Clinical Effectiveness of Motor Imagery Post Stroke: An Evidence Based Review

Azzey Narimanian, Amanda Reese, Karina Ryabo, Rachel Shepp, and Annalisa Synnestvedt

Faculty Mentor: Teal Benevides

OBJECTIVES:

- Understand the current evidence for motor imagery, as presented in an evidence-based review of 15 articles.
- Identify three clinical implications of this evidence in treatment for individuals post-stroke.
- Distinguish the unique role of occupational therapy using motor imagery to enhance occupational participation.
- Analyze supports and barriers to implementing the evidence for motor imagery to current practice settings through group discussion.

What is the effectiveness of motor imagery to increase upper extremity function for daily activities for individuals post-stroke?

Acute verses Chronic Stroke: Strong evidence supports the use of motor imagery for individuals with acute and chronic stroke to improve upper extremity function.

- Total time post-stroke: 12 days 4.6 years
- Average time post-stroke: acute = 7.7 weeks/ chronic = 2.4 years
- Statistically significant results for use of motor imagery for patients
 - 6 articles with chronic stroke (3 Level I, 2 Level II, 1 Level III)
 5 articles with acute stroke (3 Level I, 1 Level II, 1 Level III)

Protocol: Perspective: Strong evidence supports a first-person perspective to improve upper extremity function; there is preliminary evidence for a third-person perspective and a combined perspective.

- First-Person Perspective: 9 articles (4 Level I, 3 Level II, 2 Level III)
- First Compared to Third-Person Perspective: 1 article (Level I) (not statistically significant)
- o Combined First and Third-Person Perspectives: 1 article (Level II)

Protocol: Motor Imagery with Relaxation: Strong evidence supports the use of relaxation as the first step within a motor imagery protocol to improve upper extremity function.

- o 7 articles using this approach (3 Level I, 3 Level II, 1 Level III)
- Relaxation, ranging from 2-5 minutes, was used as the first step of motor imagery

<u>Protocol: Motor Imagery with Graded Performance</u>: Strong evidence supports the use of motor imagery with graded performance.

- This involves using motor imagery with gradually more complex tasks or environments (Timmermans et al., 2013)
- 7 articles (3 Level I, 2 Level II, 2 Level III) using this approach had statistically significant results

Delivery Method: Intervention: Strong evidence supports the use of audio delivered motor imagery to improve upper extremity function; moderate evidence supports the use of therapist delivered motor imagery; preliminary evidence supports the use of video & therapist delivered, video delivered & audio, video, therapist scripted delivery. Further research is needed to identify the most effective delivery method.

- Video Recording: 1 article (Level I)
- Audio Recording: 5 articles (3 Level I, 2 Level II)
- Therapist Delivered: 6 articles (2 Level II, 2 Level III, 2 Level III)
- Video, Audio, & Therapist Scripted: 1 article (Level I) (not statistically significant)
- Video & Therapist Delivered: 1 article (Level I) (not statistically significant)

<u>Delivery Method: Duration, Frequency, Intensity</u>: Preliminary evidence supports varied duration, frequency, and intensity of motor imagery intervention.

- Statistically significant outcomes were seen as early as 2 weeks with 5 sessions/week lasting 40 minutes each, and as late as 10 weeks with 3 sessions/week lasting 50 minutes each.
- Studies most frequently used 30 minute sessions (Ranged from 10-60 minutes)
- $\circ \qquad {\rm Studies\ used\ an\ average\ of\ 15.4\ treatment\ sessions}$

Most Frequently Used Outcome Assessments:

- Fugl-Meyer Test of Sensorimotor Impairment: 7 articles (4 Level I, 2 Level II, 1 Level III)
- o Action Research Arm Test: 6 articles (4 Level I, 2 Level II)
- Barthel Index of Activities of Daily Living: 2 articles (2 Level I)(not statistically significant)

Two authors critiqued each article utilizing the PEDro Scale to minimize bias

Search Terms:

Population: Stroke, "poststroke", "post-stroke", "hemiparesis", "CVA", "cerebral vascular accident", "cerebrovascular accident", "upper extremity", "upper limb", hand

Intervention: "motor imagery", "mental practice", imagery, visualization

Outcome: "activities of daily living", function, motor N5

Themes	Preliminary	Moderate	Strong
Acute			1
Chronic			1
1st Perspective			1
3rd Perspective	1		
Combined Perspective	1		
Relaxation			1
Graded Performance			~
Video Delivery	1		
Audio Delivery			1
Therapist Delivered		~	
Audio,Video, & Therapist Scripted	1		
Video & Therapist Delivered	1		
Duration, Frequency, & Intensity	V		

References

- American Occupational Therapy Association. (2008). Occupational therapy practice framework: Domain and process (2nd ed.). American Journal of Occupational Therapy, 62, 625–683.
- Barclay-Goddard, R. E., Stevenson, T. J., Poluha, W., & Thalman, L. (2011). Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. *Stroke*, *42*(11), e574-e575. doi: 10.1002/14651858.CD005950.pub4
- *Bovend'Eerdt, T. J., Dawes, H., Sackley, C., Izadi, H., & Wade, D. T. (2010). An integrated motor imagery program to improve functional task performance in neurorehabilitation: a single-blind randomized controlled trial. Archives of physical medicine and rehabilitation, 91(6), 939-946.

Center for Disease Control. (2013). Stroke facts. Retrieved from http://www.cdc.gov/stroke/facts.htm

Centre for Evidence-Based Physiotherapy. (1999). PEDro Scale. Retrieved July 24, 2013, from http://www.pedro.org.au/

- University of Illinois at Chicago, Library of the Health Sciences. (2009). Levels of evidence pyramid [image], Retrieved August 17, 2013 from http://gollum.lib.uic.edu/nursing/node/12
- *Craje, C., van der Graaf, C., Lem, F. C., Geurts, A. C., & Steenbergen, B. (2010). Determining specificity of motor imagery training for upper limb improvement in chronic stroke patients: A training protocol and pilot results. *International Journal of Rehabilitation Research*, 33(4), 359-362.
- de Vries, S., Tepper, M., Otten, B., & Mulder, T. (2011). Recovery of motor imagery ability in stroke patients. Rehabilitation Research & Practice Print, 39, 5-13.
- Dickstein, R., & Deutsch, J. E. (2007). Motor imagery in physical therapy practice. Journal of the American Physical Therapy Association, 87(7), 942-953. doi: 10.2522/ ptj.20060331
- *Guttman, A., Burstin, A., Brown, R., Bril, S., & Dickstein, R. (2012). Motor imagery practice for improving sit to stand and reaching to grasp in individuals with poststroke hemiparesis. *Topics in Stroke Rehabilitation*, 19(4), 306-319.
- *Ietswaart, M., Johnston, M., Dijkerman, H. C., Joice, S., Scott, C. L., MacWalter, R. S., & Hamilton, S. J. (2011). Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy. *Brain, 134*(5), 1373-1386.

Kwakkel, G., et al. (2004). Effects of augmented exercise therapy time after stroke a meta-analysis. Stroke, 35(11), 2529-2539.

- *Liu, K. P. (2009). Use of mental imagery to improve task generalisation after a stroke. Hong Kong Medical Journal, 15(3 Suppl 4), 37-41.
- *Liu, K. P., Chan, C. C., Wong, R. S., Kwan, I. W., Yau, C. S., Li, L. S., & Lee, T. M. (2009). A randomized controlled trial of mental imagery augment generalization of learning in acute poststroke patients. *Stroke*, 40(6), 2222-2225.
- Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. *Physical Therapy*, 83(8), 713-721.
- *Muller, K., Butefisch, C. M., Seitz, R. J., & Homberg, V. (2007). Mental practice improves hand function after hemiparetic stroke. *Restorative Neurology & Neuroscience*, 25(5-6), 501-511.
- *Nilsen, D. M., Gillen, G., DiRusso, T., & Gordon, A. M. (2012). Effect of imagery perspective on occupational performance after stroke: A randomized controlled trial. American Journal of Occupational Therapy, 66(3), 320-329.
- *Page, S. J., Levine, P., & Leonard, A. (2007). Mental practice in chronic stroke: Results of a randomized, placebo-controlled trial. Stroke, 38(4), 1293-1297.
- *Page, S. J., Levine, P., & Leonard, A. C. (2005). Effects of mental practice on affected limb use and function in chronic stroke. Archives of Physical Medicine & Rehabilitation, 86(3), 399-402. Priganc, V. W., & Stralka, S. W. (2011). Graded motor imagery. Journal of Hand Therapy, 24(2), 164-169.
- *Page, S. J., Murray, C., Hermann, V., & Levine, P. (2011). Retention of motor changes in chronic stroke survivors who were administered mental practice. Archives of Physical Medicine & Rehabilitation, 92(11), 1741-1745.
- *Riccio, I., Iolascon, G., Barillari, M. R., Gimigliano, R., & Gimigliano, F. (2010). Mental practice is effective in upper limb recovery after stroke: A randomized singleblind cross-over study. *European Journal of Physical & Rehabilitation Medicine*, 46(1), 19-25.
- Shenn, J., & Leishear, K. (2011). Novel techniques for upper extremity training for hemiparesis after stroke. Retrieved from http://pmr.medicine.pitt.edu/content/pdfs/RGR_10.pdf
- *Simmons, L., Sharma, N., Baron, J. C., & Pomeroy, V. M. (2008). Motor imagery to enhance recovery after subcortical stroke: Who might benefit, daily dose, and potential effects. *Neurorehabilitation & Neural Repair, 22*(5), 458-467.
- *Sun, L., Yin, D., Zhu, Y., Fan, M., Zang, L., Wu, Y., Jia, J., Bai, Y., Zhu, B. & Hu, Y. (2013). Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: A longitudinal fMRI study. *Neuroradiology*, 55(7), 913-925.
- *Timmermans, A. A., Verbunt, J. A., van Woerden, R., Moennekens, M., Pernot, D. H., & Seelen, H. A. (2013). Effect of mental practice on the improvement of function and daily activity performance of the upper extremity in patients with subacute stroke: A randomized clinical trial. *Journal of the American Medical Directors Association*, 14(3), 204-212.

* References marked with an asterisk indicate studies included in the evidence-based review

Author Contact Information:

Azzey Narimanian	Amanda Reese	Karina Ryabo	Rachel Shepp	Annalisa Synnestvedt
Azzeyn@gmail.com	Amanda.n.reese@gmail.com	KarinaRachel89@gmail.com	Res950@gmail.com	Alsynnestvedt@gmail.com