must_ ever have been a tendency towards these results. We shall find that the production of many effects by one cause, which, as already shown, has been all along increasing the physical heterogeneity of the Earth, has further necessitated an increasing heterogeneity in its flora and fauna, individually and collectively. An illustration will make this clear. Suppose that by a series of upheavals, occurring, as they are now known to do, at long intervals, the East Indian Archipelago were to be raised into a continent, and a chain of mountains formed along the axis of elevation. By the first of these upheavals, the plants and animals inhabiting Borneo, Sumatra, New Guinea, and the rest, would be subjected to slightly-modified sets of conditions. The climate in general would be altered in temperature, in humidity, and in its periodical variations; while the local differences would be multiplied. These modifications would affect, perhaps inappreciably, the entire flora and fauna of the region. The change of level would produce additional modifications; varying in different species, and also in different members of the same species, according to their distance from the axis of elevation. Plants, growing only on the sea-shore in special localities, might become extinct. Others, living only in swamps of a certain humidity, would, if they survived at all, probably undergo visible changes of appearance. While more marked alterations would occur in some of the plants that spread over the lands newly raised above the sea. The animals and insects living on these modified plants, would themselves be in some degree modified by change of food, as well as by change of climate; and the modification would be more marked where, from the dwindling or disappearance of one kind of plant, an allied kind was eaten. In the lapse of the many generations arising before the next upheaval, the sensible or insensible alterations thus produced in each species, would become organized�in all the races that survived there would be a more or less complete adaptation to the new conditions. The next upheaval would superinduce further organic changes, implying wider divergences from the primary forms; and so repeatedly. Now however let it be observed that this revolution would not be a substitution of a thousand modified species for the thousand original species; but in place of the thousand original species there would arise several thousand species, or varieties, or changed forms. Each species being distributed over an area of some extent, and tending continually to colonize the new area exposed, its different members would be subject to different sets of changes. Plants and animals migrating towards the equator would not be affected in the same way with others migrating from it. Those which spread towards the new shores, would undergo changes unlike the changes undergone by those which spread into the mountains. Thus, each original race of organisms would become the root from which diverged several races, differing more or less from it and from each other; and while some of these might subsequently disappear, probably more than one would survive in the next geologic period: the very dispersion itself increasing the chances of survival. Not only would there be certain modifications thus caused by changes of physical conditions and food; but also in some cases other modifications caused by changes of habit. The fauna of each island, peopling, step by step, the newly-raised tracts, would eventually come in contact with the faunas of other islands; and some members of these other faunas would be unlike any creatures before seen. Herbivores meeting with new beasts of prey, would, in some cases, be led into modes of defence or escape differing from those previously used; and simultaneously the beasts of prey would modify their modes of pursuit and attack. We know that when circumstances demand it, such changes of habit _do_ take place in animals; and we know that if the new habits become the dominant ones, they must eventually in some degree alter the organization. Observe now, however, a further consequence. There must arise not simply a tendency towards the differentiation of each race of organisms into several races; but also a tendency to the occasional production of a somewhat higher organism. Taken in the mass, these divergent varieties, which have been caused by fresh physical conditions and habits of life, will exhibit alterations quite indefinite in kind and degree; and alterations that do not necessarily constitute an advance. Probably in most cases the modified type will be not appreciably more heterogeneous than the original one. But it _must_ now and then occur, that some division of a species, falling into circumstances which give it rather more complex experiences, and demand actions somewhat more involved, will have certain of its organs further differentiated in proportionately small degrees�will become slightly more heterogeneous. Hence, there will from time to time arise an increased heterogeneity both of the Earth�s flora and fauna, and of individual races included in them. Omitting detailed explanations, and allowing for the qualifications which cannot here be specified, it is sufficiently clear that geological mutations have all along tended to complicate the forms of life, whether regarded separately or collectively. That multiplication of effects which has been a part-cause of the transformation of the Earth�s crust from the simple into the complex, has simultaneously led to a parallel transformation of the Life upon its surface.[17] The deduction here drawn from the established truths of geology and the general laws of life, gains immensely in weight on finding it to be in harmony with an induction drawn from direct experience. Just that divergence of many races from one race, which we inferred must have been continually occurring during geologic time, we know to have occurred during the pre-historic and historic periods, in man and domestic animals. And just that multiplication of effects which we concluded must have been instrumental to the first, we see has in a great measure wrought the last. Single causes, as famine, pressure of population, war, have periodically led to further dispersions of mankind and of dependent creatures: each such dispersion initiating new modifications, new varieties of type. Whether all the human races be or be not derived from one stock, philology makes it clear that whole groups of races, now easily distinguishable from each other, were originally one race�that the diffusion of one race into different climates and conditions of existence has produced many altered forms of it. Similarly with domestic animals. Though in some cases (as that of dogs) community of origin will perhaps be disputed, yet in other cases (as that of the sheep or the cattle of our own country) it will not be questioned that local differences of climate, food, and treatment, have transformed one original breed into numerous breeds, now become so far distinct as to produce unstable hybrids. Moreover, through the complication of effects flowing from single causes, we here find, what we before inferred, not only an increase of general heterogeneity, but also of special heterogeneity. While of the divergent divisions and subdivisions of the human race, many have undergone changes not constituting an advance; others have become decidedly more heterogeneous. The civilized European departs more widely from the vertebrate archetype than does the savage. * * * * * § 120. A sensation does not expend itself in arousing some single state of consciousness; but the state of consciousness aroused is made up of various represented sensations connected by co-existence, or sequence with the presented sensation. And that, in proportion as the grade of intelligence is high, the number of ideas suggested is great, may be readily inferred. Let us, however, look at the proof that here too, each change is the parent of many changes; and that the multiplication increases in proportion as the area affected is complex. Were some hitherto unknown bird, driven say by stress of weather from the remote north, to make its appearance on our shores, it would excite no speculation in the sheep or cattle amid which it alighted: a perception of it as a creature like those constantly flying about, would be the sole interruption of that dull current of consciousness which accompanies grazing and rumination. The cow-herd, by whom we may suppose the exhausted bird to be presently caught, would probably gaze at it with some slight curiosity, as being unlike any he had before seen�would note its most conspicuous markings, and vaguely ponder on the questions, where it came from, and how it came. The village bird-stuffer would have suggested to him by the sight of it, sundry forms to which it bore a little resemblance; would receive from it more numerous and more specific impressions respecting structure and plumage; would be reminded of various instances of birds brought by storms from foreign parts�would tell who found them, who stuffed them, who bought them. Supposing the unknown bird taken to a naturalist of the old school, interested only in externals, (one of those described by the late Edward Forbes, as examining animals as though they were merely skins filled with straw,) it would excite in him a more involved series of mental changes: there would be an elaborate examination of the feathers, a noting of all their technical distinctions, with a reduction of these perceptions to certain equivalent written symbols; reasons for referring the new form to a particular family, order, and genus would be sought out and written down; communications with the secretary of some society, or editor of some journal, would follow; and probably there would be not a few thoughts about the addition of the _ii_ to the describer�s name, to form the name of the species. Lastly, in the mind of a comparative anatomist, such a new species, should it happen to have any marked internal peculiarity, might produce additional sets of changes�might very possibly suggest modified views respecting the relationships of the division to which it belonged; or, perhaps, alter his conceptions of the homologies and developments of certain organs; and the conclusions drawn might not improbably enter as elements into still wider inquiries concerning the origin of organic forms. From ideas let us turn to emotions. In a young child, a father�s anger produces little else than vague fear�a disagreeable sense of impending evil, taking various shapes of physical suffering or deprivation of pleasures. In elder children, the same harsh words will arouse additional feelings: sometimes a sense of shame, of penitence, or of sorrow for having offended; at other times, a sense of injustice, and a consequent anger. In the wife, yet a further range of feelings may come into existence�perhaps wounded affection, perhaps self-pity for ill-usage, perhaps contempt for groundless irritability, perhaps sympathy for some suffering which the irritability indicates, perhaps anxiety about an unknown misfortune which she thinks has produced it. Nor are we without evidence that among adults, the like differences of development are accompanied by like differences in the number of emotions that are aroused, in combination or rapid succession�the lower natures being characterized by that impulsiveness which results from the uncontrolled action of a few feelings; and the higher natures being characterized by the simultaneous action of many secondary feelings, modifying those first awakened. Possibly it will be objected that the illustrations here given, are drawn from the functional changes of the nervous system, not from its structural changes; and that what is proved among the first, does not necessarily hold among the last. This must be admitted. Those, however, who recognize the truth that the structural changes are the slowly accumulated results of the functional changes, will readily draw the corollary, that a part-cause of the evolution of the nervous system, as of other evolution, is this multiplication of effects which becomes ever greater as the development becomes higher. * * * * * § 121. If the advance of Man towards greater heterogeneity in both body and mind, is in part traceable to the production of many effects by one cause, still more clearly may the advance of Society towards greater heterogeneity be so explained. Consider the growth of an industrial organization. When, as must occasionally happen, some individual of a tribe displays unusual aptitude for making an article of general use (a weapon, for instance) which was before made by each man for himself, there arises a tendency towards the differentiation of that individual into a maker of weapons. His companions (warriors and hunters all of them) severally wish to have the best weapons that can be made; and are therefore certain to offer strong inducements to this skilled individual to make weapons for them. He, on the other hand, having both an unusual faculty, and an unusual liking, for making weapons (the capacity and the desire for any occupation being commonly associated), is predisposed to fulfil these commissions on the offer of adequate rewards: especially as his love of distinction is also gratified. This first specialization of function, once commenced, tends ever to become more decided. On the side of the weapon-maker, continued practice gives increased skill�increased superiority to his products. On the side of his clients, cessation of practice entails decreased skill. Thus the influences that determine this division of labour grow stronger in both ways: this social movement tends ever to become more decided in the direction in which it was first set up; and the incipient heterogeneity is, on the average of cases, likely to become permanent for that generation, if no longer. Such a process, besides differentiating the social mass into two parts, the one monopolizing, or almost monopolizing, the performance of a certain function, and the other having lost the habit, and in some measure the power, of performing that function, has a tendency to initiate other differentiations. The advance described implies the introduction of barter: the maker of weapons has, on each occasion, to be paid in such other articles as he agrees to take in exchange. Now he will not habitually take in exchange one kind of article, but many kinds. He does not want mats only, or skins, or fishing-gear; but he wants all these; and on each occasion will bargain for the particular things he most needs. What follows? If among the members of the tribe there exist any slight differences of skill in the manufacture of these various things, as there are almost sure to do, the weapon-maker will take from each one the thing which that one excels in making: he will exchange for mats with him whose mats are superior, and will bargain for the fishing-gear of whoever has the best. But he who has bartered away his mats or his fishing-gear, must make other mats or fishing-gear for himself; and in so doing must, in some degree, further develop his aptitude. Thus it results that the small specialities of faculty possessed by various members of the tribe will tend to grow more decided. If such transactions are from time to time repeated, these specializations may become appreciable. And whether or not there ensue distinct differentiations of other individuals into makers of particular articles, it is clear that incipient differentiations take place throughout the tribe: the one original cause produces not only the first dual effect, but a number of secondary dual effects, like in kind but minor in degree. This process, of which traces may be seen among groups of school-boys, cannot well produce a lasting distribution of functions in an unsettled tribe; but where there grows up a fixed and multiplying community, such differentiations become permanent, and increase with each generation. An addition to the number of citizens, involving a greater demand for every commodity, intensifies the functional activity of each specialized person or class; and this renders the specialization more definite where it already exists, and establishes it where it is but nascent. By increasing the pressure on the means of subsistence, a larger population again augments these results; since every individual is forced more and more to confine himself to that which he can do best, and by which he can gain most. And this industrial progress, by aiding future production, opens the way for further growth of population, which reacts as before. Presently, under the same stimuli, new occupations arise. Competing workers, severally aiming to produce improved articles, occasionally discover better processes or better materials. In weapons and cutting-tools, the substitution of bronze for stone entails on him who first makes it, a great increase of demand�so great an increase that he presently finds all his time occupied in making the bronze for the articles he sells, and is obliged to depute the fashioning of these articles to others; and eventually the making of bronze, thus gradually differentiated from a pre-existing occupation, becomes an occupation by itself. But now mark the ramified changes which follow this change. Bronze soon replaces stone, not only in the articles it was first used for, but in many others; and so affects the manufacture of them. Further, it affects the processes which such improved utensils subserve, and the resulting products�modifies buildings, carvings, dress, personal decorations. Yet again, it sets going sundry manufactures which were before impossible, from lack of a material fit for the requisite tools. And all these changes react on the people�increase their manipulative skill, their intelligence, their comfort�refine their habits and tastes. It is out of the question here to follow through its successive complications, this increasing social heterogeneity that results from the production of many effects by one cause. But leaving the intermediate phases of social development, let us take an illustration from its passing phase. To trace the effects of steam-power, in its manifold applications to mining, navigation, and manufactures, would carry us into unmanageable detail. Let us confine ourselves to the latest embodiment of steam-power�the locomotive engine. This, as the proximate cause of our railway-system, has changed the face of the country, the course of trade, and the habits of the people. Consider, first, the complicated sets of changes that precede the making of every railway�the provisional arrangements, the meetings, the registration, the trial-section, the parliamentary survey, the lithographed plans, the books of reference, the local deposits and notices, the application to Parliament, the passing Standing-Orders Committee, the first, second, and third readings: each of which brief heads indicates a multiplicity of transactions, and the further development of sundry occupations, (as those of engineers, surveyors, lithographers, parliamentary agents, share-brokers,) and the creation of sundry others (as those of traffic-takers, reference-takers). Consider, next, the yet more marked changes implied in railway construction�the cuttings, em-bankings, tunnellings, diversions of roads; the building of bridges and stations; the laying down of ballast, sleepers, and rails; the making of engines, tenders, carriages, and wagons: which processes, acting upon numerous trades, increase the importation of timber, the quarrying of stone, the manufacture of iron, the mining of coal, the burning of bricks; institute a variety of special manufactures weekly advertised in the _Railway Times_; and call into being some new classes of workers�drivers, stokers, cleaners, plate-layers, &c. &c. Then come the changes, more numerous and involved still, which railways in action produce on the community at large. The organization of every business is more or less modified: ease of communication makes it better to do directly what was before done by proxy; agencies are established where previously they would not have paid; goods are obtained from remote wholesale houses instead of near retail ones; and commodities are used which distance once rendered inaccessible. The rapidity and small cost of carriage, tend to specialize more than ever the industries of different districts�to confine each manufacture to the parts in which, from local advantages, it can be best carried on. Economical distribution equalizes prices, and also, on the average, lowers prices: thus bringing divers articles within the means of those before unable to buy them, and so increasing their comforts and improving their habits. At the same time the practice of travelling is immensely extended. Classes who before could not afford it, take annual trips to the sea; visit their distant relations; make tours; and so we are benefited in body, feelings, and intellect. The more prompt transmission of letters and of news produces further changes�makes the pulse of the nation faster. Yet more, there arises a wide dissemination of cheap literature through railway book-stalls, and of advertisements in railway carriages: both of them aiding ulterior progress. And the innumerable changes here briefly indicated are consequent on the invention of the locomotive engine. The social organism has been rendered more heterogeneous, in virtue of the many new occupations introduced, and the many old ones further specialized; prices in all places have been altered; each trader has, more or less, modified his way of doing business; and every person has been affected in his actions, thoughts, emotions. The only further fact demanding notice, is, that we here see more clearly than ever, that in proportion as the area over which any influence extends, becomes heterogeneous, the results are in a yet higher degree multiplied in number and kind. While among the primitive tribes to whom it was first known, caoutchouc caused but few changes, among ourselves the changes have been so many and varied that the history of them occupies a volume. Upon the small, homogeneous community inhabiting one of the Hebrides, the electric telegraph would produce, were it used, scarcely any results; but in England the results it produces are multitudinous. Space permitting, the synthesis might here be pursued in relation to all the subtler products of social life. It might be shown how, in Science, an advance of one division presently advances other divisions�how Astronomy has been immensely forwarded by discoveries in Optics, while other optical discoveries have initiated Microscopic Anatomy, and greatly aided the growth of Physiology�how Chemistry has indirectly increased our knowledge of Electricity, Magnetism, Biology, Geology�how Electricity has reacted on Chemistry and Magnetism, developed our views of Light and Heat, and disclosed sundry laws of nervous action. In Literature the same truth might be exhibited in the still-multiplying forms of periodical publications that have descended from the first newspaper, and which have severally acted and reacted on other forms of literature and on each other; or in the bias given by each book of power to various subsequent books. The influence which a new school of Painting (as that of the pre-Raphaelites) exercises on other schools; the hints which all kinds of pictorial art are deriving from Photography; the complex results of new critical doctrines; might severally be dwelt on as displaying the like multiplication of effects. But it would needlessly tax the reader�s patience to detail, in their many ramifications, these various changes: here become so involved and subtle as to be followed with some difficulty. * * * * * § 122. After the argument which closed the last chapter, a parallel one seems here scarcely required. For symmetry�s sake, however, it will be proper briefly to point out how the multiplication of effects, like the instability of the homogeneous, is a corollary from the persistence of force. Things which we call different are things which react in different ways; and we can know them as different only by the differences in their reactions. When we distinguish bodies as hard and soft, rough and smooth, we simply mean that certain like muscular forces expended on them are followed by unlike sets of sensations�unlike re-active forces. Objects that are classed as red, blue, yellow, &c., are objects that decompose light in strongly-contrasted ways; that is, we know contrasts of colour as contrasts in the changes produced in a uniform incident force. Manifestly, any two things which do not work unequal effects on consciousness, either by unequally opposing our own energies, or by impressing our senses with unequally modified forms of certain external energies, cannot be distinguished by us. Hence the proposition that the different parts of any whole must react differently on a uniform incident force, and must so reduce it to a group of multiform forces, is in essence a truism. A further step will reduce this truism to its lowest terms. When, from unlikeness between the effects they produce on consciousness, we predicate unlikeness between two objects, what is our warrant? and what do we mean by the unlikeness, objectively considered? Our warrant is the persistence of force. Some kind or amount of change has been wrought in us by the one, which has not been wrought by the other. This change we ascribe to some force exercised by the one which the other has not exercised. And we have no alternative but to do this, or to assert that the change had no antecedent; which is to deny the persistence of force. Whence it is further manifest that what we regard as the objective unlikeness is the presence in the one of some force, or set of forces, not present in the other�something in the kinds or amounts or directions of the constituent forces of the one, which those of the other do not parallel. But now if things or parts of things which we call different, are those of which the constituent forces differ in one or more respects; what must happen to any like forces, or any uniform force, falling on them? Such like forces, or parts of a uniform force, must be differently modified. The force which is present in the one and not in the other, must be an element in the conflict�must produce its equivalent reaction; and must so affect the total reaction. To say otherwise is to say that this differential force will produce no effect; which is to say that force is not persistent. I need not develop this corollary further. It manifestly follows that a uniform force, falling on a uniform aggregate, must undergo dispersion; that falling on an aggregate made up of unlike parts, it must undergo dispersion from each part, as well as qualitative differentiations; that in proportion as the parts are unlike, these qualitative differentiations must be marked; that in proportion to the number of the parts, they must be numerous; that the secondary forces so produced, must undergo further transformations while working equivalent transformations in the parts that change them; and similarly with the forces they generate. Thus the conclusions that a part-cause of Evolution is the multiplication of effects; and that this increases in geometrical progression as the heterogeneity becomes greater; are not only to be established inductively, but are deducible from the deepest of all truths. ----- Footnote 17: Had this paragraph, first published in the _Westminster Review_ in 1857, been written after the appearance of Mr. Darwin�s work on _The Origin of Species_, it would doubtless have been otherwise expressed. Reference would have been made to the process of �natural selection,� as greatly facilitating the differentiations described. As it is, however, I prefer to let the passage stand in its original shape: partly because it seems to me that these successive changes of conditions would produce divergent varieties or species, apart from the influence of �natural selection� (though in less numerous ways as well as less rapidly); and partly because I conceive that in the absence of these successive changes of conditions, �natural selection� would effect comparatively little. Let me add that though these positions are not enunciated in _The Origin of Species_, yet a mutual friend gives me reason to think that Mr. Darwin would coincide in them; if he did not indeed consider them as tacitly implied in his work. CHAPTER XV. DIFFERENTIATION AND INTEGRATION. § 123. The general interpretation of Evolution is far from being completed in the preceding chapters. We must contemplate its changes under yet another aspect, before we can form a definite conception of the process constituted by them. Though the laws already set forth, furnish a key to the re-arrangement of parts which Evolution exhibits, in so far as it is an advance from the uniform to the multiform; they furnish no key to this re-arrangement in so far as it is an advance from the indefinite to the definite. On studying the actions and re-actions everywhere going on, we have found it to follow inevitably from a certain primordial truth, that the homogeneous must lapse into the heterogeneous, and that the heterogeneous must become more heterogeneous; but we have not discovered why the differently-affected parts of any simple whole, become clearly marked off from each other, at the same time that they become unlike. Thus far no reason has been assigned why there should not ordinarily arise a vague chaotic heterogeneity, in place of that orderly heterogeneity displayed in Evolution. It still remains to find out the cause of that integration of parts which accompanies their differentiation�that gradually-completed segregation of like units into a group, distinctly separated from neighbouring groups which are severally made up of other kinds of units. The rationale will be conveniently introduced by a few instances in which we may watch this segregative process taking place. When towards the end of September, the trees are gaining their autumn colours, and we are hoping shortly to see a further change increasing still more the beauty of the landscape, we are not uncommonly disappointed by the occurrence of an equinoxial gale. Out of the mixed mass of foliage on each branch, the strong current of air carries away the decaying and brightly-tinted leaves, but fails to detach those which are still green. And while these last, frayed and seared by long-continued beatings against each other, and the twigs around them, give a sombre colour to the woods, the red and yellow and orange leaves are collected together in ditches and behind walls and in corners where eddies allow them to settle. That is to say, by the action of that uniform force which the wind exerts on both kinds, the dying leaves are picked out from among their still living companions and gathered in places by themselves. Again, the separation of particles of different sizes, as dust and sand from pebbles, may be similarly effected; as we see on every road in March. And from the days of Homer downwards, the power of currents of air, natural and artificial, to part from one another units of unlike specific gravities, has been habitually utilized in the winnowing of chaff from wheat. In every river we see how the mixed materials carried down, are separately deposited�how in rapids the bottom gives rest to nothing but boulders and pebbles; how where the current is not so strong, sand is let fall; and how, in still places, there is a sediment of mud. This selective action of moving water, is commonly applied in the arts to obtain masses of particles of different degrees of fineness. Emery, for example, after being ground, is carried by a slow current through successive compartments; in the first of which the largest grains subside; in the second of which the grains that reach the bottom before the water has escaped, are somewhat smaller; in the third smaller still; until in the last there are deposited only those finest particles which fall so slowly through the water, that they have not previously been able to reach the bottom. And in a way that is different though equally significant, this segregative effect of water in motion, is exemplified in the carrying away of soluble from insoluble matters�an application of it hourly made in every laboratory. The effects of the uniform forces which aerial and aqueous currents exercise, are paralleled by those of uniform forces of other orders. Electric attraction will separate small bodies from large, or light bodies from heavy. By magnetism, grains of iron may be selected from among other grains; as by the Sheffield grinder, whose magnetized gauze mask filters out the steel-dust which his wheel gives off, from the stone-dust that accompanies it. And how the affinity of any agent acting differently on the components of a given body, enables us to take away some component and leave the rest behind, is shown in almost every chemical experiment. What now is the general truth here variously presented? How are these several facts and countless similar ones, to be expressed in terms that embrace them all? In each case we see in action a force which may be regarded as simple or uniform�fluid motion in a certain direction at a certain velocity; electric or magnetic attraction of a given amount; chemical affinity of a particular kind: or rather, in strictness, the acting force is compounded of one of these and certain other uniform forces, as gravitation, etc. In each case we have an aggregate made up of unlike units�either atoms of different substances combined or intimately mingled, or fragments of the same substance of different sizes, or other constituent parts that are unlike in their specific gravities, shapes, or other attributes. And in each case these unlike units, or groups of units, of which the aggregate consists, are, under the influence of some resultant force acting indiscriminately on them all, separated from each other�segregated into minor aggregates, each consisting of units that are severally like each other and unlike those of the other minor aggregates. Such being the common aspect of these changes, let us look for the common interpretation of them. In the chapter on �The Instability of the Homogeneous,� it was shown that a uniform force falling on any aggregate, produces unlike modifications in its different parts�turns the uniform into the multiform and the multiform into the more multiform. The transformation thus wrought, consists of either insensible or sensible changes of relative position among the units, or of both�either of those molecular re-arrangements which we call chemical, or of those larger transpositions which are distinguished as mechanical, or of the two united. Such portion of the permanently effective force as reaches each different part, or differently-conditioned part, may be expended in modifying the mutual relations of its constituents; or it may be expended in moving the part to another place; or it may be expended partially in the first and partially in the second. Hence, so much of the permanently effective force as does not work the one kind of effect, must work the other kind. It is manifest that if of the permanently effective force which falls on some compound unit of an aggregate, little, if any, is absorbed in re-arranging the ultimate components of such compound unit, much or the whole, must show itself in motion of such compound unit to some other place in the aggregate; and conversely, if little or none of this force is absorbed in generating mechanical transposition, much or the whole must go to produce molecular alterations. What now must follow from this? In cases where none or only part of the force generates chemical re-distributions, what physical re-distributions must be generated? Parts that are similar to each other will be similarly acted on by the force; and will similarly react on it. Parts that are dissimilar will be dissimilarly acted on by the force; and will dissimilarly react on it. Hence the permanently effective incident force, when wholly or partially transformed into mechanical motion of the units, will produce like motions in units that are alike, and unlike motions in units that are unlike. If then, in an aggregate containing two or more orders of mixed units, those of the same order will be moved in the same way, and in a way that differs from that in which units of other orders are moved, the respective orders must segregate. A group of like things on which are impressed motions that are alike in amount and direction, must be transferred as a group to another place, and if they are mingled with some group of other things, on which the motions impressed are like each other, but unlike those of the first group in amount or direction or both, these other things must be transferred as a group to some other place�the mixed aggregate must undergo a simultaneous differentiation and integration. In further elucidation of this process, it will be well here to set down a few instances in which we may see that, other things equal, the definiteness of the separation is in proportion to the definiteness of the difference between the units. Take a handful of any pounded substance, containing fragments of all sizes; and let it fall to the ground while a gentle breeze is blowing. The large fragments will be collected together on the ground almost immediately under the hand; somewhat smaller fragments will be carried a little to the leeward; still smaller ones a little further; and those minute particles which we call dust, will be drifted a long way before they reach the earth: that is, the integration is indefinite where the difference among the fragments is indefinite, though the divergence is greatest where the difference is greatest. If, again, the handful be made up of quite distinct orders of units�as pebbles, coarse sand, and dust�these will, under like conditions, be segregated with comparative definiteness: the pebbles will drop almost vertically; the sand will fall in an inclined direction, and deposit itself within a tolerably circumscribed space beyond the pebbles; while the dust will be blown almost horizontally to a great distance. A case in which another kind of force comes into play, will still better illustrate this truth. Through a mixed aggregate of soluble and insoluble substances, let water slowly percolate. There will in the first place be a distinct parting of the substances that are the most widely contrasted in their relations to the acting forces: the soluble will be carried away; the insoluble will remain behind. Further, some separation, though a less definite one, will be effected among the soluble substances; since the first part of the current will remove the most soluble substances in the largest amounts, and after these have been all dissolved, the current will still continue to bring out the remaining less soluble substances. Even the undissolved matters will have simultaneously undergone a certain segregation; for the percolating fluid will carry down the minute fragments from among the large ones, and will deposit those of small specific gravity in one place, and those of great specific gravity in another. To complete the elucidation we must glance at the obverse fact; namely, that mixed units which differ but slightly, are moved in but slightly-different ways by incident forces, and can therefore be separated only by such adjustments of the incident forces as allow slight differences to become appreciable factors in the result. This truth is made manifest by antithesis in the instances just given; but it may be made much more manifest by a few such instances as those which chemical analysis supplies in abundance. The parting of alcohol from water by distillation is a good one. Here we have atoms consisting of oxygen and hydrogen, mingled with atoms consisting of oxygen, hydrogen, and carbon. The two orders of atoms have a considerable similarity of nature: they similarly maintain a fluid form at ordinary temperatures; they similarly become gaseous more and more rapidly as the temperature is raised; and they boil at points not very far apart. Now this comparative likeness of the atoms is accompanied by difficulty in segregating them. If the mixed fluid is unduly heated, much water distils over with the alcohol: it is only within a narrow range of temperature, that the one set of atoms are driven off rather than the others; and even then not a few of the others accompany them. The most interesting and instructive example, however, is furnished by certain phenomena of crystallization. When several salts that have little analogy of constitution, are dissolved in the same body of water, they are separated without much trouble, by crystallization: their respective units moved towards each other, as physicists suppose, by polar forces, segregate into crystals of their respective kinds. The crystals of each salt do, indeed, usually contain certain small amounts of the other salts present in the solution�especially when the crystallization has been rapid; but from these other salts they are severally freed by repeated resolutions and crystallizations. Mark now, however, that the reverse is the case when the salts contained in the same body of water are chemically homologous. The nitrates of baryta and lead, or the sulphates of zinc, soda, and magnesia, unite in the same crystals; nor will they crystallize separately if these crystals be dissolved afresh, and afresh crystallized, even with great care. On seeking the cause of this anomaly, chemists found that such salts were isomorphous�that their atoms, though not chemically identical, were identical in the proportions of acid, base, and water, composing them, and in their crystalline forms: whence it was inferred that their atoms are nearly alike in structure. Thus is clearly illustrated the truth, that units of unlike kinds are differentiated and integrated with a readiness proportionate to the degree of their unlikeness. In the first case we see that being dissimilar in their forms, but similar in so far as they are soluble in water of a certain temperature, the atoms segregate, though imperfectly. In the second case we see that the atoms, having not only the likeness implied by solubility in the same menstruum, but also a great likeness of structure, do not segregate�are differentiated and integrated only under quite special conditions, and then very incompletely. That is, the incident force of mutual polarity impresses unlike motions on the mixed units in proportion as they are unlike; and therefore, in proportion as they are unlike, tends to deposit them in separate places. There is a converse cause of segregation, which it is needless here to treat of with equal fulness. If different units acted on by the same force, must be differently moved; so, too, must units of the same kind be differently moved by different forces. Supposing some group of units forming part of a homogeneous aggregate, are unitedly exposed to a force that is unlike in amount or direction to the force acting on the rest of the aggregate; then this group of units will separate from the rest, provided that, of the force so acting on it, there remains any portion not dissipated in molecular vibrations, nor absorbed in producing molecular re-arrangements. After all that has been said above, this proposition needs no defence. Before ending our preliminary exposition, a complementary truth must be specified; namely, that mixed forces are segregated by the reaction of uniform matters, just as mixed matters are segregated by the action of uniform forces. Of this truth a complete and sufficient illustration is furnished by the dispersion of refracted light. A beam of light, made up of ethereal undulations of different orders, is not uniformly deflected by a homogeneous refracting body; but the different orders of undulations it contains, are deflected at different angles: the result being that these different orders of undulations are separated and integrated, and so produce what we know as the colours of the spectrum. A segregation of another kind occurs when rays of light traverse an obstructing medium. Those rays which consist of comparatively short undulations, are absorbed before those which consist of comparatively long ones; and the red rays, which consist of the longest undulations, alone penetrate when the obstruction is very great. How, conversely, there is produced a separation of like forces by the reaction of unlike matters, is also made manifest by the phenomena of refraction: since adjacent and parallel beams of light, falling on, and passing through, unlike substances, are made to diverge. * * * * * § 124. On the assumption of their nebular origin, stars and planets exemplify that cause of material integration last assigned�the action of unlike forces on like units. In a preceding chapter (§ 110) we saw that if matter ever existed in a diffused form, it could not continue uniformly distributed, but must break up into masses. It was shown that in the absence of a perfect balance of mutual attractions among atoms dispersed through unlimited space, there must arise breeches of continuity throughout the aggregate formed by them, and a concentration of it towards centres of dominant attraction. Where any such breech of continuity occurs, and the atoms that were before adjacent separate from each other; they do so in consequence of a difference in the forces to which they are respectively subject. The atoms on the one side of the breech are exposed to a certain surplus attraction in the direction in which they begin to move; and those on the other to a surplus attraction in the opposite direction. That is, the adjacent groups of like units are exposed to unlike resultant forces; and accordingly separate and integrate. The formation and detachment of a nebulous ring, illustrates the same general principle. To conclude, as Laplace did, that the equatorial portion of a rotating nebulous spheroid, will, during concentration, acquire a centrifugal force sufficient to prevent it from following the rest of the contracting mass, is to conclude that such portions will remain behind as are in common subject to a certain differential force. The line of division between the ring and the spheroid, must be a line inside of which the aggregative force is greater than the force resisting aggregation; and outside of which the force resisting aggregation is greater than the aggregative force. Hence the alleged process conforms to the law that among like units, separation and integration is produced by the action of unlike forces. Astronomical phenomena do not furnish any other than these hypothetical examples. In its present comparatively settled condition, the Solar System exhibits no direct evidence of progressing integration: unless indeed under the insignificant form of the union of meteoric masses with the Earth, and, occasionally perhaps, of cometary matter with the Sun. * * * * * § 125. Those geologic changes usually classed as aqueous, display under numerous forms the segregation of unlike units by a uniform incident force. On sea-shores, the waves are ever sorting-out and separating the mixed materials against which they break. From each mass of fallen cliff, the rising and ebbing tide carries away all those particles which are so small as to remain long suspended in the water; and, at some distance from shore, deposits them in the shape of fine sediment. Large particles, sinking with comparative rapidity, are accumulated into beds of sand near low water-mark. The coarse grit and small pebbles collect together on the incline up which the breakers rush. And on the top lie the larger stones and boulders. Still more specific segregations may occasionally be observed. Flat pebbles, produced by the breaking down of laminated rock, are sometimes separately collected in one part of a shingle bank. On this shore the deposit is wholly of mud; on that it is wholly of sand. Here we find a sheltered cove filled with small pebbles almost of one size; and there, in a curved bay one end of which is more exposed than the other, we see a progressive increase in the massiveness of the stones as we walk from the less exposed to the more exposed end. Indeed, our sedimentary strata form one vast series of illustrations of the alleged law. Trace the history of each deposit, and we are quickly led down to the fact, that mixed fragments of matter, differing in their sizes or weights, are, when exposed to the momentum and friction of water, joined with the attraction of the Earth, selected from each other, and united into groups of comparatively like fragments. We see that, other things equal, the separation is definite in proportion as the differences of the units are marked; and that, under the action of the same aggregate of forces, the most widely unlike units are most widely removed from each other. Among igneous changes we do not find so many examples of the process described. When specifying the conditions to Evolution, it was pointed out (§ 104) that molecular vibration exceeding a certain intensity, does not permit those integrations which result from the action of minor differential forces. Nevertheless, geological phenomena of this order are not barren of illustrations. Where the mixed matters composing the Earth�s crust have been raised to a very high temperature, segregation habitually takes place as the temperature diminishes. Sundry of the substances that escape in a gaseous form from volcanoes, sublime into crystals on coming against cool surfaces; and solidifying, as these substances do, at different temperatures, they are deposited at different parts of the crevices through which they are emitted together. The best illustration, however, is furnished by the changes that occur during the slow cooling of igneous rock. When, through one of the fractures from time to time made in the solid shell which forms the Earth�s crust, a portion of the molten nucleus is extruded; and when this is cooled with comparative rapidity, through free radiation and contact with cold masses; it forms a substance known as trap or basalt�a substance that is uniform in texture, though made up of various ingredients. But when, not escaping through the superficial strata, such a portion of the molten nucleus is slowly cooled, it becomes what we know as granite: the mingled particles of quartz, feldspar, and mica, being kept for a long time in a fluid and semi-fluid state�a state of comparative mobility�undergo those changes of position which the forces impressed on them by their fellow units necessitate. Having time in which to generate the requisite motions of the atoms, the differential forces arising from mutual polarity, segregate the quartz, feldspar, and mica, into crystals. How completely this is dependent on the long-continued agitation of the mixed particles, and consequent long-continued mobility by small differential forces, is proved by the fact that in granite dykes, the crystals in the centre of the mass, where the fluidity or semi-fluidity continued for a longer time, are much larger than those at the sides, where contact with the neighbouring rock caused more rapid cooling and solidification. * * * * * § 126. The actions going on throughout an organism are so involved and subtle, that we cannot expect to identify the particular forces by which particular integrations are effected. Among the few instances admitting of tolerably definite interpretation, the best are those in which mechanical pressures and tensions are the agencies at work. We shall discover several on studying the bony frame of the higher animals. The vertebral column of a man, is subject, as a whole, to certain general strains�the weight of the body, together with the reactions involved by all considerable muscular efforts; and in conformity with this, it has a certain general integration. At the same time, being exposed to different forces in the course of those lateral bendings which the movements necessitate, its parts retain a certain separateness. And if we trace up the development of the vertebral column from its primitive form of a cartilaginous cord in the lowest fishes, we see that, throughout, it maintains an integration corresponding to the unity of the incident forces, joined with a division into segments corresponding to the variety of the incident forces. Each segment, considered apart, exemplifies the truth more simply. A vertebra is not a single bone, but consists of a central mass with sundry appendages or processes; and in rudimentary types of vertebræ, those appendages are quite separate from the central mass, and, indeed, exist before it makes its appearance. But these several independent bones, constituting a primitive spinal segment, are subject to a certain aggregate of forces which agree more than they differ: as the fulcrum to a group of muscles habitually acting together, they perpetually undergo certain reactions in common. And accordingly, we see that in the course of development they gradually coalesce. Still clearer is the illustration furnished by spinal segments that become fused together where they are together exposed to some predominant strain. The sacrum consists of a group of vertebræ firmly united. In the ostrich and its congeners there are from seventeen to twenty sacral vertebræ; and besides being confluent with each other, these are confluent with the iliac bones, which run on each side of them. If now we assume these vertebræ to have been originally separate, as they still are in the embryo bird; and if we consider the mechanical conditions to which they must in such case have been exposed; we shall see that their union results in the alleged way. For through these vertebræ the entire weight of the body is transferred to the legs: the legs support the pelvic arch; the pelvic arch supports the sacrum; and to the sacrum is articulated the rest of the spine, with all the limbs and organs attached to it. Hence, if separate, the sacral vertebræ must be held firmly together by strongly-contracted muscles; and must, by implication, be prevented from partaking in those lateral movements which the other vertebræ undergo�they must be subject to a common strain, while they are preserved from strains which would affect them differently; and so they fulfil the conditions under which integration occurs. But the cases in which cause and effect are brought into the most obvious relation, are supplied by the limbs. The metacarpal bones (those which in man support the palm of the hand) are separate from each other in the majority of mammalia: the separate actions of the toes entailing on them slight amounts of separate movements. This is not so however in the ox-tribe and the horse-tribe. In the ox-tribe, only the middle metacarpals (third and fourth) are developed; and these, attaining massive proportions, coalesce to form the cannon bone. In the horse-tribe, the integration is what we may distinguish as indirect: the second and fourth metacarpals are present only as rudiments united to the sides of the third, while the third is immensely developed; thus forming a cannon bone which differs from that of the ox in being a single cylinder, instead of two cylinders fused together. The metatarsus in these quadrupeds exhibits parallel changes. Now each of these metamorphoses occurs where the different bones grouped together have no longer any different functions, but retain only a common function. The feet of oxen and horses are used solely for locomotion�are not put like those of unguiculate mammals to purposes which involve some relative movements of the metacarpals. Thus there directly or indirectly results a single mass of bone where the incident force is single. And for the inference that these facts have a causal connexion, we find confirmation throughout the entire class of birds; in the wings and legs of which, like integrations are found under like conditions. While this sheet is passing through the press, a fact illustrating this general truth in a yet more remarkable manner, has been mentioned to me by Prof. Huxley; who kindly allows me to make use of it while still unpublished by him. The _Glyptodon_, an extinct mammal found fossilized in South America, has long been known as a large uncouth creature allied to the Armadillo, but having a massive dermal armour consisting of polygonal plates closely fitted together so as to make a vast box, inclosing the body in such way as effectually to prevent it from being bent, laterally or vertically, in the slightest degree. This bony box, which must have weighed several hundred-weight, was supported on the spinous processes of the vertebræ, and on the adjacent bones of the pelvic and thoracic arches. And the significant fact now to be noted, is, that here, where the trunk vertebræ were together exposed to the pressure of this heavy dermal armour, at the same time that, by its rigidity, they were preserved from all relative movements, the entire series of them were united into one solid, continuous bone. The formation and maintenance of a species, considered as an assemblage of similar organisms, is interpretable in an analogous way. We have already seen that in so far as the members of a species are subject to different sets of incident forces, they are differentiated, or divided into varieties. And here it remains to add that in so far as they are subject to like sets of incident forces, they are integrated, or reduced to, and kept in, the state of a uniform aggregate. For by the process of �natural selection,� there is a continual purification of each species from those individuals which depart from the common type in ways that unfit them for the conditions of their existence. Consequently, there is a continual leaving behind of those individuals which are in all respects fit for the conditions of their existence; and are therefore very nearly alike. The circumstances to which any species is exposed, being, as we before saw, an involved combination of incident forces; and the members of the species having mixed with them some that differ more than usual from the average structure required for meeting these forces; it results that these forces are constantly separating such divergent individuals from the rest, and so preserving the uniformity of the rest�keeping up its integrity as a species. Just as the changing autumn leaves are picked out by the wind from among the green ones around them, or just as, to use Prof. Huxley�s simile, the smaller fragments pass through the sieve while the larger are kept back; so, the uniform incidence of external forces affects the members of a group of organisms similarly in proportion as they are similar, and differently in proportion as they are different; and thus is ever segregating the like by parting the unlike from them. Whether these separated members are killed off, as mostly happens, or whether, as otherwise happens, they survive and multiply into a distinct variety, in consequence of their fitness to certain partially unlike conditions, matters not to the argument. The one case conforms to the law, that the unlike units of an aggregate are differentiated and integrated when uniformly subject to the same incident forces; and the other to the converse law, that the like units of an aggregate are differentiated and integrated when subject to different incident forces. And on consulting Mr. Darwin�s remarks on divergence of character, it will be seen that the segregations thus caused tend ever to become more definite. * * * * * § 127. Mental evolution under one of its leading aspects, we found to consist in the formation of groups of like objects and like relations�a differentiation of the various things originally confounded together in one assemblage, and an integration of each separate order of things into a separate group (§ 113). Here it remains to point out that while unlikeness in the incident forces is the cause of such differentiations, likeness in the incident forces is the cause of such integrations. For what is the process through which classifications are established? At first, in common with the uninitiated, the botanist recognizes only such conventional divisions as those which agriculture has established�distinguishes a few vegetables and cereals, and groups the rest together into the one miscellaneous aggregate of wild plants. How do these wild plants become grouped in his mind into orders, genera, and species? Each plant he examines yields him a certain complex impression. Every now and then he picks up a plant like one before seen; and the recognition of it is the production in him of a like connected group of sensations, by a like connected group of attributes. That is to say, there is produced throughout the nerves concerned, a combined set of changes, similar to a combined set of changes before produced. Considered analytically, each such combined set of changes is a combined set of molecular modifications wrought in the affected part of the organism. On every repetition of the impression, a like combined set of molecular modifications is superposed on the previous ones, and makes them greater: thus generating an internal idea corresponding to these similar external objects. Meanwhile, another kind of plant produces in the brain of the botanist another set of combined changes or molecular modifications�a set which does not agree with and deepen the one we have been considering, but disagrees with it; and by repetition of such there is generated a different idea answering to a different species. What now is the nature of this process expressed in general terms? On the one hand there are the like and unlike things from which severally emanate the groups of forces by which we perceive them. On the other hand, there are the organs of sense and percipient centres, through which, in the course of observation, these groups of forces pass. In passing through these organs of sense and percipient centres, the like groups of forces are segregated, or separated from the unlike groups of forces; and each such differentiated and integrated series of groups of forces, answering to an external genus or species, constitutes a state of consciousness which we call our idea of the genus or species. We before saw that as well as a separation of mixed matters by the same force, there is a separation of mixed forces by the same matter; and here we may further see that the unlike forces so separated, work unlike structural changes in the aggregate that separates them�structural changes each of which thus represents, and is equivalent to, the integrated series of motions that has produced it. By a parallel process, the connexions of co-existence and sequence among impressions, become differentiated and integrated simultaneously with the impressions themselves. When two phenomena that have been experienced in a given order, are repeated in the same order, those nerves which before were affected by the transition are again affected; and such molecular modification as they received from the first motion propagated through them, is increased by this second motion along the same route. Each such motion works a structural alteration, which, in conformity with the general law set forth in Chapter X., involves a diminution of the resistance to all such motions that afterwards occur. The integration of these successive motions (or more strictly, the permanently effective portions of them expended in overcoming resistance) thus becomes the cause of, and the measure of, the mental connexion between the impressions which the phenomena produce. Meanwhile, phenomena that are recognized as different from these, being phenomena that therefore affect different nervous elements, will have their connexions severally represented by motions along other routes; and along each of these other routes, the nervous discharges will severally take place with a readiness proportionate to the frequency with which experience repeats the connexion of phenomena. The classification of relations must hence go on _pari passu_ with the classification of the related things. In common with the mixed sensations received from the external world, the mixed relations it presents, cannot be impressed on the organism without more or less segregation of them resulting. And through this continuous differentiation and integration of changes or motions, which constitutes nervous function, there is gradually wrought that differentiation and integration of matter, which constitutes nervous structure. * * * * * § 128. In social evolution, the collecting together of the like and the separation of the unlike, by incident forces, is primarily displayed in the same manner as we saw it to be among groups of inferior creatures. The human races tend to differentiate and integrate, as do races of other living forms. Of the forces which effect and maintain the segregations of mankind, may first be named those external ones which we class as physical conditions. The climate and food that are favourable to an indigenous people, are more or less detrimental to a people of different bodily constitution, coming from a remote part of the Earth. In tropical regions the northern races cannot permanently exist: if not killed off in the first generation, they are so in the second; and, as in India, can maintain their footing only by the artificial process of continuous immigration and emigration. That is to say, the external forces acting equally on the inhabitants of a given locality, tend to expel all who are not of a certain type; and so to keep up the integration of those who are of that type. Though elsewhere, as among European nations, we see a certain amount of permanent intermixture, otherwise brought about, we still see that this takes place between races of not very different types, that are naturalized to not very different conditions. The other forces conspiring to produce these national integrations, are those mental ones which show themselves in the affinities of men for others like themselves. Emigrants usually desire to get back among their own people; and where their desire does not take effect, it is only because the restraining ties are too great. Units of one society who are obliged to reside in another, very generally form colonies in the midst of that other�small societies of their own. Races which have been artificially severed, show strong tendencies to re-unite. Now though these integrations that result from the mutual affinities of kindred men, do not seem interpretable as illustrations of the general principle above enunciated, they really are thus interpretable. When treating of the direction of motion (§ 91), it was shown that the actions performed by men for the satisfaction of their wants, were always motions along lines of least resistance. The feelings characterizing a member of a given race, are feelings which get complete satisfaction only among other members of that race�a satisfaction partly derived from sympathy with those having like feelings, but mainly derived from the adapted social conditions which grow up where such feelings prevail. When, therefore, a citizen of any nation is, as we see, attracted towards others of his nation, the rationale is, that certain agencies which we call desires, move him in the direction of least resistance. Human motions, like all other motions, being determined by the distribution of forces, it follows that such integrations of races as are not produced by incident external forces, are produced by forces which the units of the races exercise on each other. During the development of each society, we see analogous segregations caused in analogous ways. A few of them result from minor natural affinities; but those most important ones which constitute political and industrial organization, result from the union of men in whom similarities have been produced by education�using education in its widest sense, as comprehending all processes by which citizens are moulded to special functions. Men brought up to bodily labour, are men who have had wrought in them a certain likeness�a likeness which, in respect of their powers of action, obscures and subordinates their natural differences. Those trained to brain-work, have acquired a certain other community of character which makes them, as social units, more like each other than like those trained to manual occupations. And there arise class-integrations answering to these superinduced likenesses. Much more definite integrations take place among the much more definitely assimilated members of any class who are brought up to the same calling. Even where the necessities of their work forbid concentration in one locality, as among artizans happens with masons and brick-layers, and among traders happens with the retail distributors, and among professionals happens with the medical men; there are not wanting Operative Builders Unions, and Grocers Societies, and Medical Associations, to show that these artificially-assimilated citizens become integrated as much as the conditions permit. And where, as among the manufacturing classes, the functions discharged do not require the dispersion of the citizens thus artificially assimilated, there is a progressive aggregation of them in special localities; and a consequent increase in the definiteness of the industrial divisions. If now we seek the causes of these integrations, considered as results of force and motion, we find ourselves brought to the same general principle as before. This likeness generated in any class or subclass by training, is an aptitude acquired by its members for satisfying their wants in like ways. That is, the occupation to which each man has been brought up, has become to him, in common with those similarly brought up, a line of least resistance. Hence under that pressure which determines all men to activity, these similarly-modified social units are similarly affected, and tend to take similar courses. If then there be any locality which, either by its physical peculiarities or by peculiarities wrought on it during social evolution, is rendered a place where a certain kind of industrial action meets with less resistance than elsewhere; it follows from the law of direction of motion that those social units who have been moulded to this kind of industrial action, will move towards this place, or become integrated there. If, for instance, the proximity of coal and iron mines to a navigable river, gives to Glasgow a certain advantage in the building of iron ships�if the total labour required to produce the same vessel, and get its equivalent in food and clothing, is less there than elsewhere; a concentration of iron-ship builders is produced at Glasgow: either by keeping there the population born to iron-ship building; or by immigration of those elsewhere engaged in it; or by both�a concentration that would be still more marked did not other districts offer counter-balancing facilities. The principle equally holds where the occupation is mercantile instead of manufacturing. Stock-brokers cluster together in the city, because the amount of effort to be severally gone through by them in discharging their functions, and obtaining their profits, is less there than in other localities. A place of exchange having once been established, becomes a place where the resistance to be overcome by each is less than elsewhere; and the pursuit of the course of least resistance by each, involves their aggregation around this place. Of course, with units so complicated as those which constitute a society, and with forces so involved as those which move them, the resulting differentiations and integrations must be far more entangled, or far less definite, than those we have hitherto considered. But though there may be pointed out many anomalies which at first sight seem inconsistent with the alleged law, a closer study shows that they are but subtler illustrations of it. For men�s likenesses being of various kinds, lead to various order of integration. There are likenesses of disposition, likenesses of taste, likenesses produced by intellectual culture, likenesses that result from class-training, likenesses of political feeling; and it needs but to glance round at the caste-divisions, the associations for philanthropic, scientific, and artistic purposes, the religious parties and social cliques; to see that some species of likeness among the component members of each body determines their union. Now these different integrations, by traversing each other, and often by their indirect antagonism, more or less obscure each other; and prevent any one kind of integration from becoming complete. Hence the anomalies referred to. But if this cause of incompleteness be duly borne in mind, social segregations will be seen to conform entirely to the same principle as all other segregations. Analysis will show that either by external incident forces, or by what we may in a sense regard as mutual polarity, there are ever being produced in society integrations of those units which have either a natural likeness or a likeness generated by training. * * * * * § 129. Can the general truth thus variously illustrated be deduced from the persistence of force, in common with foregoing ones? Probably the exposition at the beginning of the chapter will have led most readers to conclude that it can be so deduced. The abstract propositions involved are these:�First, that like units, subject to a uniform force capable of producing motion in them, will be moved to like degrees in the same direction. Second, that like units if exposed to unlike forces capable of producing motion in them, will be differently moved�moved either in different directions or to different degrees in the same direction. Third, that unlike units if acted on by a uniform force capable of producing motion in them, will be differently moved�moved either in different directions or to different degrees in the same direction. Fourth, that the incident forces themselves must be affected in analogous ways: like forces falling on like units must be similarly modified by the conflict; unlike forces falling on like units must be dissimilarly modified; and like forces falling on unlike units must be dissimilarly modified. These propositions admit of reduction to a still more abstract form. They all of them amount to this:�that in the actions and reactions of force and matter, an unlikeness in either of the factors necessitates an unlikeness in the effects; and that in the absence of unlikeness in either of the factors the effects must be alike. When thus generalized, the immediate dependence of these propositions on the persistence of force, becomes obvious. Any two forces that are not alike, are forces which differ either in their amounts or directions or both; and by what mathematicians call the resolution of forces, it may be proved that this difference is constituted by the presence in the one of some force not present in the other. Similarly, any two units or portions of matter which are unlike in size, weight, form, or other attribute, can be known by us as unlike only through some unlikeness in the forces they impress on our consciousness; and hence this unlikeness also, is constituted by the presence in the one of some force or forces not present in the other. Such being the common nature of these unlikenesses, what is the inevitable corollary? Any unlikeness in the incident forces, where the things acted on are alike, must generate a difference between the effects; since otherwise, the differential force produces no effect, and force is not persistent. Any unlikeness in the things acted on, where the incident forces are alike, must generate a difference between the effects; since otherwise, the differential force whereby these things are made unlike, produces no effect, and force is not persistent. While, conversely, if the forces acting and the things acted on, are alike, the effects must be alike; since otherwise, a differential effect can be produced without a differential cause, and force is not persistent. Thus these general truths being necessary implications of the persistence of force, all the re-distributions above traced out as characterizing Evolution in its various phases, are also implications of the persistence of force. Such portions of the permanently effective forces acting on any aggregate, as produce sensible motions in its parts, cannot but work the segregations which we see take place. If of the mixed units making up such aggregate, those of the same kind have like motions impressed on them by a uniform force, while units of another kind are moved by this uniform force in ways more or less unlike the ways in which those of the first kind are moved, the two kinds must separate and integrate. If the units are alike and the forces unlike, a division of the differently affected units is equally necessitated. Thus there inevitably arises the demarcated grouping which we everywhere see. By virtue of this segregation that grows ever more decided while there remains any possibility of increasing it, the change from uniformity to multiformity is accompanied by a change from indistinctness in the relations of parts to distinctness in the relations of parts. As we before saw that the transformation of the homogeneous into the heterogeneous is inferrable from that ultimate truth which transcends proof; so we here see, that from this same truth is inferrable the transformation of an indefinite homogeneity into a definite heterogeneity. CHAPTER XVI. EQUILIBRATION. § 130. And now towards what do these changes tend? Will they go on for ever? or will there be an end to them? Can things increase in heterogeneity through all future time? or must there be a degree which the differentiation and integration of Matter and Motion cannot pass? Is it possible for this universal metamorphosis to proceed in the same general course indefinitely? or does it work towards some ultimate state, admitting no further modification of like kind? The last of these alternative conclusions is that to which we are inevitably driven. Whether we watch concrete processes, or whether we consider the question in the abstract, we are alike taught that Evolution has an impassable limit. The re-distributions of matter that go on around us, are ever being brought to conclusions by the dissipation of the motions which effect them. The rolling stone parts with portions of its momentum to the things it strikes, and finally comes to rest; as do also, in like manner, the various things it has struck. Descending from the clouds and trickling over the Earth�s surface till it gathers into brooks and rivers, water, still running towards a lower level, is at last arrested by the resistance of other water that has reached the lowest level. In the lake or sea thus formed, every agitation raised by a wind or the immersion of a solid body, propagates itself around in waves that diminish as they widen, and gradually become lost to observation in motions communicated to the atmosphere and the matter on the shores. The impulse given by a player to the harp-string, is transformed through its vibrations into aerial pulses; and these, spreading on all sides, and weakening as they spread, soon cease to be perceptible; and finally die away in generating thermal undulations that radiate into space. Equally in the cinder that falls out of the fire, and in the vast masses of molten lava ejected by a volcano, we see that the molecular agitation known to us as heat, disperses itself by radiation; so that however great its amount, it inevitably sinks at last to the same degree as that existing in surrounding bodies. And if the actions observed be electrical or chemical, we still find that they work themselves out in producing sensible or insensible movements, that are dissipated as before; until quiescence is eventually reached. The proximate rationale of the process exhibited under these several forms, lies in the fact dwelt on when treating of the Multiplication of Effects, that motions are ever being decomposed into divergent motions, and these into re-divergent motions. The rolling stone sends off the stones it hits in directions differing more or less from its own; and they do the like with the things they hit. Move water or air, and the movement is quickly resolved into radiating movements. The heat produced by pressure in a given direction, diffuses itself by undulations in all directions; and so do the light and electricity similarly generated. That is to say, these motions undergo division and subdivision; and by continuance of this process without limit, they are, though never lost, gradually reduced to insensible motions. In all cases then, there is a progress toward equilibration. That universal co-existence of antagonist forces which, as we before saw, necessitates the universality of rhythm, and which, as we before saw, necessitates the decomposition of every force into divergent forces, at the same time necessitates the ultimate establishment of a balance. Every motion being motion under resistance, is continually suffering deductions; and these unceasing deductions finally result in the cessation of the motion. The general truth thus illustrated under its simplest aspect, we must now look at under those more complex aspects it usually presents throughout Nature. In nearly all cases, the motion of an aggregate is compound; and the equilibration of each of its components, being carried on independently, does not affect the rest. The ship�s bell that has ceased to vibrate, still continues those vertical and lateral oscillations caused by the ocean-swell. The water of the smooth stream on whose surface have died away the undulations caused by the rising fish, moves as fast as before onward to the sea. The arrested bullet travels with undiminished speed round the Earth�s axis. And were the rotation of the Earth destroyed, there would not be implied any diminution of the Earth�s movement with respect to the Sun and other external bodies. So that in every case, what we regard as equilibration is a disappearance of some one or more of the many movements which a body possesses, while its other movements continue as before. That this process may be duly realized and the state of things towards which it tends fully understood, it will be well here to cite a case in which we may watch this successive equilibration of combined movements more completely than we can do in those above instanced. Our end will best be served, not by the most imposing, but by the most familiar example. Let us take that of the spinning top. When the string which has been wrapped round a top�s axis is violently drawn off, and the top falls on to the table, it usually happens that besides the rapid rotation, two other movements are given to it. A slight horizontal momentum, unavoidably impressed on it when leaving the handle, carries it away bodily from the place on which it drops; and in consequence of its axis being more or less inclined, it falls into a certain oscillation, described by the expressive though inelegant word��wabbling.� These two subordinate motions, variable in their proportions to each other and to the chief motion, are commonly soon brought to a close by separate processes of equilibration. The momentum which carries the top bodily along the table, resisted somewhat by the air, but mainly by the irregularities of the surface, shortly disappears; and the top thereafter continues to spin on one spot. Meanwhile, in consequence of that opposition which the axial momentum of a rotating body makes to any change in the plane of rotation, (so beautifully exhibited by the gyroscope,) the �wabbling� diminishes; and like the other is quickly ended. These minor motions having been dissipated, the rotatory motion, interfered with only by atmospheric resistance and the friction of the pivot, continues some time with such uniformity that the top appears stationary: there being thus temporarily established a condition which the French mathematicians have termed _equilibrium mobile_. It is true that when the axial velocity sinks below a certain point, new motions commence, and increase till the top falls; but these are merely incidental to a case in which the centre of gravity is above the point of support. Were the top, having an axis of steel, to be suspended from a surface adequately magnetized, all the phenomena described would be displayed, and the moving equilibrium having been once arrived at, would continue until the top became motionless, without any further change of position. Now the facts which it behoves us here to observe, are these. First, that the various motions which an aggregate possesses are separately equilibrated: those which are smallest, or which meet with the greatest resistance, or both, disappearing first; and leaving at last, that which is greatest, or meets with least resistance, or both. Second, that when the aggregate has a movement of its parts with respect to each other, which encounters but little external resistance, there is apt to be established an _equilibrium mobile_. Third, that this moving equilibrium eventually lapses into complete equilibrium. Fully to comprehend the process of equilibration, is not easy; since we have simultaneously to contemplate various phases of it. The best course will be to glance separately at what we may conveniently regard as its four different orders. The first order includes the comparatively simple motions, as those of projectiles, which are not prolonged enough to exhibit their rhythmical character; but which, being quickly divided and subdivided into motions communicated to other portions of matter, are presently dissipated in the rhythm of ethereal undulations. In the second order, comprehending the various kinds of vibration or oscillation as usually witnessed, the motion is used up in generating a tension which, having become equal to it or momentarily equilibrated with it, thereupon produces a motion in the opposite direction, that is subsequently equilibrated in like manner: thus causing a visible rhythm, that is, however, soon lost in invisible rhythms. The third order of equilibration, not hitherto noticed, obtains in those aggregates which continually receive as much motion as they expend. The steam engine (and especially that kind which feeds its own furnace and boiler) supplies an example. Here the force from moment to moment dissipated in overcoming the resistance of the machinery driven, is from moment to moment replaced from the fuel; and the balance of the two is maintained by a raising or lowering of the expenditure according to the variation of the supply: each increase or decrease in the quantity of steam, resulting in a rise or fall of the engine�s movement, such as brings it to a balance with the increased or decreased resistance. This, which we may fitly call the _dependent_ moving equilibrium, should be specially noted; since it is one that we shall commonly meet with throughout various phases of Evolution. The equilibration to be distinguished as of the fourth order, is the _independent_ or perfect moving equilibrium. This we see illustrated in the rhythmical motions of the Solar System; which, being resisted only by a medium of inappreciable density, undergo no sensible diminution in such periods of time as we can measure. All these kinds of equilibration may, however, from the highest point of view, be regarded as different modes of one kind. For in every case the balance arrived at is relative, and not absolute�is a cessation of the motion of some particular body in relation to a certain point or points, involving neither the disappearance of the relative motion lost, which is simply transformed into other motions, nor a diminution of the body�s motions with respect to other points. Thus understanding equilibration, it manifestly includes that _equilibrium mobile_, which at first sight seems of another nature. For any system of bodies exhibiting, like those of the Solar System, a combination of balanced rhythms, has this peculiarity;�that though the constituents of the system have relative movements, the system as a whole has no movement. The centre of gravity of the entire group remains fixed. Whatever quantity of motion any member of it has in any direction, is from moment to moment counter-balanced by an equivalent motion in some other part of the group in an opposite direction; and so the aggregate matter of the group is in a state of rest. Whence it follows that the arrival at a state of moving equilibrium, is the disappearance of some movement which the aggregate had in relation to external things, and a continuance of those movements only which the different parts of the aggregate have in relation to each other. Thus generalizing the process, it becomes clear that all forms of equilibration are intrinsically the same; since in every aggregate, it is the centre of gravity only that loses its motion: the constituents always retaining some motion with respect to each other�the motion of molecules if none else. Those readers who happen to bear in mind a proposition concerning the functional characteristics of Evolution, which was set forth in Chapter XII, will probably regard it as wholly at variance with that set forth in this Chapter. It was there alleged that throughout Evolution, integration of matter is accompanied by integration of such motion as the matter previously had; and that thus there is a transformation of diffused motion into aggregated motion, parallel to the transformation of diffused matter into aggregated matter. Here however, it is asserted that every aggregate motion is constantly undergoing diffusion�every integrated motion undergoing perpetual disintegration. And so the motion of masses, which before was said gradually to arise out of molecular motion, is here said to be gradually lost in molecular motion. Doubtless these statements, if severally accepted without qualification, are contradictory. Neither of them, however, expresses the whole truth. Each needs the other as its indispensable complement. It is quite true, as before alleged, that there goes on an integration of motion corresponding to the integration of matter; and that this essential characteristic of Evolution, functionally considered, is clearly displayed in proportion as the Evolution is active. But the disintegration of motion, which, as we before saw, constitutes Dissolution, functionally considered, is all along going on; and though at first it forms but a small deduction from the change constituting Evolution, it gradually becomes equal to it, and eventually exceeding it, entails reverse changes. The aggregation of matter never being complete, but leaving behind less aggregated or unaggregated matter, in the shape of liquid, aeriform, or ethereal media; it results that from the beginning, the integrated motion of integrated masses, is ever being obstructed by these less integrated or unintegrated media. So that though while the integration of matter is rapidly going on, there is an increase of integrated motion, spite of the deductions thus continually made from it, there comes a time when the integration of matter and consequently of motion, ceases to increase, or increases so slowly that the deductions counterbalance it; and thenceforth these begin to decrease it, and, by its perpetual diffusion, to bring about a relative equilibration. From the beginning, the process of Evolution is antagonized by a process of Dissolution; and while the first for a long time predominates, the last finally arrests and reverses it. Returning from this parenthetical explanation, we must now especially note two leading truths brought out by the foregoing exposition: the one concerning the ultimate, or rather the penultimate, state of motion which the processes described tend to bring about; the other concerning the concomitant distribution of matter. This penultimate state of motion is the moving equilibrium; which, as we have seen, tends to arise in an aggregate having compound motions, as a transitional state on the way towards complete equilibrium. Throughout Evolution of all kinds, there is a continual approximation to, and more or less complete maintenance of, this moving equilibrium. As in the Solar System there has been established an independent moving equilibrium�an equilibrium such that the relative motions of the constituent parts are continually so counter-balanced by opposite motions, that the mean state of the whole aggregate never varies; so is it, though in a less distinct manner, with each form of dependent moving equilibrium. The state of things exhibited in the cycles of terrestrial changes, in the balanced functions of organic bodies that have reached their adult forms, and in the acting and re-acting processes of fully-developed societies, is similarly one characterized by compensating oscillations. The involved combination of rhythms seen in each of these cases, has an average condition which remains practically constant during the deviations ever taking place on opposite sides of it. And the fact which we have here particularly to observe, is, that as a corollary from the general law of equilibration above set forth, the evolution of every aggregate must go on until this _equilibrium mobile_ is established; since, as we have seen, an excess of force which the aggregate possesses in any direction, must eventually be expended in overcoming resistances to change in that direction: leaving behind only those movements which compensate each other, and so form a moving equilibrium. Respecting the structural state simultaneously reached, it must obviously be one presenting an arrangement of forces that counterbalance all the forces to which the aggregate is subject. So long as there remains a residual force in any direction�be it excess of a force exercised by the aggregate on its environment, or of a force exercised by its environment on the aggregate, equilibrium does not exist; and therefore the re-distribution of matter must continue. Whence it follows that the limit of heterogeneity towards which every aggregate progresses, is the formation of as many specializations and combinations of parts, as there are specialized and combined forces to be met. * * * * * § 131. Those successively changed forms which, if the nebular hypothesis be granted, must have arisen during the evolution of the Solar System, were so many transitional kinds of moving equilibrium; severally giving place to more permanent kinds on the way towards complete equilibration. Thus the assumption of an oblate spheroidal figure by condensing nebulous matter, was the assumption of a temporary and partial moving equilibrium among the component parts�a moving equilibrium that must have slowly grown more settled, as local conflicting movements were dissipated. In the formation and detachment of the nebulous rings, which, according to this hypothesis, from time to time took place, we have instances of progressive equilibration ending in the establishment of a complete moving equilibrium. For the genesis of each such ring, implies a perfect balancing of that aggregative force which the whole spheroid exercises on its equatorial portion, by that centrifugal force which the equatorial portion has acquired during previous concentration: so long as these two forces are not equal, the equatorial portion follows the contracting mass; but as soon as the second force has increased up to an equality with the first, the equatorial portion can follow no further, and remains behind. While, however, the resulting ring, regarded as a whole connected by forces with external wholes, has reached a state of moving equilibrium; its parts are not balanced with respect to each other. As we before saw (§ 110) the probabilities against the maintenance of an annular form by nebulous matter, are immense: from the instability of the homogeneous, it is inferrable that nebulous matter so distributed must break up into portions; and eventually concentrate into a single mass. That is to say, the ring must progress towards a moving equilibrium of a more complete kind, during the dissipation of that motion which maintained its particles in a diffused form: leaving at length a planetary body, attended perhaps by a group of minor bodies, severally having residuary relative motions that are no longer resisted by sensible media; and there is thus constituted an _equilibrium mobile_ that is all but absolutely perfect.[18] Hypothesis aside, the principle of equilibration is still perpetually illustrated in those minor changes of state which the Solar System is undergoing. Each planet, satellite, and comet, exhibits to us at its aphelion a momentary equilibrium between that force which urges it further away from its primary, and that force which retards its retreat; since the retreat goes on until the last of these forces exactly counterpoises the first. In like manner at perihelion a converse equilibrium is momentarily established. The variation of each orbit in size, in eccentricity, and in the position of its plane, has similarly a limit at which the forces producing change in the one direction, are equalled by those antagonizing it; and an opposite limit at which an opposite arrest takes place. Meanwhile, each of these simple perturbations, as well as each of the complex ones resulting from their combination, exhibits, besides the temporary equilibration at each of its extremes, a certain general equilibration of compensating deviations on either side of a mean state. That the moving equilibrium thus constituted, tends, in the course of indefinite time, to lapse into a complete equilibrium, by the gradual decrease of planetary motions and eventually integration of all the separate masses composing the Solar System, is a belief suggested by certain observed cometary retardations, and entertained by some of high authority. The received opinion that the appreciable diminution in the period of Encke�s comet, implies a loss of momentum caused by resistance of the ethereal medium, commits astronomers who hold it, to the conclusion that this same resistance must cause a loss of planetary motions�a loss which, infinitesimal though it may be in such periods as we can measure, will, if indefinitely continued, bring these motions to a close. Even should there be, as Sir John Herschel suggests, a rotation of the ethereal medium in the same direction with the planets, this arrest, though immensely postponed, would not be absolutely prevented. Such an eventuality, however, must in any case be so inconceivably remote as to have no other than a speculative interest for us. It is referred to here, simply as illustrating the still-continued tendency towards complete equilibrium, through the still-continued dissipation of sensible motion, or transformation of it into insensible motion. But there is another species of equilibration going on in the Solar System, with which we are more nearly concerned�the equilibration of that molecular motion known as heat. The tacit assumption hitherto current, that the Sun can continue to give off an undiminished amount of light and heat through all future time, is fast being abandoned. Involving as it does, under a disguise, the conception of power produced out of nothing, it is of the same order as the belief that misleads perpetual-motion schemers. The spreading recognition of the truth that force is persistent, and that consequently whatever force is manifested under one shape must previously have existed under another shape, is carrying with it a recognition of the truth that the force known to us in solar radiations, is the changed form of some other force of which the Sun is the seat; and that by the gradual dissipation of these radiations into space, this other force is being slowly exhausted. The aggregative force by which the Sun�s substance is drawn to his centre of gravity, is the only one which established physical laws warrant us in suspecting to be the correlate of the forces thus emanating from him: the only source of a known kind that can be assigned for the insensible motions constituting solar light and heat, is the sensible motion which disappears during the progressing concentration of the Sun�s substance. We before saw it to be a corollary from the nebular hypothesis, that there is such a progressing concentration of the Sun�s substance. And here remains to be added the further corollary, that just as in the case of the smaller members of the Solar System, the heat generated by concentration, long ago in great part radiated into space, has left only a central residue that now escapes but slowly; so in the case of that immensely larger mass forming the Sun, the immensely greater quantity of heat generated and still in process of rapid diffusion, must, as the concentration approaches its limit, diminish in amount, and eventually leave only an inappreciable internal remnant. With or without the accompaniment of that hypothesis of nebular condensation, whence, as we see, it naturally follows, the doctrine that the Sun is gradually losing his heat, has now gained considerable currency; and calculations have been made, both respecting the amount of heat and light already radiated, as compared with the amount that remains, and respecting the period during which active radiation is likely to continue. Prof. Helmholtz estimates, that since the time when, according to the nebular hypothesis, the matter composing the Solar System extended to the orbit of Neptune, there has been evolved by the arrest of sensible motion, an amount of heat 454 times as great as that which the Sun still has to give out. He also makes an approximate estimate of the rate at which this remaining 1/454th is being diffused: showing that a diminution of the Sun�s diameter to the extent of 1/10,000, would produce heat, at the present rate, for more than 2000 years; or in other words, that a contraction of 1/20,000,000 of his diameter, suffices to generate the amount of light and heat annually emitted; and that thus, at the present rate of expenditure, the Sun�s diameter will diminish by something like 1/20 in the lapse of the next million years.[19] Of course these conclusions are not to be considered as more than rude approximations to the truth. Until quite recently, we have been totally ignorant of the Sun�s chemical composition; and even now have obtained but a superficial knowledge of it. We know nothing of his internal structure; and it is quite possible (probable, I believe,) that the assumptions respecting central density, made in the foregoing estimates, are wrong. But no uncertainty in the data on which these calculations proceed, and no consequent error in the inferred rate at which the Sun is expending his reserve of force, militates against the general proposition that this reserve of force _is_ being expended; and must in time be exhausted. Though the residue of undiffused motion in the Sun, may be much greater than is above concluded; though the rate of radiation cannot, as assumed, continue at a uniform rate, but must eventually go on with slowly-decreasing rapidity; and though the period at which the Sun will cease to afford us adequate light and heat, is very possibly far more distant than above implied; yet such a period must some time be reached, and this is all which it here concerns us to observe. Thus while the Solar System, if evolved from diffused matter, has illustrated the law of equilibration in the establishment of a complete moving equilibrium; and while, as at present constituted, it illustrates the law of equilibration in the balancing of all its movements; it also illustrates this law in the processes which astronomers and physicists infer are still going on. That motion of masses produced during Evolution, is being slowly re-diffused in molecular motion of the ethereal medium; both through the progressive integration of each mass, and the resistance to its motion through space. Infinitely remote as may be the state when all the motions of masses shall be transformed into molecular motion, and all the molecular motion equilibrated; yet such a state of complete integration and complete equilibration, is that towards which the changes now going on throughout the Solar System inevitably tend. * * * * * § 132. A spherical figure is the one which can alone equilibrate the forces of mutually-gravitating atoms. If the aggregate of such atoms has a rotatory motion, the form of equilibrium becomes a spheroid of greater or less oblateness, according to the rate of rotation; and it has been ascertained that the Earth is an oblate spheroid, diverging just as much from sphericity as is requisite to counterbalance the centrifugal force consequent on its velocity round its axis. That is to say, during the evolution of the Earth, there has been reached a complete equilibrium of those forces which affect its general outline. The only other process of equilibration which the Earth as a whole can exhibit, is the loss of its axial motion; and that any such loss is going on, we have no direct evidence. It has been contended, however, by Prof. Helmholtz, that inappreciable as may be its effect within known periods of time, the friction of the tidal wave must be slowly diminishing the Earth�s rotatory motion, and must eventually destroy it. Now though it seems an oversight to say that the Earth�s rotation can thus be destroyed, since the extreme effect, to be reached only in infinite time by such a process, would be an extension of the Earth�s day to the length of a lunation; yet it seems clear that this friction of the tidal wave is a real cause of decreasing rotation. Slow as its action is, we must recognize it as exemplifying, under another form, the universal progress towards equilibrium. It is needless to point out, in detail, how those movements which the Sun�s rays generate in the air and water on the Earth�s surface, and through them in the Earth�s solid substance,[20] one and all teach the same general truth. Evidently the winds and waves and streams, as well as the denudations and depositions they effect, perpetually illustrate on a grand scale, and in endless modes, that gradual dissipation of motions described in the first section; and the consequent tendency towards a balanced distribution of forces. Each of these sensible motions, produced directly or indirectly by integration of those insensible motions communicated from the Sun, becomes, as we have seen, divided and subdivided into motions less and less sensible; until it is finally reduced to insensible motions, and radiated from the Earth in the shape of thermal undulations. In their totality, these complex movements of aerial, liquid, and solid matter on the Earth�s crust, constitute a dependent moving equilibrium. As we before saw, there is traceable throughout them an involved combination of rhythms. The unceasing circulation of water from the ocean to the land, and from the land back to the ocean, is a type of these various compensating actions; which, in the midst of all the irregularities produced by their mutual interferences, maintain an average. And in this, as in other equilibrations of the third order, we see that the power from moment to moment in course of dissipation, is from moment to moment renewed from without: the rises and falls in the supply, being balanced by rises and falls in the expenditure; as witness the correspondence between the magnetic variations and the cycle of the solar spots. But the fact it chiefly concerns us to observe, is, that this process must go on bringing things ever nearer to complete rest. These mechanical movements, meteorologic and geologic, which are continually being equilibrated, both temporarily by counter-movements and permanently by the dissipation of such movements and counter-movements, will slowly diminish as the quantity of force received from the Sun diminishes. As the insensible motions propagated to us from the centre of our system become feebler, the sensible motions here produced by them must decrease; and at that remote period when the solar heat has ceased to be appreciable, there will no longer be any appreciable re-distributions of matter on the surface of our planet. Thus from the highest point of view, all terrestrial changes are incidents in the course of cosmical equilibration. It was before pointed out, (§ 80) that of the incessant alterations which the Earth�s crust and atmosphere undergo, those which are not due to the still-progressing motion of the Earth�s substance towards its centre of gravity, are due to the still-progressing motion of the Sun�s substance towards its centre of gravity. Here it is to be remarked, that this continuance of integration in the Earth and in the Sun, is a continuance of that transformation of sensible motion into insensible motion which we have seen ends in equilibration; and that the arrival in each case at the extreme of integration, is the arrival at a state in which no more sensible motion remains to be transformed into insensible motion�a state in which the forces producing integration and the forces opposing integration, have become equal. * * * * * § 133. Every living body exhibits, in a four-fold form, the process we are tracing out�exhibits it from moment to moment in the balancing of mechanical forces; from hour to hour in the balancing of functions; from year to year in the changes of state that compensate changes of condition; and finally in the complete arrest of vital movements at death. Let us consider the facts under these heads. The sensible motion constituting each visible action of an organism, is soon brought to a close by some adverse force within or without the organism. When the arm is raised, the motion given to it is antagonized partly by gravity and partly by the internal resistances consequent on structure; and its motion, thus suffering continual deduction, ends when the arm has reached a position at which the forces are equilibrated. The limits of each systole and diastole of the heart, severally show us a momentary equilibrium between muscular strains that produce opposite movements; and each gush of blood requires to be immediately followed by another, because the rapid dissipation of its momentum would otherwise soon bring the mass of circulating fluid to a stand. As much in the actions and re-actions going on among the internal organs, as in the mechanical balancing of the whole body, there is at every instant a progressive equilibration of the motions at every instant produced. Viewed in their aggregate, and as forming a series, the organic functions constitute a dependent moving equilibrium�a moving equilibrium, of which the motive power is ever being dissipated through the special equilibrations just exemplified, and is ever being renewed by the taking in of additional motive power. Food is a store of force which continually adds to the momentum of the vital actions, as much as is continually deducted from them by the forces overcome. All the functional movements thus maintained, are, as we have seen, rhythmical (§ 96); by their union compound rhythms of various lengths and complexities are produced; and in these simple and compound rhythms, the process of equilibration, besides being exemplified at each extreme of every rhythm, is seen in the habitual preservation of a constant mean, and in the re-establishment of that mean when accidental causes have produced divergence from it. When, for instance, there is a great expenditure of motion through muscular activity, there arises a re-active demand on those stores of latent motion which are laid up in the form of consumable matter throughout the tissues: increased respiration and increased rapidity of circulation, are instrumental to an extra genesis of force, that counter-balances the extra dissipation of force. This unusual transformation of molecular motion into sensible motion, is presently followed by an unusual absorption of food�the source of molecular motion; and in proportion as there has been a prolonged draft upon the spare capital of the system, is there a tendency to a prolonged rest, during which that spare capital is replaced. If the deviation from the ordinary course of the functions has been so great as to derange them, as when violent exertion produces loss of appetite and loss of sleep, an equilibration is still eventually effected. Providing the disturbance is not such as to overturn the balance of the functions, and destroy life (in which case a complete equilibration is suddenly effected), the ordinary balance is by and by re-established: the returning appetite is keen in proportion as the waste has been large; while sleep, sound and prolonged, makes up for previous wakefulness. Not even in those extreme cases where some excess has wrought a derangement that is never wholly rectified, is there an exception to the general law; for in such cases the cycle of the functions is, after a time, equilibrated about a new mean state, which thenceforth becomes the normal state of the individual. Thus, among the involved rhythmical changes constituting organic life, any disturbing force that works an excess of change in some direction, is gradually diminished and finally neutralized by antagonistic forces; which thereupon work a compensating change in the opposite direction, and so, after more or less of oscillation, restore the medium condition. And this process it is, which constitutes what physicians call the _vis medicatrix naturæ_. The third form of equilibration displayed by organic bodies, is a necessary sequence of that just illustrated. When through a change of habit or circumstance, an organism is permanently subject to some new influence, or different amount of an old influence, there arises, after more or less disturbance of the organic rhythms, a balancing of them around the new average condition produced by this additional influence. As temporary divergences of the organic rhythms are counteracted by temporary divergences of a reverse kind; so there is an equilibration of their permanent divergences by the genesis of opposing divergences that are equally permanent. If the quantity of motion to be habitually generated by a muscle, becomes greater than before, its nutrition becomes greater than before. If the expenditure of the muscle bears to its nutrition, a greater ratio than expenditure bears to nutrition in other parts of the system; the excess of nutrition becomes such that the muscle grows. And the cessation of its growth is the establishment of a balance between the daily waste and the daily repair�the daily expenditure of force, and the amount of latent force daily added. The like must manifestly be the case with all organic modifications consequent on change of climate or food. This is a conclusion which we may safely draw without knowing the special re-arrangements that effect the equilibration. If we see that a different mode of life is followed, after a period of functional derangement, by some altered condition of the system�if we see that this altered condition, becoming by and by established, continues without further change; we have no alternative but to say, that the new forces brought to bear on the system, have been compensated by the opposing forces they have evoked. And this is the interpretation of the process which we call _adaptation_. Finally, each organism illustrates the law in the _ensemble_ of its life. At the outset it daily absorbs under the form of food, an amount of force greater than it daily expends; and the surplus is daily equilibrated by growth. As maturity is approached, this surplus diminishes; and in the perfect organism, the day�s absorption of potential motion balances the day�s expenditure of actual motion. That is to say, during adult life, there is continuously exhibited an equilibration of the third order. Eventually, the daily loss, beginning to out-balance the daily gain, there results a diminishing amount of functional action; the organic rhythms extend less and less widely on each side of the medium state; and there finally results that complete equilibration which we call death. The ultimate structural state accompanying that ultimate functional state towards which an organism tends, both individually and as a species, may be deduced from one of the propositions set down in the opening section of this chapter. We saw that the limit of heterogeneity is arrived at whenever the equilibration of any aggregate becomes complete�that the re-distribution of matter can continue so long only as there continues any motion unbalanced. Whence we found it to follow that the final structural arrangements, must be such as will meet all the forces acting on the aggregate, by equivalent antagonist forces. What is the implication in the case of organic aggregates; the equilibrium of which is a moving one? We have seen that the maintenance of such a moving equilibrium, requires the habitual genesis of internal forces corresponding in number, directions, and amounts to the external incident forces�as many inner functions, single or combined, as there are single or combined outer actions to be met. But functions are the correlatives of organs; amounts of functions are, other things equal, the correlatives of sizes of organs; and combinations of functions the correlatives of connections of organs. Hence the structural complexity accompanying functional equilibration, is definable as one in which there are as many specialized parts as are capable, separately and jointly, of counteracting the separate and joint forces amid which the organism exists. And this is the limit of organic heterogeneity; to which man has approached more nearly than any other creature. Groups of organisms display this universal tendency towards a balance very obviously. In § 96, every species of plant and animal was shown to be perpetually undergoing a rhythmical variation in number�now from abundance of food and absence of enemies rising above its average; and then by a consequent scarcity of food and abundance of enemies being depressed below its average. And here we have to observe that there is thus maintained an equilibrium between the sum of those forces which result in the increase of each race, and the sum of those forces which result in its decrease. Either limit of variation is a point at which the one set of forces, before in excess of the other, is counterbalanced by it. And amid these oscillations produced by their conflict, lies that average number of the species at which its expansive tendency is in equilibrium with surrounding repressive tendencies. Nor can it be questioned that this balancing of the preservative and destructive forces which we see going on in every race, must necessarily go on. Since increase of number cannot but continue until increase of mortality stops it; and decrease of number cannot but continue until it is either arrested by fertility or extinguishes the race entirely. * * * * * § 134. The equilibrations of those nervous actions which constitute what we know as mental life, may be classified in like manner with those which constitute what we distinguish as bodily life. We may deal with them in the same order. Each pulse of nervous force from moment to moment generated, (and it was shown in § 97 that nervous currents are not continuous but rhythmical) is met by counteracting forces; in overcoming which it is dispersed and equilibrated. When tracing out the correlation and equivalence of forces, we saw that each sensation and emotion, or rather such part of it as remains after the excitation of associated ideas and feelings, is expended in working bodily changes�contractions of the involuntary muscles, the voluntary muscles, or both; as also in a certain stimulation of secreting organs. That the movements thus initiated are ever being brought to a close by the opposing forces they evoke, was pointed out above; and here it is to be observed that the like holds with the nervous changes thus initiated. Various facts prove that the arousing of a thought or feeling, always involves the overcoming of a certain resistance: instance the fact that where the association of mental states has not been frequent, a sensible effort is needed to call up the one after the other; instance the fact that during nervous prostration there is a comparative inability to think�the ideas will not follow one another with the habitual rapidity; instance the converse fact that at times of unusual energy, natural or artificial, the friction of thought becomes relatively small, and more numerous, more remote, or more difficult connections of ideas are formed. That is to say, the wave of nervous energy each instant generated, propagates itself throughout body and brain, along those channels which the conditions at the instant render lines of least resistance; and spreading widely in proportion to its amount, ends only when it is equilibrated by the resistances it everywhere meets. If we contemplate mental actions us extending over hours and days, we discover equilibrations analogous to those hourly and daily established among the bodily functions. In the one case as in the other, there are rhythms which exhibit a balancing of opposing forces at each extreme, and the maintenance of a certain general balance. This is seen in the daily alternation of mental activity and mental rest�the forces expended during the one being compensated by the forces acquired during the other. It is also seen in the recurring rise and fall of each desire: each desire reaching a certain intensity, is equilibrated either by expenditure of the force it embodies, in the desired actions, or, less completely, in the imagination of such actions: the process ending in that satiety, or that comparative quiescence, forming the opposite limit of the rhythm. And it is further manifest under a two-fold form, on occasions of intense joy or grief: each paroxysm of passion, expressing itself in vehement bodily actions, presently reaches an extreme whence the counteracting forces produce a return to a condition of moderate excitement; and the successive paroxysms finally diminishing in intensity, end in a mental equilibrium either like that before existing, or partially differing from it in its medium state. But the species of mental equilibration to be more especially noted, is that shown in the establishment of a correspondence between relations among our states of consciousness and relations in the external world. Each outer connection of phenomena which we are capable of perceiving, generates, through accumulated experiences, an inner connection of mental states; and the result towards which this process tends, is the formation of a mental connection having a relative strength that answers to the relative constancy of the physical connection represented. In conformity with the general law that motion pursues the line of least resistance, and that, other things equal, a line once taken by motion is made a line that will be more readily pursued by future motion; we have seen that the ease with which nervous impressions follow one another, is, other things equal, great in proportion to the number of times they have been repeated together in experience. Hence, corresponding to such an invariable relation as that between the resistance of an object and some extension possessed by it, there arises an indissoluble connection in consciousness; and this connection, being as absolute internally as the answering one is externally, undergoes no further change�the inner relation is in perfect equilibrium with the outer relation. Conversely, it hence happens that to such uncertain relations of phenomena as that between clouds and rain, there arise relations of ideas of a like uncertainty; and if, under given aspects of the sky, the tendencies to infer fair or foul weather, correspond to the frequencies with which fair or foul weather follow such aspects, the accumulation of experiences has balanced the mental sequences and the physical sequences. When it is remembered that between these extremes there are countless orders of external connections having different degrees of constancy, and that during the evolution of intelligence there arise answering internal associations having different degrees of cohesion; it will be seen that there is a progress towards equilibrium between the relations of thought and the relations of things. This equilibration can end only when each relation of things has generated in us a relation of thought, such that on the occurrence of the conditions, the relation in thought arises as certainly as the relation in things. Supposing this state to be reached (which however it can be only in infinite time) experience will cease to produce any further mental evolution�there will have been reached a perfect correspondence between ideas and facts; and the intellectual adaptation of man to his circumstances will be complete. The like general truths are exhibited in the process moral of adaptation; which is a continual approach to equilibrium between the emotions and the kinds of conduct necessitated by surrounding conditions. The connections of feelings and actions, are determined in the same way as the connections of ideas: just as repeating the association of two ideas, facilitates the excitement of the one by the other; so does each discharge of feeling into action, render the subsequent discharge of such feeling into such action more easy. Hence it happens that if an individual is placed permanently in conditions which demand more action of a special kind than has before been requisite, or than is natural to him�if the pressure of the painful feelings which these conditions entail when disregarded, impels him to perform this action to a greater extent�if by every more frequent or more lengthened performance of it under such pressure, the resistance is somewhat diminished; then, clearly, there is an advance towards a balance between the demand for this kind of action and the supply of it. Either in himself, or in his descendants continuing to live under these conditions, enforced repetition must eventually bring about a state in which this mode of directing the energies will be no more repugnant than the various other modes previously natural to the race. Hence the limit towards which emotional modification perpetually tends, and to which it must approach indefinitely near (though it can absolutely reach it only in infinite time) is a combination of desires that correspond to all the different orders of activity which the circumstances of life call for�desires severally proportionate in strength to the needs for these orders of activity; and severally satisfied by these orders of activity. In what we distinguish as acquired habits, and in the moral differences of races and nations produced by habits that are maintained through successive generations, we have countless illustrations of this progressive adaptation; which can cease only with the establishment of a complete equilibrium between constitution and conditions. Possibly some will fail to see how the equilibrations described in this section, can be classed with those preceding them; and will be inclined to say that what are here set down as facts, are but analogies. Nevertheless such equilibrations are as truly physical as the rest. To show this fully, would require a more detailed analysis than can now be entered on. For the present it must suffice to point out, as before (§ 82), that what we know subjectively as states of consciousness, are, objectively, modes of force; that so much feeling is the correlate of so much motion; that the performance of any bodily action is the transformation of a certain amount of feeling into its equivalent amount of motion; that this bodily action is met by forces which it is expended in overcoming; and that the necessity for the frequent repetition of this action, implies the frequent recurrence of forces to be so overcome. Hence the existence in any individual of an emotional stimulus that is in equilibrium with certain external requirements, is literally the habitual production of a certain specialized portion of nervous energy, equivalent in amount to a certain order of external resistances that are habitually met. And thus the ultimate state, forming the limit towards which Evolution carries us, is one in which the kinds and quantities of mental energy daily generated and transformed into motions, are equivalent to, or in equilibrium with, the various orders and degrees of surrounding forces which antagonize such motions. * * * * * § 135. Each society taken as a whole, displays the process of equilibration in the continuous adjustment of its population to its means of subsistence. A tribe of men living on wild animals and fruits, is manifestly, like every tribe of inferior creatures, always oscillating about that average number which the locality can support. Though by artificial production, and by successive improvements in artificial production, a superior race continually alters the limit which external conditions put to population; yet there is ever a checking of population at the temporary limit reached. It is true that where the limit is being so rapidly changed as among ourselves, there is no actual stoppage: there is only a rhythmical variation in the rate of increase. But in noting the causes of this rhythmical variation�in watching how, during periods of abundance, the proportion of marriages increases, and how it decreases during periods of scarcity; it will be seen that the expansive force produces unusual advance whenever the repressive force diminishes, and _vice versâ_; and thus there is as near a balancing of the two as the changing conditions permit. The internal actions constituting social functions, exemplify the general principle no less clearly. Supply and demand are continually being adjusted throughout all industrial processes; and this equilibration is interpretable in the same way as preceding ones. The production and distribution of a commodity, is the expression of a certain aggregate of forces causing special kinds and amounts of motion. The price of this commodity, is the measure of a certain other aggregate of forces expended by the labourer who purchases it, in other kinds and amounts of motion. And the variations of price represent a rhythmical balancing of these forces. Every rise or fall in the rate of interest, or change in the value of a particular security, implies a conflict of forces in which some, becoming temporarily predominant, cause a movement that is presently arrested or equilibrated by the increase of opposing forces; and amid these daily and hourly oscillations, lies a more slowly-varying medium, into which the value ever tends to settle; and would settle but for the constant addition of new influences. As in the individual organism so in the social organism, functional equilibrations generate structural equilibrations. When on the workers in any trade there comes an increased demand, and when in return for the increased supply, there is given to them an amount of other commodities larger than was before habitual�when, consequently, the resistances overcome by them in sustaining life are less than the resistances overcome by other workers; there results a flow of other workers into this trade. This flow continues until the extra demand is met, and the wages so far fall again, that the total resistance overcome in obtaining a given amount of produce, is as great in this newly-adopted occupation as in the occupations whence it drew recruits. The occurrence of motion along lines of least resistance, was before shown to necessitate the growth of population in those places where the labour required for self-maintenance is the smallest; and here we further see that those engaged in any such advantageous locality, or advantageous business, must multiply till there arises an approximate balance between this locality or business and others accessible to the same citizens. In determining the career of every youth, we see an estimation by parents of the respective advantages offered by all that are available, and a choice of the one which promises best; and through the consequent influx into trades that are at the time most profitable, and the withholding of recruits from over-stocked trades, there is insured a general equipoise between the power of each social organ and the function it has to perform. The various industrial actions and re-actions thus continually alternating, constitute a dependent moving equilibrium like that which is maintained among the functions of an individual organism. And this dependent moving equilibrium parallels those already contemplated, in its tendency to become more complete. During early stages of social evolution, while yet the resources of the locality inhabited are unexplored, and the arts of production undeveloped, there is never anything more than a temporary and partial balancing of such actions, under the form of acceleration or retardation of growth. But when a society approaches the maturity of that type on which it is organized, the various industrial activities settle down into a comparatively constant state. Moreover, it is observable that advance in organization, as well as advance in growth, is conducive to a better equilibrium of industrial functions. While the diffusion of mercantile information is slow, and the means of transport deficient, the adjustment of supply to demand is extremely imperfect: great over-production of each commodity followed by great under-production, constitute a rhythm having extremes that depart very widely from the mean state in which demand and supply are equilibrated. But when good roads are made, and there is a rapid diffusion of printed or written intelligence, and still more when railways and telegraphs come into existence�when the periodical fairs of early days lapse into weekly markets, and these into daily markets; there is gradually produced a better balance of production and consumption. Extra demand is much more quickly followed by augmented supply; and the rapid oscillations of price within narrow limits on either side of a comparatively uniform mean, indicate a near approach to equilibrium. Evidently this industrial progress has for its limit, that which Mr. Mill has called �the stationary state.� When population shall have become dense over all habitable parts of the globe; when the resources of every region have been fully explored; and when the productive arts admit of no further improvements; there must result an almost complete balance, both between the fertility and mortality of each society, and between its producing and consuming activities. Each society will exhibit only minor deviations from its average number, and the rhythm of its industrial functions will go on from day to day and year to year with comparatively insignificant perturbations. This limit, however, though we are inevitably advancing towards it, is indefinitely remote; and can never indeed be absolutely reached. The peopling of the Earth up to the point supposed, cannot take place by simple spreading. In the future, as in the past, the process will be carried on rhythmically, by waves of emigration from new and higher centres of civilization successively arising; and by the supplanting of inferior races by the superior races they beget; and the process so carried on must be extremely slow. Nor does it seem to me that such an equilibration will, as Mr. Mill suggests, leave scope for further mental culture and moral progress; but rather that the approximation to it must be simultaneous with the approximation to complete equilibrium between man�s nature and the conditions of his existence. One other kind of social equilibration has still to be considered:�that which results in the establishment of governmental institutions, and which becomes complete as these institutions fall into harmony with the desires of the people. There is a demand and supply in political affairs as in industrial affairs; and in the one case as in the other, the antagonist forces produce a rhythm which, at first extreme in its oscillations, slowly settles down into a moving equilibrium of comparative regularity. Those aggressive impulses inherited from the pre-social state�those tendencies to seek self-satisfaction regardless of injury to other beings, which are essential to a predatory life, constitute an anti-social force, tending ever to cause conflict and eventual separation of citizens. Contrariwise, those desires whose ends can be achieved only by union, as well as those sentiments which find satisfaction through intercourse with fellow-men, and those resulting in what we call loyalty, are forces tending to keep the units of a society together. On the one hand, there is in each citizen, more or less of resistance against all restraints imposed on his actions by other citizens: a resistance which, tending continually to widen each individual�s sphere of action, and reciprocally to limit the spheres of action of other individuals, constitutes a repulsive force mutually exercised by the members of a social aggregate. On the other hand, the general sympathy of man for man, and the more special sympathy of each variety of man for others of the same variety, together with sundry allied feelings which the social state gratifies, act as an attractive force, tending ever to keep united those who have a common ancestry. And since the resistances to be overcome in satisfying the totality of their desires when living separately, are greater than the resistances to be overcome in satisfying the totality of their desires when living together, there is a residuary force that prevents their separation. Like all other opposing forces, those exerted by citizens on each other, are ever producing alternating movements, which, at first extreme, undergo a gradual diminution on the way to ultimate equilibrium. In small, undeveloped societies, marked rhythms result from these conflicting tendencies. A tribe whose members have held together for a generation or two, reaches a size at which it will not hold together; and on the occurrence of some event causing unusual antagonism among its members, divides. Each primitive nation, depending largely for its continued union on the character of its chief, exhibits wide oscillations between an extreme in which the subjects are under rigid restraint, and an extreme in which the restraint is not enough to prevent disorder. In more advanced nations of like type, we always find violent actions and reactions of the same essential nature��despotism tempered by assassination,� characterizing a political state in which unbearable repression from time to time brings about a bursting of all bonds. In this familiar fact, that a period of tyranny is followed by a period of license and _vice versâ_, we see how these opposing forces are ever equilibrating each other; and we also see, in the tendency of such movements and counter-movements to become more moderate, how the equilibration progresses towards completeness. The conflicts between Conservatism (which stands for the restraints of society over the individual) and Reform (which stands for the liberty of the individual against society), fall within slowly approximating limits; so that the temporary predominance of either, produces a less marked deviation from the medium state. This process, now so far advanced among ourselves that the oscillations are comparatively unobtrusive, must go on till the balance between the antagonist forces approaches indefinitely near perfection. For, as we have already seen, the adaptation of man�s nature to the conditions of his existence, cannot cease until the internal forces which we know as feelings are in equilibrium with the external forces they encounter. And the establishment of this equilibrium, is the arrival at a state of human nature and social organization, such that the individual has no desires but those which may be satisfied without exceeding his proper sphere of action, while society maintains no restraints but those which the individual voluntarily respects. The progressive extension of the liberty of citizens, and the reciprocal removal of political restrictions, are the steps by which we advance towards this state. And the ultimate abolition of all limits to the freedom of each, save those imposed by the like freedom of all, must result from the complete equilibration between man�s desires and the conduct necessitated by surrounding conditions. Of course in this case, as in the preceding ones, there is thus involved a limit to the increase of heterogeneity. A few pages back, we reached the conclusion that each advance in mental evolution, is the establishment of some further internal action, corresponding to some further external action�some additional connection of ideas or feelings, answering to some before unknown or unantagonized connection of phenomena. We inferred that each such new function, involving some new modification of structure, implies an increase of heterogeneity; and that thus, increase of heterogeneity must go on, while there remain any outer relations affecting the organism which are unbalanced by inner relations. Whence we saw it to follow that increase of heterogeneity can come to an end only as equilibration is completed. Evidently the like must simultaneously take place with society. Each increment of heterogeneity in the individual, must directly or indirectly involve, as cause or consequence, some increment of heterogeneity in the arrangements of the aggregate of individuals. And the limit to social complexity can be arrived at, only with the establishment of the equilibrium, just described, between social and individual forces. * * * * * § 136. Here presents itself a final question, which has probably been taking a more or less distinct shape in the minds of many, while reading this chapter. �If Evolution of every kind, is an increase in complexity of structure and function that is incidental to the universal process of equilibration�if equilibration, passing through the gradually-perfected forms of moving equilibrium, must end in complete rest; what is the fate towards which all things tend? If the bodies constituting our Solar System are slowly dissipating the forces they possess�if the Sun is losing his heat at a rate which, though insignificant as stated in terms of our chronology, will tell in millions of years�if geologic and meteorologic processes cannot but diminish in activity as the Sun�s radiations diminish�if with the diminution of these radiations there must also go on a diminution in the quantity of vegetal and animal existence�if Man and Society, however high the degree of evolution at which they arrive, are similarly dependent on this supply of force that is gradually coming to an end�if thus the highest, equally with the lowest, terrestrial life, must eventually dwindle and disappear; are we not manifestly progressing towards omnipresent death? And have we thus to contemplate, as the out-come of things, a universe of extinct suns round which circle planets devoid of life?� That such a state must be the proximate end of the processes everywhere going on, seems beyond doubt. But the further question tacitly involved, whether this state will continue eternally, is quite a different one. To give a positive answer to this further question would be quite illegitimate; since to affirm any proposition into which unlimited time enters as one of the terms, is to affirm a proposition of which one term cannot be represented in consciousness�is to affirm an unthinkable proposition. At a first glance it may appear that the reverse conclusion must be equally illegitimate; and that so the question is altogether insoluble. But further consideration will show that this is not true. So long as the terms to which we confine our reasonings are finite, the finite conclusions reached are not necessarily illegitimate. Though, if the general argument, when carried out, left no apparent escape from the inference that the state of rest to which Evolution is carrying things, must, when arrived at, last for ever, this inference would be invalid, as transcending the scope of human intelligence; yet if, on pushing further the general argument, we bring out the inference that such a state will not last for ever, this inference is not necessarily invalid: since, by the hypothesis, it contains no terms necessarily transcending the scope of human intelligence. It is permissible therefore, to inquire, what are the probable ulterior results of this process which must bring Evolution to a close in Universal Death. Without being so rash as to form anything like a positive conclusion on a matter so vast and so far beyond the boundaries of exact science; we may still inquire what _seems_ to be the remote future towards which the facts point. It has been already shown that all equilibration, so far as we can trace it, is relative. The dissipation of a body�s motion by communication of it to surrounding matter, solid, liquid, gaseous, and ethereal, tends to bring the body to a fixed position in relation to the matter that abstracts its motion. But all its other motions continue as before. The arrest of a cannon-shot does not diminish its movement towards the East at a thousand miles an hour, along with the wall it has struck; and a gradual dispersion of the Earth�s rotatory motion, would abstract nothing from the million and a half miles per day through which the Earth speeds in its orbit. Further, we have to bear in mind that this motion, the disappearance of which causes relative equilibration, is not lost but simply transferred; and by continual division and subdivision finally reduced to ethereal undulations and radiated through space. Whether the sensible motion dissipated during relative equilibration, is directly transformed into insensible motion, as happens in the case of the Sun; or whether, as in the sensible motions going on around us, it is directly transformed into smaller sensible motions, and these into still smaller, until they become insensible, matters not. In every instance the ultimate result is, that whatever motion of masses is lost, re-appears as molecular motion pervading space. Thus the questions we have to consider, are�Whether after the completion of all the relative equilibrations above contemplated as bringing Evolution to a close, there remain any further equilibrations to be effected?�Whether there are any other motions of masses that must eventually be transformed into molecular motion?�And if there are such other motions, what must be the consequence when the molecular motion generated by their transformation, is added to that which already exists? To the first of these questions the answer is, that there _do_ remain motions which are undiminished by all the relative equilibrations thus far considered; namely, the motions of translation possessed by those vast masses of incandescent matter called stars�masses now known to be suns that are in all probability, like our own, surrounded by circling groups of planets. The belief that the stars are literally fixed, has long since been exploded: observation has proved many of them to have sensible proper motions. Moreover, it has been ascertained by measurement, that in relation to the stars nearest to us, our own star is moving at the rate of about half a million miles per day; and if, as is admitted to be not improbable by sundry astronomers, our own star is traversing space in the same direction with adjacent stars, its absolute velocity may be, and most likely is, immensely greater than this. Now no such changes as those taking place within the Solar System, even when carried to the extent of integrating the whole of its matter into one mass, and diffusing all its relative movements in an insensible form through space, can affect these sidereal movements. Hence, there appears no alternative but to infer, that these sidereal movements must remain to be equilibrated by some subsequent process. The next question that arises, if we venture to inquire the probable nature of this process, is�To what law do sidereal motions conform? And to this question Astronomy replies�the law of gravitation. The relative motions of binary stars have proved this. When it was discovered that certain of the double stars are not optically double but physically double, and move round each other, it was at once suspected that their revolutions might be regulated by a mutual attraction like that which regulates the revolutions of planets and satellites. The requisite measurements having been from time to time made, the periodic times of sundry binary stars were calculated on this assumption; and the subsequent performances of their revolutions in the predicted periods, have completely verified the assumption. If, then, it is demonstrated that these remote bodies are centres of gravitation�if we infer that all other stars are centres of gravitation, as we may fairly do�and if we draw the unavoidable corollary, that this gravitative force which so conspicuously affects stars that are comparatively near each other, must affect remote stars; we find ourselves led to the conclusion that all the members of our Sidereal System gravitate, individually and as an aggregate. But if these widely-dispersed moving masses mutually gravitate, what must happen? There appears but one tenable answer. Even supposing they were all absolutely equal in weight, and arranged into an annulus with absolute regularity, and endowed with exactly the amounts of centrifugal force required to prevent nearer approach to their common centre of gravity; the condition would still be one which the slightest disturbing force would destroy. Much more then are we driven to the inference, that our actual Sidereal System cannot preserve its present arrangement: the irregularities of its distribution being such as to render even a temporary moving equilibrium impossible. If the stars are so many centres of an attractive force that varies inversely as the square of the distance, there appears to be no escape from the conclusion, that the structure of our galaxy must be undergoing change; and must continue to undergo change. Thus, in the absence of tenable alternatives, we are brought to the positions:�1, that the stars are in motion;�2, that they move in conformity with the law of gravitation;�3, that, distributed as they are, they cannot move in conformity with the law of gravitation, without undergoing change of arrangement. If now we permit ourselves to take a further step, and ask the nature of this change of arrangement, we find ourselves obliged to infer a progressive concentration. Whether we do or do not suppose the clustering which is now visible, to have been caused by mutual gravitation acting throughout past eras, as the hypothesis of Evolution implies, we are equally compelled to conclude that this clustering must increase throughout future eras. Stars at present dispersed, must become locally aggregated; existing aggregations, at the same time that they are enlarged by the drawing in of adjacent stars, must grow more dense; and aggregations must coalesce with each other: each greater degree of concentration augmenting the force by which further concentration is produced. And now what must be the limit of this concentration? The mutual attraction of two individual stars, when it so far predominates over other attractions as to cause approximation, almost certainly ends in the formation of a binary star; since the motions generated by other attractions, prevent the two stars from moving in straight lines to their common centre of gravity. Between small clusters, too, having also certain proper motions as clusters, mutual attraction may lead, not to complete union, but to the formation of binary clusters. As the process continues however, and the clusters become larger, it seems clear that they must move more directly towards each other, thus forming clusters of increasing density; and that eventually all clusters must unite into one comparatively close aggregation. While, therefore, during the earlier stages of concentration, the probabilities are immense against the actual contact of these mutually-gravitating masses; it is tolerably manifest, that as the concentration increases, collision must become probable, and ultimately certain. This is an inference not lacking the support of high authority. Sir John Herschel, treating of those numerous and variously-aggregated clusters of stars revealed by the telescope, and citing with apparent approval his father�s opinion, that the more diffused and irregular of these, are �globular clusters in a less advanced state of condensation;� subsequently remarks, that �among a crowd of solid bodies of whatever size, animated by independent and partially opposing impulses, motions opposite to each other _must_ produce collision, destruction of velocity, and subsidence or near approach towards the centre of preponderant attraction; while those which conspire, or which remain outstanding after such conflicts, _must_ ultimately give rise to circulation of a permanent character.� Now what is here alleged of these minor sidereal aggregations, cannot be denied of the large aggregations; and thus the above-described process of concentration, appears certain to bring about an increasingly-frequent integration of masses. We have next to consider the consequences of the accompanying loss of velocity. The sensible motion which disappears, cannot be destroyed; but must be transformed into insensible motion. What will be the effect of this insensible motion? Some approach to a conception of it, will be made by considering what would happen were the comparatively insignificant motion of our planet thus transformed. In his essay on �The Inter-action of Natural Forces,� Prof. Helmholtz states the thermal equivalent of the Earth�s movement through space; as calculated on the now received datum of Mr. Joule. �If our Earth,� he says, �were by a sudden shock brought to rest in her orbit,�which is not to be feared in the existing arrangement of our system�by such a shock a quantity of heat would be generated equal to that produced by the combustion of fourteen such Earths of solid coal. Making the most unfavourable assumption as to its capacity for heat, that is, placing it equal to that of water, the mass of the Earth would thereby be heated 11,200 degrees; it would therefore be quite fused, and for the most part reduced to vapour. If then the Earth, after having been thus brought to rest, should fall into the Sun, which of course would be the case, the quantity of heat developed by the shock would be 400 times greater.� Now so relatively small a momentum as that acquired by the Earth in falling through 95,000,000 of miles to the Sun, being equivalent to a molecular motion such as would reduce the Earth to gases of extreme rarity; what must be the molecular motion generated by the mutually-arrested momenta of two stars, that have moved to their common centre of gravity through spaces immeasurably greater? There seems no alternative but to conclude, that this molecular motion must be so great, as to reduce the matter of the stars to an almost inconceivable tenuity�a tenuity like that which we ascribe to nebular matter. Such being the immediate effect of the integration of any two stars in a concentrating aggregate, what must be the ulterior effect on the aggregate as a whole? Sir John Herschel, in the passage above quoted, describing the collisions that must arise in a mutually-gravitating group of stars, adds that those stars �which remain outstanding after such conflicts, _must_ ultimately give rise to circulation of a permanent character.� The problem, however, is here dealt with purely as a mechanical one: the assumption being, that the mutually-arrested masses will continue as masses�an assumption to which no objection was apparent at the time when Sir John Herschel wrote this passage; since the doctrine of the correlation of forces was not then recognized. But obliged as we now are to conclude, that stars moving at the high velocities acquired during concentration, will, by mutual arrest, be dissipated into gases of great tenuity, the problem becomes different; and a different inference appears unavoidable. For the diffused matter produced by such conflicts, must form a resisting medium, occupying that central region of the aggregate through which its members from time to time pass in describing their orbits�a resisting medium which they cannot move through without having their velocities diminished. Every further such collision, by augmenting this resisting medium, and making the losses of velocity greater, must further aid in preventing the establishment of that equilibrium which would else arise; and so must conspire to produce more frequent collisions. And the nebulous matter thus formed, presently enveloping and extending beyond the whole aggregate, must, by continuing to shorten their gyrations, entail an increasingly-active integration and re-active disintegration of the moving masses; until they are all finally dissipated. This, indeed, is the conclusion which, leaving out all consideration of the process gone through, presents itself as a simple deduction from the persistence of force. If the stars have been, and still are, concentrating however indirectly on their common centre of gravity, and must eventually reach it; it is a corollary from the persistence of force, that the quantities of motion they have severally acquired, must suffice to carry them away from the common centre of gravity to those remote regions whence they originally began to move towards it. And since, by the conditions of the case, they cannot return to these remote regions in the shape of concrete masses, they must return in the shape of diffused masses. Action and reaction being equal and opposite, the momentum producing dispersion, must be as great as the momentum acquired by aggregation; and being spread over the same quantity of matter, must cause an equivalent distribution through space, whatever be the form of the matter. One condition, however, essential to the literal fulfilment of this result, must be specified; namely, that the quantity of molecular motion produced and radiated into space by each star in the course of its formation from diffused matter, shall be compensated by an equal quantity of molecular motion radiated from other parts of space into the space which our Sidereal System occupies. In other words, if we set out with that amount of molecular motion implied by the existence of the matter of our Sidereal System in a nebulous form; then it follows from the persistence of force, that if this matter undergoes the re-distribution constituting Evolution, the quantity of molecular motion given out during the integration of each mass, plus the quantity of molecular motion given out during the integration of all the masses, must suffice again to reduce it to the same nebulous form. Here indeed we arrive at an impassable limit to our reasonings; since we cannot know whether this condition is or is not fulfilled. On the hypothesis of an unlimited space, containing, at certain intervals, Sidereal Systems like our own, it may be that the quantity of molecular motion radiated into the region occupied by our Sidereal System, is equal to that which our Sidereal System radiates; in which case the quantity of motion possessed by it, remaining undiminished, our Sidereal System may continue during unlimited time, to repeat this alternate concentration and diffusion. But if, on the other hand, throughout boundless space there exist no other Sidereal Systems subject to like changes, or if such other Sidereal Systems exist at more than a certain average distance from each other; then it seems an unavoidable conclusion that the quantity of motion possessed, must diminish by radiation into unoccupied space; and that so, on each successive resumption of the nebulous form, the matter of our Sidereal System will occupy a less space; until at the end of an infinite time it reaches either a state in which its concentrations and diffusions are relatively small, or a state of complete aggregation and rest. Since, however, we have no evidence showing the existence or non-existence of Sidereal Systems throughout remote space; and since, even had we such evidence, a legitimate conclusion could not be drawn from premises of which one element (unlimited space) is inconceivable; we must be for ever without answer to this transcendent question. All we can say is, that so far as the data enable us to judge, the integration of our Sidereal System will be followed by disintegration; that such integration and disintegration will be repeated; and that, for anything we know to the contrary, the alternation of them may continue without limit. But leaving this ultimate insoluble problem, and confining ourselves to the proximate and not necessarily insoluble one, we find reason for thinking that after the completion of those various equilibrations which bring to a close all the forms of Evolution we have contemplated, there must still continue an equilibration of a far wider kind. When that integration everywhere in progress throughout our Solar System, has reached its climax, there will remain to be effected the immeasurably greater integration of our Solar System, with all other such systems. As in those minor forms now going on around us, this integration with its concomitant equilibration, involves the change of aggregate motion into diffused motion; so in those vaster forms hereafter to be carried out, there must similarly be gained in molecular motion what is lost in the motion of masses; and the inevitable transformation of this motion of masses into molecular motion, cannot take place without reducing the masses to a nebulous form. Thus we seem led to the conclusion that the entire process of things, as displayed in the aggregate of the visible Universe, is analogous to the entire process of things as displayed in the smallest aggregates. Where, as in organic bodies, the whole series of changes constituting Evolution can be traced, we saw that, dynamically considered, Evolution is a change from molecular motion to the motion of masses; and this change, becoming more active during the ascending phase of Evolution while the masses increase in bulk and heterogeneity, eventually begins to get less active; until, passing through stages in which the integration grows greater, and the equilibrium more definite, it finally ceases; whereupon there arises, by an ulterior process, an increase of molecular motion, ending in the more or less complete dissolution of the aggregate. And here we find reason to believe that, along with each of the thousands of similar ones dispersed through the heavens, our Solar System, after passing through stages during which the motion of masses is produced at the expense of lost molecular motion, and during which there goes on an increasingly active differentiation and integration, arrives at a climax whence these changes, beginning to decline in activity, slowly bring about that complete integration and equilibration which in other cases we call death; and that there afterwards comes a time, when the still-remaining motions of masses are transformed into a molecular motion which causes dissolution of the masses. Motion as well as Matter being fixed in quantity, it would seem that the change in the distribution of Matter which Motion effects, coming to a limit in whichever direction it is carried, the indestructible Motion thereupon necessitates a reverse distribution. Apparently, the universally-coexistent forces of attraction and repulsion, which, as we have seen, necessitate rhythm in all minor changes throughout the Universe, also necessitate rhythm in the totality of its changes�produce now an immeasurable period during which the attractive forces predominating, cause universal concentration, and then an immeasurable period during which the repulsive forces predominating, cause universal diffusion�alternate eras of Evolution and Dissolution. And thus there is suggested the conception of a past during which there have been successive Evolutions similar to that which is now going on; and a future during which successive other such Evolutions may go on. Let none suppose, however, that this is to be taken as anything more than a speculation. In dealing with times and spaces and forces so immensely transcending those of which we have definite experience, we are in danger of passing the limits to human intelligence. Though these times and spaces and forces cannot literally be classed as infinite; yet they are so utterly beyond the possibility of definite conception, as to be almost equally unthinkable with the infinite. What has been above said, should therefore be regarded simply as a possible answer to a possible doubt. When, pushing to its extreme the argument that Evolution must come to a close in complete equilibrium or rest, the reader suggests that for aught which appears to the contrary, the Universal Death thus implied will continue indefinitely; it is legitimate to point out how, on carrying the argument still further, we are led to infer a subsequent Universal Life. But while this last inference may fitly be accepted as a demurrer to the first, it would be unwise to accept it in any more positive sense. * * * * * § 137. Returning from this parenthetical discussion, concerning the probable or possible state of things that may arise after Evolution has run its course; and confining ourselves to the changes constituting Evolution, with which alone we are immediately concerned; we have now to inquire whether the cessation of these changes, in common with all their transitional characteristics, admits of _à priori_ proof. It will soon become apparent that equilibration, not less than the preceding general principles, is deducible from the persistence of force. We have seen (§ 85) that phenomena are interpretable only as the results of universally-coexistent forces of attraction and repulsion. These universally-coexistent forces of attraction and repulsion, are, indeed, the complementary aspects of that absolutely persistent force which is the ultimate datum of consciousness. Just in the same way that the equality of action and re-action is a corollary from the persistence of force, since their inequality would imply the disappearance of the differential force into nothing, or its appearance out of nothing; so, we cannot become conscious of an attractive force without becoming simultaneously conscious of an equal and opposite repulsive force. For every experience of a muscular tension, (under which form alone we can immediately know an attractive force,) presupposes an equivalent resistance�a resistance shown in the counter-balancing pressure of the body against neighbouring objects, or in that absorption of force which gives motion to the body, or in both�a resistance which we cannot conceive as other than equal to the tension, without conceiving force to have either appeared or disappeared, and so denying the persistence of force. And from this necessary correlation, results our inability, before pointed out, of interpreting any phenomena save in terms of these correlatives�an inability shown alike in the compulsion we are under to think of the statical forces which tangible matter displays, as due to the attraction and repulsion of its atoms, and in the compulsion we are under to think of dynamical forces exercised through space, by regarding space as filled with atoms similarly endowed. Thus from the existence of a force that is for ever unchangeable in quantity, there follows, as a necessary corollary, the co-extensive existence of these opposite forms of force�forms under which the conditions of our consciousness oblige us to represent that absolute force which transcends our knowledge. But the forces of attraction and repulsion being universally co-existent, it follows, as before shown, that all motion is motion under resistance. Units of matter, solid, liquid, aëriform, or ethereal, filling the space which any moving body traverses, offer to such body the resistance consequent on their cohesion, or their inertia, or both. In other words, the denser or rarer medium which occupies the places from moment to moment passed through by such moving body, having to be expelled from them, as much motion is abstracted from the moving body as is given to the medium in expelling it from these places. This being the condition under which all motion occurs, two corollaries result. The first is, that the deductions perpetually made by the communication of motion to the resisting medium, cannot but bring the motion of the body to an end in a longer or shorter time. The second is, that the motion of the body cannot cease until these deductions destroy it. In other words, movement must continue till equilibration takes place; and equilibration must eventually take place. Both these are manifest deductions from the persistence of force. To say that the whole or part of a body�s motion can disappear, save by transfer to something which resists its motion, is to say that the whole or part of its motion can disappear without effect; which is to deny the persistence of force. Conversely, to say that the medium traversed can be moved out of the body�s path, without deducting from the body�s motion, is to say that motion of the medium can arise out of nothing; which is to deny the persistence of force. Hence this primordial truth is our immediate warrant for the conclusions, that the changes which Evolution presents, cannot end until equilibrium is reached; and that equilibrium must at last be reached. Equally necessary, because equally deducible from this same truth that transcends proof, are the foregoing propositions respecting the establishment and maintenance of moving equilibria, under their several aspects. It follows from the persistence of force, that the various motions possessed by any aggregate, either as a whole or among its parts, must be severally dissipated by the resistances they severally encounter; and that thus, such of them as are least in amount, or meet with greatest opposition, or both, will be brought to a close while the others continue. Hence in every diversely moving aggregate, there results a comparatively early dissipation of motions which are smaller and much resisted; followed by long-continuance of the larger and less-resisted motions; and so there arise dependent and independent moving equilibria. Hence also may be inferred the tendency to conservation of such moving equilibria; since, whenever the new motion given to the parts of a moving equilibrium by a disturbing force, is not of such kind and amount that it cannot be dissipated before the pre-existing motions (in which case it brings the moving equilibrium to an end) it must be of such kind and amount that it can be dissipated before the pre-existing motions (in which case the moving equilibrium is re-established). Thus from the persistence of force follow, not only the various direct and indirect equilibrations going on around, together with that cosmical equilibration which brings Evolution under all its forms to a close; but also those less manifest equilibrations shown in the re-adjustments of moving equilibria that have been disturbed. By this ultimate principle is proveable the tendency of every organism, disordered by some unusual influence, to return to a balanced state. To it also may be traced the capacity, possessed in a slight degree by individuals, and in a greater degree by species, of becoming adapted to new circumstances. And not less does it afford a basis for the inference, that there is a gradual advance towards harmony between man�s mental nature and the conditions of his existence. After finding that from it are deducible the various characteristics of Evolution, we finally draw from it a warrant for the belief, that Evolution can end only in the establishment of the greatest perfection and the most complete happiness. ----- Footnote 18: Sir David Brewster has recently been citing with approval, a calculation by M. Babinet, to the effect that on the hypothesis of nebular genesis, the matter of the Sun, when it filled the Earth�s orbit, must have taken 3181 years to rotate; and that therefore the hypothesis cannot be true. This calculation of M. Babinet may pair-off with that of M. Comte, who, contrariwise, made the time of this rotation agree very nearly with the Earth�s period of revolution round the Sun; for if M. Comte�s calculation involved a _petitio principii_, that of M. Babinet is manifestly based on two assumptions, both of which are gratuitous, and one of them totally inconsistent with the doctrine to be tested. He has evidently proceeded on the current supposition respecting the Sun�s internal density, which is not proved, and from which there are reasons for dissenting; and he has evidently taken for granted that all parts of the nebulous spheroid, when it filled the Earth�s orbit, had the same angular velocity; whereas if (as is implied in the nebular hypothesis, rationally understood) this spheroid resulted from the concentration of far more widely-diffused matter, the angular velocity of its equatorial portion would obviously be immensely greater than that of its central portion. Footnote 19: See paper �On the Inter-action of Natural Forces,� by Prof. Helmholtz, translated by Prof. Tyndall, and published in the _Philosophical Magazine_, supplement to Vol. XI. fourth series. Footnote 20: Until I recently consulted his �Outlines of Astronomy� on another question, I was not aware that so far back as 1833, Sir John Herschel had enunciated the doctrine that �the sun�s rays are the ultimate source of almost every motion which takes place on the surface of the earth.� He expressly includes all geologic, meteorologic, and vital actions; as also those which we produce by the combustion of coal. The late George Stephenson appears to have been wrongly credited with this last idea. CHAPTER XVII. SUMMARY AND CONCLUSION. § 138. In the chapter on �Laws in general,� after delineating the progress of mankind in recognizing uniformities of relation among surrounding phenomena�after showing how the actual succession in the establishment of different orders of co-existences and sequences, corresponds with the succession deducible _à priori_ from the conditions to human knowledge�after showing how, by the ever-multiplying experiences of constant connections among phenomena, there has been gradually generated the conception of universal conformity to law; it was suggested that this conception will become still clearer, when it is perceived that there are laws of wider generality than any of those at present accepted. The existence of such more general laws, is, indeed, almost implied by the _ensemble_ of the facts set forth in the above-named chapter; since they make it apparent, that the process hitherto carried on, of bringing phenomena under fewer and wider laws, has not ceased, but is advancing with increasing rapidity. Apart, however, from evidence of this kind, the man of science, hourly impressed with new proof of uniformity in the relations of things, until the conception of uniformity has become with him a necessity of thought, tacitly entertains the conclusion that the minor uniformities which Science has thus far established, will eventually be merged in uniformities that are universal. Taught as he is by every observation and experiment, to regard phenomena as manifestations of Force; and learning as he does to contemplate Force as unchangeable in amount; there tends to grow up in him a belief in unchangeable laws common to Force under all its manifestations. Though he may not have formulated it to himself, he is prepared to recognize the truth, that, being fixed in quantity, fixed in its two ultimate modes of presentation (Matter and Motion), and fixed in the conditions under which it is presented (Time and Space); Force must have certain equally fixed laws of action, common to all the changes it produces. Hence to the classes who alone are likely to read these pages, the hypothesis of a fundamental unity, extending from the simplest inorganic actions up to the most complex associations of thought and the most involved social processes, will have an _à priori_ probability. All things being recognized as having one source, will be expected to exhibit one method. Even in the absence of a clue to uniformities co-extensive with all modes of Force, as the mathematical uniformities are co-extensive with Space and Time, it will be inferred that such uniformities exist. And thus a certain presumption will result in favour of any formula, of a generality great enough to include concrete phenomena of every order. * * * * * § 139. In the chapters on the �Law of Evolution,� there was set forth a principle, which, so far as accessible evidence enables us to judge, possesses this universality. The order of material changes, first perceived to have certain constant characteristics in cases where it could be readily traced from beginning to end, we found to have these same characteristics in cases where it could be less readily traced; and we saw numerous indications that these same characteristics were displayed during past changes of which we have no direct knowledge. The transformation of the homogeneous into the heterogeneous, first observed by naturalists to be exhibited during the development of every plant and animal, proved to be also exhibited during the development of every society; both in its political and industrial organization, and in all the products of social life,�language, science, art, and literature. From the disclosures of geology, we drew adequate support for the conclusion, that in the structure of the Earth there has similarly been a progress from uniformity, through ever-increasing degrees of multiformity, to the complex state which we now see. And on the assumption of that nebular origin to which so many facts point, we inferred that a like transition from unity to variety of distribution, must have been undergone by our Solar System; as well as by that vast assemblage of such systems constituting the visible Universe. This definition of the metamorphosis, first asserted by physiologists of organic aggregates only, but which we thus found reason to think, holds of all other aggregates, proved on further inquiry to be too wide. Its undue width was shown to arise from the omission of certain other characteristics, that are, not less than the foregoing one, displayed throughout all kinds of Evolution. We saw that simultaneously with the change from homogeneity to heterogeneity, there takes place a change from indefiniteness of arrangement to definiteness of arrangement�a change everywhere equally traceable with that which it accompanies. Further consideration made it apparent, that the increasing definiteness thus manifested along with increasing heterogeneity, necessarily results from increasing integration of the parts severally rendered unlike. And thus we finally reached the conclusion, that there has been going on throughout an immeasurable past, is still going on, and will continue to go on, an advance from a diffused, indeterminate, and uniform distribution of Matter, to a concentrated, determinate, and multiform distribution of it. At a subsequent stage of our inquiry, we discovered that this progressive change in the arrangement of Matter, is accompanied by a parallel change in the arrangement of Motion�that every increase in the structural complexity of things, involves a corresponding increase in their functional complexity. It was shown that along with the integration of molecules into masses, there arises an integration of molecular motion into the motion of masses; and that as fast as there results variety in the sizes and forms of aggregates and their relations to incident forces, there also results variety in their movements. Whence it became manifest, that the general process of things is from a confused simplicity to an orderly complexity, in the distribution of both Matter and Motion. It was pointed out, however, that though this species of transformation is universal, in the sense of holding throughout all classes of phenomena, it is not universal in the sense of being continued without limit in all classes of phenomena. Those aggregates which exhibit the entire change from uniformity to multiformity of structure and function, in comparatively short periods, eventually show us a reverse set of changes: Evolution is followed by Dissolution. The differentiations and integrations of Matter and Motion, finally reach a degree which the conditions do not allow them to pass; and there then sets in a process of disintegration and assimilation, of both the parts and the movements that were before growing more united and more distinct. But under one or the other of these processes, all observable modifications in the arrangement of things may be classed. Every change comes under the head of integration or disintegration, material or dynamical; or under the head of differentiation or assimilation, material or dynamical; or under both. Each inorganic mass is either undergoing increase by the combination with it of surrounding elements for which its parts have affinity; or undergoing decrease by the solvent and abraiding action of surrounding elements; or both one and the other in varied succession and combination. By perpetual additions and losses of heat, it is having its parts temporarily differentiated from each other, or temporarily assimilated to each other, in molecular state. And through the actions of divers agents, it is also undergoing certain permanent molecular re-arrangements; rendering it either more uniform or more multiform in structure. These opposite kinds of change, thus vaguely typified in every surrounding fragment of matter, are displayed in all aggregates with increasing distinctness in proportion as the conditions essential to re-arrangement of parts are fulfilled. So that universally, the process of things is either in the one direction or the other. There is in all cases going on that ever-complicating distribution of Matter and Motion which we call Evolution; save in those cases where it has been brought to a close and reversed by what we call Dissolution. * * * * * § 140. Whether this omnipresent metamorphosis admits of interpretation, was the inquiry on which we next entered. Recognizing the changes thus formulated as consisting in Motions of Matter that are produced by Force, we saw that if they are interpretable at all, it must be by the affiliation of them on certain ultimate laws of Matter, Motion, and Force. We therefore proceeded to inquire what these ultimate laws are. We first contemplated under its leading aspects, the principle of correlation and equivalence among forces. The genesis of sensible motion by insensible motion, and of insensible motion by sensible motion, as well as the like reciprocal production of those forms of insensible motion which constitute Light, Heat, Electricity, Magnetism, and Chemical Action, was shown to be a now accepted doctrine, that involves certain corollaries respecting the processes everywhere going on around us. Setting out with the probability that the insensible motion radiated by the Sun, is the transformed product of the sensible motion lost during the progressive concentration of the solar mass; we saw that by this insensible motion, are in turn produced the various kinds of sensible motion on the Earth�s surface. Besides the inorganic terrestrial changes, we found that the changes constituting organic life are thus originated. We were obliged to conclude that within this category, come the vital phenomena classed as mental, as well as those classed as physical. And it appeared inevitably to follow that of social changes, too, the like must be said. We next saw that phenomena being cognizable by us only as products of Force, manifested under the two-fold form of attraction and repulsion, there results the general law that all Motion must occur in the direction of least resistance, or in the direction of greatest traction, or in the direction of their resultant. It was pointed out that this law is every instant illustrated in the movements of the celestial bodies. The innumerable transpositions of matter, gaseous, liquid, and solid, going on over the Earth�s surface, were shown to conform to it. Evidence was given that this same ultimate principle of motion underlies the structural and functional changes of organisms. Throughout the succession of those nervous actions which constitute thought and feeling, as also in the discharge of feeling into action, we no less found this principle conspicuous. Nor did we discover any exception to it in the movements, temporary and permanent, that go on in societies. From the universal coexistence of opposing forces, there also resulted the rhythm of motion. It was shown that this is displayed from the infinitesimal vibrations of molecules up to the enormous revolutions and gyrations of planets; that it is traceable throughout all meteorologic and geologic changes; that the functions of every organic body exemplify it in various forms; that mental activities too, intellectual and emotional, exhibit periodicities of sundry kinds; and that actions and reactions illustrating this law under a still more complex form, pervade social processes. Such being the principles to which conform all changes produced by Force on the distribution of Matter, and all changes re-actively produced by Matter on the distribution of Force, we proceeded to inquire what must be the consequent nature of any re-distributions produced: having first noted the limiting conditions between which such re-distributions are possible, and the medium conditions that are most favourable to them. The first conclusion arrived at, was, that any finite homogeneous aggregate must inevitably lose its homogeneity, through the unequal exposure of its parts to incident forces. We observed how this was shown in surrounding things, by the habitual establishment of differences between inner and outer parts, and parts otherwise dissimilarly circumstanced. It was pointed out that the production of diversities of structure by forces acting under diverse conditions, has been illustrated in astronomic evolution, supposing such evolution to have taken place; and that a like connection of cause and effect is seen in the large and small modifications undergone by our globe. In the early changes of organic germs, we discovered further evidence that unlikenesses of structure follow unlikenesses of relations to surrounding agencies�evidence enforced by the tendency of the differently-placed members of each species to diverge into varieties. We found that the principle is also conformed to in the establishment of distinctions among our ideas; and that the contrasts, political and industrial, that arise between the parts of societies are no less in harmony with it. The instability of the homogeneous thus caused, and thus everywhere exemplified, we also saw must hold of the unlike parts into which any uniform whole lapses; and that so the less heterogeneous must tend continually to become more heterogeneous�an inference which we also found to be everywhere confirmed by fact. Carrying a step further our inquiry into these actions and reactions between Force and Matter, there was disclosed a secondary cause of increasing multiformity. Every differentiated part becomes, we found, a parent of further differentiations; not only in the sense that it must lose its own homogeneity in heterogeneity, but also in the sense that it must, in growing unlike other parts, become a centre of unlike reactions on incident forces; and by so adding to the diversity of forces at work, must add to the diversity of effects produced. This multiplication of effects, likewise proved to be manifest throughout all Nature. That forces modified in kind and direction by every part of every aggregate, are gradually expended in working changes that grow more numerous and more varied as the forces are subdivided, is shown in the actions and reactions going on throughout the Solar System, in the never-ceasing geologic complications, in the involved symptoms produced in organisms by disturbing influences, in the many thoughts and feelings generated by single impressions, and in the ever-ramifying results of each new agency brought to bear on a society. To which add the corollary, confirmed by abundant facts, that the multiplication of effects must increase in a geometrical progression, as the heterogeneity increases. Completely to interpret the structural changes constituting Evolution, there remained to assign a reason for that increasingly-distinct demarcation of parts, which accompanies the production of differences between parts. This reason we discovered to be, the segregation of mixed units under the action of forces capable of moving them. We saw that when the parts of an aggregate have been made qualitatively unlike by unlike incident forces�that is, when they have become contrasted in the natures of their component units; there necessarily arises a tendency to separation of the dissimilar orders of units from each other, and to aggregation of those units which are similar. This cause of the integration that accompanies differentiation, turned out to be likewise exemplified by all kinds of Evolution�by the formation of celestial bodies, by the moulding of the Earth�s crust, by organic modifications, by the establishment of mental distinctions, by the genesis of social divisions. And we inferred, what we may everywhere see, that the segregation thus produced goes on so long as there remains a possibility of making it more complete. At length, to the query whether the processes thus traced out have any limit, there came the answer that they must end in equilibration. That continual division and subdivision of forces, which is instrumental in changing the uniform into the multiform and the multiform into the more multiform, we saw to be at the same time a process by which force is perpetually dissipated; and that dissipation, continuing as long as there remains any force unbalanced by an opposing force, must end in rest. It was shown that when, as happens with aggregates of various orders, a number of movements are going on in combination, the earlier dispersion of the smaller and more resisted movements, entails the establishment of different kinds of moving equilibria: forming transitional stages on the way to complete equilibrium. And further inquiry made it apparent that for the same reason, these moving equilibria have a certain self-conserving power; shown in the neutralization of perturbations, and the adjustment to new conditions. This general principle, like the preceding ones, proved to be traceable throughout all forms of Evolution�astronomic, geologic, biologic, mental and social. And our concluding inference was, that the penultimate stage of this process, in which the extremest degree of multiformity and completest form of moving equilibrium is established, must be one implying the highest conceivable state of humanity. Thus it became apparent that this transformation of on indefinite, incoherent homogeneity into a definite coherent heterogeneity, which goes on everywhere, until it brings about a reverse transformation, is consequent on certain simple laws of force. Given those universal modes of action which are from moment to moment illustrated in the commonest changes around us, and it follows that there cannot but result the observed metamorphosis of an indeterminate uniformity into a determinate multiformity. * * * * * § 141. Finally, we have asked whether, for these universal modes of action, any common cause is assignable�whether these wide truths are dependent on any single widest truth. And to this question we found a positive answer. These several principles are corollaries from that primordial principle which transcends human intelligence by underlying it. In the first part of this work it was shown, by analysis of both our religious and our scientific ideas, that while knowledge of the cause which produces effects on our consciousness is impossible, the existence of a cause for these effects is a datum of consciousness. Though Being is cognizable by us only under limits of Time and Space, yet Being without limits of Time and Space was proved to be the indefinite cognition forming the necessary basis of our definite cognitions. We saw that the belief in an Omnipresent Power of which no commencement or cessation can be conceived, is that fundamental element in Religion which survives all its changes of form. We saw that all Philosophies avowedly or tacitly recognize this same ultimate truth:�that while the Relativist rightly repudiates those definite assertions which the Absolutist makes respecting real existence, he is yet at last compelled to unite with him in predicating real existence. And this inexpugnable consciousness in which Religion and Philosophy are at one with Common Sense, proved to be likewise that on which all exact Science is founded. We found that subjective Science can give no account of those conditioned modes of existence which constitute consciousness, without postulating unconditioned existence. And we found that objective Science can give no account of the existence which we know as external, without regarding its changes of form as manifestations of an existence that continues constant under all forms. Absolute Being, or Being which persists without beginning or end, was shown to be the common datum of all human thought; for the sufficient reason that the consciousness of it cannot be suppressed, without the suppression of consciousness itself. From this truth which transcends proof, we have seen that the general principles above set down, are deducible. That the power or force manifested to us in all phenomena, continues unaltered in quantity, however its mode of manifestation be altered, is a proposition in which these several propositions are involved. It was shown that on the Persistence of Force are based the demonstrations that Matter is indestructible and Motion continuous. When its proofs were examined, the correlation and equivalence of forces was found to follow from the Persistence of Force. The necessity we are under of conceiving Force under the two-fold form of attraction and repulsion, turns out to be but an implication of the necessity we are under of conceiving Force as persistent. On the Persistence of Force, we saw that the law of direction of Motion is dependent; and from it also we saw that the rhythm of Motion necessarily results. Passing to those changes of distribution which, by the Motion it generates, Force produces in Matter, it was pointed out that from the Persistence of Force are severally deducible, the instability of the homogeneous, the multiplication of effects, and that increasing definiteness of structure to which continuous differentiation and integration leads. And lastly we saw that Force being persistent, Evolution cannot cease until equilibrium is reached; and that equilibrium must eventually be reached. So that given Force manifested in Time and Space, under the forms of Matter and Motion; and it is demonstrable, _à priori_, that there must go on such transformations as we find going on. * * * * * § 142. See then the accumulation of proofs. The advance of human intelligence in establishing laws continually wider in generality, raises the presumption that there are all-comprehensive laws. Turning to the facts, we discern a pervading uniformity in the general course of things where this can be watched, and indications of such uniformity where it cannot be watched. Considering this uniformity analytically, we find it to result from certain simpler uniformities in the actions of Force. And these uniformities prove to be so many necessary implications of that primordial truth which underlies all knowledge�the Persistence of Force. The aspect of things raises a presumption; extended observations lead to an induction that fulfils this presumption; this induction is deductively confirmed; and the laws whence it is deduced are corollaries from that datum without which thought is impossible. No higher degree of verification than this can be imagined. An induction based on facts so numerous and varied, and falling short of universality only where the facts are beyond observation, possesses of itself a validity greater than that of most scientific inductions. When it is shown that the proposition thus arrived at _à posteriori_, may also be arrived at _à priori_, starting from certain simple laws of force; it is raised to a level with those generalizations of concrete science which are accepted as proved. And when these simple laws of force are affiliated upon that ultimate truth which transcends proof; this dependent proposition takes rank with those propositions of abstract science which are our types of the greatest conceivable certainty. Let no one suppose that any such degree of certainty is alleged of the various minor propositions brought in illustration of the general argument. Such an assumption would be so manifestly absurd, that it seems scarcely needful to disclaim it. But the truth of the doctrine as a whole, is unaffected by errors in the details of its presentation. As the first principles of mathematics are not invalidated by mistakes made in working out particular equations; so the first principles set forth in the foregoing pages, do not stand or fall with each special statement made in them. If it can be shown that the Persistence of Force is not a datum of consciousness; or if it can be shown that the several laws of force above specified are not corollaries from it; then, indeed, it will be shown that the theory of Evolution has not the certainty here claimed for it. But nothing short of this can invalidate the general conclusions arrived at. * * * * * § 143. If these conclusions be accepted�if it be admitted that they inevitably follow from the truth transcending all others in authority�if it be agreed that the phenomena going on everywhere are parts of the general process of Evolution, save where they are parts of the reverse process of Dissolution; then it must be inferred that all phenomena receive their complete interpretation, only when recognized as parts of these processes. Regarded from the point of view here reached, each change that takes place, is an incident in the course of the ever-complicating distribution of Matter and Motion, except where it is an incident in the course of the reverse distribution; and each such change is fully understood, only when brought under those universal principles of change, to which these transformations necessarily conform. Whence, indeed, it appears to be an unavoidable conclusion, that the limit towards which Science is advancing, must be reached when these formulæ are made all-comprehensive. Manifestly, the perfection of Science, is a state in which all phenomena are seen to be necessary implications of the Persistence of Force. In such a state, the dependence of each phenomenon on the Persistence of Force, must be proved either directly or indirectly�either by showing that it is a corollary of the Persistence of Force, or by showing that it is a corollary from some general proposition deduced from the Persistence of Force. And since all phenomena are incidents in the re-distributions of Matter and Motion; and since there are certain general principles, deducible from the Persistence of Force, to which all these re-distributions conform; it seems inferrable that ultimately all phenomena, where not classed as consequences of the Persistence of Force, must be classed as consequences of these derivative principles. * * * * * § 144. Of course this development of Science into an organized aggregate of direct and indirect deductions from the Persistence of Force, can be achieved only in the remote future; and indeed cannot be completely achieved even then. Scientific progress, is progress in that equilibration of thought and things which we saw is going on, and must continue to go on; but which cannot arrive at perfection in any finite period, because it advances more slowly the further it advances. But though Science can never be entirely reduced to this form; and though only at a far distant time can it be brought nearly to this form; yet much may even now be done in the way of rude approximation. Those who are familiar with the present aspects of Science, must recognize in them the broken outlines of a general organization. The possibility of arranging the facts already accumulated, into the order rudely exhibited in the foregoing pages, will itself incline them to the belief that our knowledge may be put into a more connected shape than it at present has. They will see the probability that many now isolated inductions, may be reduced to the form of deductions from first principles. They will suspect that inferences drawn from the ultimate laws of force, will lead to the investigation and generalization of classes of facts hitherto unexamined. And they will feel, not only that a greater degree of certainty must be acquired by Science, as fast as its propositions are directly or indirectly deduced from the highest of all truths; but also that it must so be rendered a more efficient agent of further inquiry. To bring scientific knowledge to such degree of logical coherence as is at present possible, is a task to be achieved only by the combined efforts of many. No one man can possess that encyclopedic information required for rightly arranging even the truths already established. But as progress is effected by increments�as all organization, beginning in faint and blurred outlines, is completed by successive modifications and additions; advantage may accrue from an attempt, however rude, to reduce the facts already accumulated�or rather certain classes of them�to something like co-ordination. Such must be the plea for the several volumes which are to succeed this. * * * * * § 145. A few closing words must be said, concerning the general bearings of the doctrines that are now to be further developed. Before proceeding to interpret the detailed phenomena of Life, and Mind, and Society, in terms of Matter, Motion, and Force, the reader must be reminded in what sense the interpretations are to be accepted. In spite of everything said at the outset, there are probably some who have gained the impression that those most general truths set forth in the preceding chapters, together with the truths deducible from them, claim to be something more than relative truths. And, notwithstanding all evidence to the contrary, there will probably have arisen in not a few minds, the conviction that the solutions which have been given, along with those to be derived from them, are essentially materialistic. Let none persist in these misconceptions. As repeatedly shown in various ways, the deepest truths we can reach, are simply statements of the widest uniformities in our experience of the relations of Matter, Motion, and Force; and Matter, Motion, and Force are but symbols of the Unknown Reality. That Power of which the nature remains for ever inconceivable, and to which no limits in Time or Space can be imagined, works in us certain effects. These effects have certain likenesses of kind, the most general of which we class together under the names of Matter, Motion, and Force; and between these effects there are likenesses of connection, the most constant of which we class as laws of the highest certainty. Analysis reduces these several kinds of effect to one kind of effect; and these several kinds of uniformity to one kind of uniformity. And the highest achievement of Science is the interpretation of all orders of phenomena, as differently-conditioned manifestations of this one kind of effect, under differently-conditioned modes of this one kind of uniformity. But when Science has done this, it has done nothing more than systematize our experience; and has in no degree extended the limits of our experience. We can say no more than before, whether the uniformities are as absolutely necessary, as they have become to our thought relatively necessary. The utmost possibility for us, is an interpretation of the process of things as it presents itself to our limited consciousness; but how this process is related to the actual process, we are unable to conceive, much less to know. Similarly, it must be remembered that while the connection between the phenomenal order and the ontological order is for ever inscrutable; so is the connection between the conditioned forms of being and the unconditioned form of being, for ever inscrutable. The interpretation of all phenomena in terms of Matter, Motion, and Force, is nothing more than the reduction of our complex symbols of thought, to the simplest symbols; and when the equation has been brought to its lowest terms the symbols remain symbols still. Hence the reasonings contained in the foregoing pages, afford no support to either of the antagonist hypotheses respecting the ultimate nature of things. Their implications are no more materialistic than they are spiritualistic; and no more spiritualistic than they are materialistic. Any argument which is apparently furnished to either hypothesis, is neutralized by as good an argument furnished to the other. The Materialist, seeing it to be a necessary deduction from the law of correlation, that what exists in consciousness under the form of feeling, is transformable into an equivalent of mechanical motion, and by consequence into equivalents of all the other forces which matter exhibits; may consider it therefore demonstrated that the phenomena of consciousness are material phenomena. But the Spiritualist, setting out with the same data, may argue with equal cogency, that if the forces displayed by matter are cognizable only under the shape of those equivalent amounts of consciousness which they produce, it is to be inferred that these forces, when existing out of consciousness, are of the same intrinsic nature as when existing in consciousness; and that so is justified the spiritualistic conception of the external world, as consisting of something essentially identical with what we call mind. Manifestly, the establishment of correlation and equivalence between the forces of the outer and the inner worlds, may be used to assimilate either to the other; according as we set out with one or other term. But he who rightly interprets the doctrine contained in this work, will see that neither of these terms can be taken as ultimate. He will see that though the relation of subject and object renders necessary to us these antithetical conceptions of Spirit and Matter; the one is no less than the other to be regarded as but a sign of the Unknown Reality which underlies both. THE END. JOHN CHILDS AND SON, PRINTERS. ------------------------------------------------------------------------ TRANSCRIBER�S NOTES 1. Changed �which takes place� to �which take place� on p. 315. 2. Duplicated the large spaces in the original text. 3. Silently corrected typographical errors. 4. Retained anachronistic and non-standard spellings as printed. 5. Enclosed italics font in _underscores_.