Papers of the Week

Two Types of Novel Allosteric Modulators Activate β_2 -AR Signaling, a G Protein-coupled Receptor Involved in Airway Smooth Muscle Relaxation and Asthma \blacklozenge

♦ See referenced article, J. Biol. Chem. 2014, 289, 35668-35684

Development and Characterization of Pepducins as G_s -biased Allosteric Agonists

The β_2 -adrenergic receptor (β_2 AR) is a G protein-coupled receptor (GPCR) involved in hormonal signal transduction and plays a role in many physiological processes including cardiac muscle contraction and airway smooth muscle relaxation. β -Agonists, which stimulate the β_2 AR, are commonly used as therapeutics in the treatment of asthma. However, desensitization of the receptor in response to β -agonists, which is largely mediated by GPCR kinases and β -arrestins, reduces agonist efficacy. An agonist that can stimulate G protein signaling through the β_2 AR while bypassing GPCR kinases and β -arrestins may be useful in the treatment of asthma. In this Paper of the Week, a team led by Jeffrey Benovic at Thomas Jefferson University screened lipidated peptides from the intracellular loops of the β_2 AR, known as pepducins, and discovered two types of biased activators of β_2 AR signaling. One type was a receptor-dependent pepducin that stabilized a conformation of the β_2 AR that was biased towards the G_s heterotrimeric G protein while a second group of pepducins directly activated G_s. The investigators say that these molecules "provide a valuable tool for the continued study of β_2 AR function and may prove useful as next-generation asthma therapeutics."

DOI 10.1074/jbc.P114.618819

35685

 $\rm G_{s}\text{-}biased$ agonists do not promote $\beta_{2}\rm AR$ internalization or desensitization.