bechtel.explicating top-down.4.0.forpreprint UC San Diego UC San Diego Previously Published Works Title Explicating Top-Down Causation Using Networks and Dynamics Permalink https://escholarship.org/uc/item/34m389rq Journal PHILOSOPHY OF SCIENCE, 84(2) ISSN 0031-8248 Author Bechtel, William Publication Date 2017-04-01 DOI 10.1086/690718 Peer reviewed eScholarship.org Powered by the California Digital Library University of California https://escholarship.org/uc/item/34m389rq https://escholarship.org http://www.cdlib.org/ Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting       Explicating  Top-­‐Down  Causation  Using  Networks  and  Dynamics     William  Bechtel   Department  of  Philosophy  and  Center  for  Circadian  Biology   University  of  California,  San  Diego     Abstract     In  many  fields  in  the  life  sciences  investigators  refer  to  downward  or  top-­‐down  causal   effects.  Craver  and  I  defended  the  view  that  such  cases  should  be  understood  in  terms  of  a   constitution  relation  between  levels  in  a  mechanism  and  intra-­‐level  causal  relations   (occurring  at  any  level).  We  did  not,  however,  specify  when  entities  constitute  a  higher-­‐ level  mechanism.  In  this  paper  I  appeal  to  graph-­‐theoretic  representations  of  networks,   now  widely  employed  in  systems  biology  and  neuroscience,  and  associate  mechanisms   with  modules  that  exhibit  high  clustering.  As  a  result  of  such  interconnections  mechanisms   often  exhibit  complex  dynamic  behaviors  that  constrain  how  individual  components   respond  to  external  inputs,  a  central  feature  of  top-­‐down  causation.     Keywords:  constraints;  downward  causation;  endogenous  dynamics;  graph   representations;  mechanistic  explanations;  negative  feedback           Contact  Information:  William  Bechtel,  Department  of  Philosophy,  University  of  California,   San  Diego,  9500  Gilman  Drive,  La  Jolla,  CA  92093-­‐0119;  bechtel@ucsd.edu       Acknowledgements     I  thank  three  anonymous  referees  for  this  journal  for  their  very  helpful  comments  and   suggestions.  I  also  thank  John  Norton  and  Visiting  Fellows  at  the  Center  for  Philosophy  of   Science  at  the  University  of  Pittsburgh  in  2014-­‐2015,  especially  Sara  Green,  Raphael  Scholl,   and  Maria  Serban,  for  their  spirited  discussion  of  an  earlier  draft  of  this  paper.  Likewise,  I   thank  members  of  the  audience  at  the  Workshop  on  Levels  of  Organization,  Causality,  and   Top-­‐Down  Relations  sponsored  by  the  IAS  Research  Center  for  Life,  Mind,  and  Society,   University  at  the  Basque  Country,  San  Sebastian,  in  June  2015,  especially  Leonardo  Bich,   Alvaro  Moreno,  and  Kepa  Ruiz-­‐Mirazo,  for  valuable  discussion  at  and  after  the  Workshop.   Finally,  I  thank  Jason  Winning  for  many  productive  discussions  concerning  constraints  and   mechanism.       Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting     1.  Introduction     States  of  whole  systems  often  constrain  the  behavior  of  their  parts.  Conditions  in  a  cell,   such  as  its  phase  in  the  cell  cycle,  constrain  which  genes  are  expressed.  The  same  molecule   can  have  different  effects  on  components  of  a  cell  (e.g.,  promoting  or  inhibiting  apoptosis)   depending  on  the  conditions  in  the  cell.  Phenomena  such  as  these  are  often  characterized   as  involving  downward  or  top-­‐down  causation  (Noble  2006).  They  are  contrasted  with   cases  of  bottom-­‐up  causation  in  which  a  state  of  a  component  of  a  system  partially   determines  the  state  of  the  whole  (e.g.,  a  genetic  mutation  impairs  fatty-­‐acid  metabolism  of   a  cell  or  bonds  between  actin  and  myosin  produce  muscle  contraction).  While  most   researchers  do  not  find  bottom-­‐up  causation  mysterious  (it  is  invoked  in  reductionistic   explanation  of  properties  of  a  system  in  terms  of  its  parts),  many  have  found  top-­‐down   causation  to  present  a  puzzle:  how  does  a  whole  system  have  effects  over  and  above  those   of  each  of  its  components?       In  an  attempt  to  defuse  the  mystery,  Craver  and  I  (Craver  and  Bechtel  2007)  distinguished   constitution  and  causation  and  proposed  treating  constitution  as  a  relation  between  lower-­‐ level  parts  and  higher-­‐level  mechanisms  and  causation  as  a  relation  between  entities  at  the   same  level.  On  our  proposal,  parts  constitute  wholes;  they  don’t  cause  their  properties.  By   viewing  causation  as  occurring  at  all  levels,  not  just  the  lowest  one,  we  presented   themselves  as  offering  an  account  that  would  capture  what  is  characterized  as  top-­‐down   causation  without  engendering  conceptual  problems  such  as  those  posed  by  Kim’s  (1998)   exclusion  argument.  When  one  thing  acts  on  a  whole  mechanism,  and  its  components  are   also  modified,  we  proposed  that  higher-­‐level  causation  was  involved  in  producing  the  effect   on  the  whole  mechanism.  Since  the  parts  are  what  constitute  the  whole  mechanism,  one  or   more  of  them  would  themselves  be  changed  in  that  process.  No  additional  causal  processes   were  involved  between  the  whole  and  the  part,  although  additional  causal  processes  might   then  ensue  in  the  mechanism  as  a  result  (thereby  altering  the  state  of  the  system  as  a   whole).       However,  the  examples  Craver  and  I  introduced  fail  to  bring  out  in  what  sense  higher-­‐levels   are  involved  in  producing  these  effects  at  the  lower  level.  In  offering  an  example  in  which  a   person’s  activity  (playing  tennis)  results  in  a  change  within  the  person’s  body  (altered   metabolism),  we  emphasized  the  role  of  lower-­‐level  causal  relations:  “In  this  and  many   similar  cases,  a  change  in  the  activity  of  the  mechanism  as  a  whole  just  is  a  change  in  one  or   more  components  of  the  mechanism  which  then,  through  ordinary  intra-­‐level  causation,   causes  changes  in  other  components  of  the  mechanism.”  This  presents  the  challenge:  why   should  one  treat  the  whole  mechanism  as  a  higher-­‐level  entity  rather  than  just  a  collection   of  lower-­‐level  entities,  with  all  the  causality  operative  between  these  lower-­‐level  entities?   This  is  a  version  of  Kim’s  exclusion  argument  against  top-­‐down  causation  and  a  number  of   critics  (see,  for  example,  Soom  2012;  Rosenberg  2015)  has  objected  that  in  the  end  Craver   and  me,  like  Kim,  only  allow  causation  at  the  lowest  level.  In  pushing  a  similar  objection,   Fazekas  and  Kertész  (2011)  argue  that  constitution  should  be  expressed  in  an  identity   claim,  and  this  undermines  any  sense  of  autonomy  for  higher-­‐level  causation.     Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting     My  goal  in  this  paper  is  to  unpack  Craver  and  my  distinction  between  causation  and   constitution  by  explicating  more  clearly  (1)  when  an  entity  or  activity  that  is  regarded  as  at   a  higher-­‐level  enters  into  causal  relations  such  that  the  causality  should  be  treated  as  at  a   higher-­‐level  and  (2)  the  relation  that  holds  between  the  state  of  the  mechanism  as  a  whole   and  the  state  of  its  components.  While  bottom-­‐up  causation  has  seemed  less  mysterious,   the  same  problem  arises  in  cases  of  supposed  bottom-­‐up  causation:  how  do  operations  of   parts  of  a  system  have  effects  on  the  whole  when  what  they  seem  to  have  is  effects  on  other   parts,  which  together  constitute  whole.  Whereas  top-­‐down  causation  raises  the  question   why  the  whole  is  considered  the  cause,  bottom-­‐up  causation  raises  the  question  why   effects  are  assigned  to  the  whole.       Crucial  to  any  account  of  inter-­‐level  causation  is  the  notion  of  level  that  is  invoked.  Craver   and  I  dissociated  our  treatment  of  levels  from  many  in  the  literature,  such  as  the  notion  of   levels  of  science  that  were  invoked  in  the  theory-­‐reduction  literature  or  notions  of  levels   defined  in  terms  of  the  size  of  entities—e.g.,  molecules,  cells,  organs,  organisms  (for  an   frequently  cited  example,  see  Churchland  and  Sejnowski  1992).  In  the  context  of   discussions  of  top-­‐down  causation,  neither  of  these  senses  brings  out  what  many  find  to  be   problematic.  There  is  nothing  problematic  with  objects  studied  in  one  discipline  having   causal  effects  on  those  studied  in  other  disciplines  or  for  large  entities  to  have  causal   effects  on  small  entities.  Craver  and  I  restrict  our  account  to  mechanistic  levels  in  which  a   mechanism  consists  of  appropriately  organized  parts  performing  operations.  The  notion  of   a  mechanism  causing  the  state  of  its  parts  does  bring  out  what  many  have  found   problematic  in  talk  of  top-­‐down  causation  since  the  state  of  the  parts  and  the  state  of  the   mechanism  are  not  independent  in  the  sense  required  for  one  to  cause  the  other.     What  is  crucial  to  the  mechanistic  conception  of  level  is  the  idea  of  an  entity  being   constituted  by  its  parts  and  operations.  The  notion  of  constitution  is  what  must  be   explicated  and  section  2  will  highlight  this  challenge  by  developing  an  example  biological   mechanism  that  I  will  use  through  the  rest  of  the  paper.  Then,  in  section  3,  I  introduce  a   framework  for  thinking  about  systems  that  has  been  extensively  applied  in  systems  biology   (Barabasi  and  Oltvai  2004)  and  neuroscience  (Sporns  2010):  graph-­‐theoretic   representations  of  networks.  Appealing  to  graph  theory  may  appear  paradoxical  as  graph-­‐ theoretic  representations  do  not  explicitly  advert  to  levels—all  nodes  are  represented  on  a   plane.  Many  graphs  that  characterize  biological  systems,  though,  involve  modules  in  which   there  is  high  clustering  of  nodes  often  around  one  or  more  hubs.  Many  of  these  modules,  on   the  account  I  am  offering,  constitute  higher-­‐level  mechanisms.  One  must  not  only  show  that   high-­‐level  mechanisms  can  be  identified,  but  that  the  effects  on  the  parts  when  the  whole   mechanism  is  affected  correspond  to  what  has  led  to  talk  of  top-­‐down  causation.  That  is,   the  condition  of  the  whole  mechanism  must  result  in  different  behavior  of  the  part  than   would  occur  when  the  conditions  in  the  whole  mechanism  are  different.  This  requires  that   we  turn  from  the  structure  of  modules  to  their  functioning.  The  clustered  nodes  in   biological  networks  are  typically  not  ordered  sequentially;  rather,  they  are  connected  in   such  an  interconnected  manner  that  one  can  identify  multiple  feedback  loops.    When  the   operations  corresponding  to  the  edges  in  graphs  are  non-­‐linear,  interconnected  modules   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   can  exhibit  complex  dynamic  behavior  such  as  oscillations.  As  a  result  of  dynamic  behavior   within  the  module,  the  module  itself  does  not  respond  to  external  inputs  in  the  same   manner  on  all  occasions.  How  it  responds  depends  on  the  current  conditions  of  the  module.   This  is  a  diagnostic  symptom  of  top-­‐down  causation.       The  graph  representations  that  I  introduce  in  sections  3  and  4  help  make  it  clear  when  it  is   appropriate  to  identify  mechanisms  as  higher-­‐level  components—mechanisms  are  highly   interactive  modules  within  a  larger  network  that  are  capable  of  exhibiting  complex   dynamics.  But  as  a  result  of  treating  all  interactions,  those  within  the  module  and  those   between  modules,  as  edges,  the  graph  representation  does  not  make  manifest  why  the   effects  of  mechanisms  on  their  constituent  components  are  different  from  the  propagation   of  causal  effects  throughout  the  network.  Instead,  the  graph  representation  may  reinforce   the  perception  that  all  causation  is  at  the  lowest  level  represented  by  individual  nodes  in   the  graph.  To  address  this  issue,  in  section  5  I  will  deploy  a  distinction  between  constraints   and  dynamical  laws  that  has  been  introduced  into  theoretical  biology  from  physics  (Hooker   2013;  Pattee  1971).  Constraints  reduce  the  degrees  of  freedom  that  are  left  open  by   dynamical  laws  alone  by,  for  example,  establishing  correlations  between  variables  or   restricting  the  range  of  variables.  Although  the  imposition  of  constraints  and  the   propagation  of  effects  of  constrained  systems  involve  diachronic  activity,  the  constraints   exercised  by  a  whole  mechanism  on  its  parts  are  synchronic—they  are  realized  through  the   organizational  relationships  between  the  components  at  a  time.  Given  the  organization  of   the  mechanism,  the  responses  of  components  that  are  altered  when  the  mechanism  itself  is   affected  by  external  causes  are  constrained  by  the  whole.       2.  When  Top-­‐Down  Causation  Seems  Problematic:  Levels  of  Mechanisms       The  notion  of  mechanism  invoked  in  the  conception  of  levels  I  am  addressing  arises  from   the  practice  of  biologists  over  the  past  several  centuries.  In  the  life  sciences,  investigators   developing  explanations  often  (1)  begin  by  identifying  the  mechanism  responsible  for  a   specific  phenomenon  to  be  explained,  (2)  proceed  to  decompose  the  mechanism  into  its   parts  and  the  operations  they  perform,  and  (3)  finally  recompose  the  mechanism  to  show   how,  as  a  result  of  the  organized  parts  orchestrating  their  operations,  the  mechanism   generates  the  phenomenon.  While  this  practice  has  been  pursued  for  several  centuries,  it   has  assumed  a  central  place  in  philosophical  accounts  of  explanation  in  the  last  couple   decades  (Bechtel  and  Richardson  1993/2010;  Bechtel  2006,  2008;  Machamer,  Darden,  and   Craver  2000).  The  steps  of  decomposition  and  recomposition  are  what  invite  employing   the  word  levels.  Parts  are,  in  a  rather  natural  sense,  at  a  lower  level  than  the  mechanism   constructed  out  of  them.       This  conception  of  level  can  be  illustrated  using  an  example  to  which  I  will  return   throughout  this  paper,  the  phenomenon  of  circadian  rhythmicity  in  mammals  (i.e.,  daily   oscillations  in  behaviors  and  physiological  functions  that  are  endogenously  generated  but   entrainable  to  day-­‐night  cycles  in  the  local  environment).  The  responsible  mechanism   resides  in  individual  cells.  The  genes  Per  and  Cry  and  the  proteins  synthesized  from  them,   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   PER  and  CRY,  are  major  parts.1  PER  and  CRY  form  a  dimer  and,  after  being  transported   back  into  the  nucleus,  inhibit  their  own  transcription  by  interfering  with  the  activators,   BMAL1  and  CLOCK.2  These  genes  and  proteins  occupy  a  lower  level  than  the  mechanism   itself.       Using  this  example,  we  can  now  see  what  is  sometimes  regarded  as  problematic  about  top-­‐ down  causation.  Whether  Per  and  Cry  are  transcribed  and  translated  into  the  proteins  PER   and  CRY  depends  upon  the  phase  of  oscillation  the  host  cell  is  in.  The  oscillatory  phase,  a   state  of  the  whole  cell,  is  determining  the  behavior  of  its  parts,  seemingly  in  accord  with   accounts  of  top-­‐down  causation.  However,  the  phase  of  the  oscillator  at  a  time  just  is  the   concentrations  of  PER,  CRY,  and  a  cadre  of  related  proteins  that  make  up  the  mechanism.   Treating  the  concentrations  as  causing  the  phase,  or  vice  versa,  seems  to  violate  many   intuitive  aspects  of  causation.  Causation  is  often  understood  as  involving  contact  action  or  a   propagated  signal  (Hitchcock  2003).  Moreover,  causes  are  assumed  to  precede  their   effects.  Both  conditions  require  that  causes  and  effects  be  wholly  distinct  (see  Lewis  2000,  ,   for  detailed  arguments  as  to  why  causes  and  effects  must  be  distinct).  The  phase  of  the   oscillation  in  the  cell  is  not  distinct  from  the  concentrations  of  PER  and  CRY.  More   generally,  the  parts  and  wholes  of  a  mechanism  are  not  distinct—each  requires  the   existence  of  the  other.  There  is  no  possibility  for  transmission  between  parts  and  wholes   since  they  are  not  distinct.  Neither  the  states  of  the  parts  nor  the  state  of  the  whole  come   before  the  other—they  occur  simultaneously.  Talking  of  top-­‐down  causation  in  these  cases   also  seems  to  engender  the  problem  of  redundant  causation  highlighted  by  Kim  (1998).   While  we  might  attribute  the  change  in  concentration  in  PER  or  CRY  to  the  phase  of  the   oscillator,  it  can  also  be  attributed  to  specific  molecular  events,  viz.,  that  the  proteins  have   attached  themselves  to  two  other  proteins,  BMAL  and  CLOCK,  and  removed  those  proteins   from  the  E-­‐boxes  on  the  Per  and  Cry  genes,  terminating  the  synthesis  of  more  PER  and  CRY.       Craver  and  I  sought  to  make  a  virtue  out  of  these  problems  for  top-­‐down  (or  comparable   problems  for  bottom-­‐up)  causation  by  treating  the  inter-­‐level  relation  as  constitution  and   noting  that  a  state  of  the  whole  mechanism  involves  at  least  some  of  its  parts  being  in   appropriate  states.  Any  phenomenon  that  seems  to  exhibit  bottom-­‐up  or  top-­‐down   causation  can  be  accommodated  by  viewing  causes  as  operating  either  (1)  between  the   whole  mechanism  and  other  entities  outside  it  or  (2)  among  the  parts  within  the   mechanism.  The  fact  that  the  parts  constitute  the  whole  has  the  consequence  that  the  state   of  the  whole  mechanism  is  changed  whenever  the  state  of  one  of  its  parts  is  changed  and   the  state  of  at  least  one  of  the  parts  is  changed  whenever  the  state  of  the  whole  is  changed.   Craver  and  Bechtel  referred  to  how  the  constitution  relation  mediates  between  changes  to   the  parts  and  changes  to  the  whole  as  yielding  mechanistically  mediated  effects.                                                                                                                     1  There  are  two  paralogs  of  PER  and  CRY  in  the  mammalian  clock  mechanism,  but  since   they  function  in  similar  ways,  I  am  omitting  this  detail.     2  There  is  now  some  doubt  as  to  whether  the  mechanism  requires  proteins  inhibiting  their   own  transcription;  on  some  proposals,  the  oscillator  may  be  post-­‐translational.  For   purposes  of  this  paper,  I  will  assume  that  the  core  mechanism  involves  transcription-­‐ translation  feedback  loops.     Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting     A  major  shortcoming  in  Craver  and  my  account  is  that  by  merely  pointing  to  a  constitution   relation  we  left  unspecified  what  it  is  for  parts  to  constitute  a  mechanism  such  that  the   mechanism  is  at  a  higher  level.  The  need  to  address  this  question  can  be  seen  by  examining   the  three-­‐tier  diagram  Craver  (2007)  uses  to  present  his  view  of  levels.  At  the  top  an  arrow   on  the  left  terminates  at  a  darkened  oval  that  represents  a  mechanism.  Another  arrow   leaves  from  the  mechanism.  This  is  intended  to  show  that  when  the  mechanism  receives  an   input,  it  generates  an  output.  Dotted  lines  connect  that  oval  to  the  one  below,  indicating   that  what  is  below  is  an  expansion  of  what  is  above.  In  this  middle  tier,  the  arrow  on  the   left  is  shown  as  entering  into  the  mechanism  to  terminate  at  one  of  the  ovals  within  it.  The   four  ovals  within  are  connected  by  arrows,  culminating  in  one  from  which  the  arrow  on  the   right  now  exits.  One  of  the  ovals  in  the  mechanism  is  again  shown  in  black,  and  it  is   expanded  in  the  third  tier  in  the  same  manner.  The  figure  makes  clear  the  sense  in  which   this  account  of  mechanisms  is  supposed  to  give  rise  to  a  view  of  levels—the  inner  ovals  in   tier  two  are  inside  the  larger  oval  which  is  then  shown  in  black  above  it  on  the  upper  tier.   The  question  the  diagram  poses  is:  what  do  the  ovals  represent?  Put  another  way,  why  is   the  oval  in  the  middle  tier  around  all  four  inner  ovals,  and  not  some  other  possible   combination  of  ovals  (e.g.,  just  two  of  the  inner  ovals  in  tier  2,  or  one  of  these  and  another   outside  of  the  oval  shown)?       Figure  1.  Craver-­‐style  representation  of  three  levels  of  a  mechanism.  Adapted  from  Craver  (2007).   Motivating  the  ovals  in  Figure  1  requires  an  answer  to  the  original  question:  when  do   components  constitute  a  mechanism?  A  mechanism  is  not  just  an  aggregation  of  parts,  each   of  which  performs  an  operation.  In  their  characterization  of  mechanisms,  Machamer,   Darden  and  Craver  (2000)  emphasize  productive  continuity  between  the  parts  involved  in   generating  the  phenomenon.  This  is  critical,  but  not  sufficient.  A  pond  is  a  collection  of   entities,  many  performing  operations,  with  productive  continuity  between  operations.  But   it  is  not  what  scientists  would  call  a  mechanism.  One  thing  that  is  central  in  all  accounts  of  a   mechanism  is  that  the  parts  are  those  entities  whose  activities  or  operations  are   responsible  for  the  phenomenon  attributed  to  the  whole  mechanism.  In  the  mechanism   literature,  the  specification  of  the  phenomenon  to  be  explained  is  often  invoked  to   determine  which  entities  belong  to  a  mechanism  and  which,  even  though  they  are  located   among  the  other  entities,  do  not.  With  respect  to  the  pond,  if  one  identifies  a  phenomenon,   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   such  as  maintenance  of  pH,  then  one  can  search  for  the  mechanism—the  productively   linked  operations  of  entities  in  the  pond  that  contribute  to  that  phenomenon.       As  useful  as  appealing  to  a  phenomenon  to  be  explained  is  in  identifying  candidate  parts  of   a  mechanism,  it  is  insufficient  to  fix  the  boundaries  and  hence  pick  out  a  mechanism  as  a   higher-­‐level  entity  existing  as  such  in  the  world.  One  reason  is  that  the  same  entity  may  be   involved  in  the  production  of  several  different  phenomena.  To  accommodate  this,  we   require  an  account  in  which  a  mechanism  can  share  parts  with  other  mechanisms.  Another   reason  is  that  the  range  of  entities  or  activities  that  can  affect  a  given  phenomenon  is  not   sharply  bounded.  Often  entities  very  distant  in  time  and  space  can  play  critical  roles  in  the   generation  of  a  phenomenon  (Bechtel  2015).  The  first  entity  in  tier  two  of  Craver’s  diagram   has  an  arrow  coming  into  it  from  somewhere  else,  but  that  entity  is,  for  some  unexplained   reason,  not  counted  as  part  of  the  mechanism.       The  issue  of  where  to  draw  boundaries  around  a  mechanism  is  in  fact  a  crucial  issue  in   biology.  As  research  proceeded  on  circadian  rhythms  researchers  identified  multiple   feedback  loops  in  addition  to  that  involving  PER  and  CRY.  For  example,  BMAL1,  which   serves  as  an  activator  of  Per  and  Cry  transcription,  is  produced  by  a  feedback  loop  in  which   its  synthesis  is  regulated  by  the  nuclear  receptors  RORα  and  REV-­‐ERBα,  while  it  together   with  CLOCK  are  activators  of  their  synthesis.  Figure  2  presents  the  conception  of  the  core   clock  mechanism  as  it  was  understood  around  2005.  It  presents  the  circadian  clock   mechanism  as  a  well-­‐bounded  set  of  components.  (The  figure  itself  does  not  show  any   inputs  or  outputs,  but  in  fact  there  are  input  signals  that  serve  to  entrain  the  clock  to  the   day/night  cycle  and  output  signals  that  serve  to  regulate  the  expression  of  a  wide  variety  of   other  genes.)  Since  then  the  emergence  of  new  techniques,  such  as  knocking  down   expression  of  genes  through  use  of  small  interfering  RNAs,  has  revealed  more  than  300   additional  genes  that  are  both  expressed  in  a  circadian  manner  and  exert  effects  on  the   phase  or  amplitude  of  circadian  rhythms  (Zhang  et  al.  2009).  Many  of  these  genes  were   already  identified  as  components  of  other  cellular  mechanisms.  The  last  dozen  years  has   revealed  extensive  interactions,  for  example,  between  components  of  basic  metabolic   mechanisms  and  core  components  of  the  circadian  clock.  The  questions  of  where  to  draw   the  boundary  of  the  clock  mechanism  and  why  to  draw  it  there  have  assumed  prominence   (for  examples,  see  Bechtel  2015).  If  Craver’s  account  is  to  provide  a  principled   characterization  of  entities  in  terms  of  mechanistic  levels,  one  needs  a  procedure  for   limning  the  boundaries  of  the  mechanism  and  distinguishing  it  from  other  entities  that   affect  the  phenomenon  but  are  not  identified  as  parts  of  the  mechanism.   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting     Figure  2.  The  major  parts  and  operations  of  the  mammalian  circadian  clock  as   understood  circa  2005.  Not  shown  are  the  various  kinases  that  phosphorylate  the   proteins  and  determine  whether  they  are  broken  down  or  transported  into  the   nucleus.       3.  Flattening  Levels:  Using  Graphs  to  Identify  Mechanisms     I  will  return  to  the  question  of  what  the  ovals  represent  in  Craver’s  diagram  below.  First,  I   turn  to  a  second  question  posed  by  his  diagram.  At  the  top  level,  arrows  just  contact  the   black  oval  representing  the  mechanism.  At  the  middle  tier,  the  corresponding  arrows   contact  the  smaller  ovals  inside  the  larger  oval.  At  the  lowest  tier,  the  arrows  penetrate  the   larger  oval  that  corresponds  to  one  of  those  small  ovals  and  contacts  yet  inner  ovals.  What   the  penetration  of  arrows  into  the  mechanism  at  lower  tiers  suggests  is  that  the  causal   effect  is  not  on  the  higher-­‐level  unit  as  a  whole,  but  on  one  (or  possibly  several)  of  its   components.  If  in  the  bottom  tier,  instead  of  expanding  an  inner  oval,  Craver  had  chosen  to   expand  the  initial  oval  from  the  middle  tier,  the  point  would  have  been  even  clearer.  Then   on  the  three  tiers  the  arrow  representing  input  to  the  mechanism  would  connect,   respectively,  with  the  highest-­‐level  oval  (the  mechanism),  one  of  the  inner  ovals  (a   component  of  the  mechanism),  and  one  of  the  ovals  within  that  oval  (a  component  of  the   component).  At  the  lowest  tier,  the  arrows  in  and  out  are  no  different  than  those  between   components  and  the  idea  of  causation  at  multiple  levels  seems  to  be  lost.  In  many  cases,   such  reduction  to  lower  levels  might  seem  to  be  appropriate—when  light  exposure   entrains  circadian  rhythms,  photons  affect  the  melanopsin  molecules  in  the  intrinsically   photoreceptive  retinal  ganglion  cells.  As  a  result,  when  neurotransmitters  are  released  they   initiate  a  signaling  cascade  within  cells  in  the  suprachiasmatic  nucleus,  resulting  in   increased  Per  transcription.  All  of  these  events  seem  to  be  at  a  single  level.  But  then  in  what   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   sense  is  the  clock,  a  higher-­‐level  entity,  entrained?  And  how  does  its  phase  as  a  result  of   entrainment,  affect  the  behavior  of  its  components?     This  exegesis  of  Craver’s  diagram  suggests  that  the  critics  who  viewed  Craver  and  my   account  as  rendering  higher  levels  epiphenomenal  were  right.  It  suggests  a  highly   reductionistic  picture  of  levels  according  to  which  causal  relations  that  were  supposed  to   be  between  entities  at  higher  levels  of  organization  dissolve  into  causal  interactions  at  the   lowest  level  considered.  To  bring  out  this  point,  I  have  presented  a  flattened  representation   of  Craver’s  diagram  in  Figure  3.  It  preserves  the  relationships  between  components  at  the   middle  and  lowest  tier  in  Craver’s  diagram,  and  fills  in  possible  decompositions  of  the  three   ovals  in  the  middle  tier  that  were  not  expanded  in  Craver’s  diagram.  To  identify  what  were   supposed  to  be  higher-­‐levels  entities,  I  have  included  dotted  ovals  around  the  lower-­‐level   ovals  and  a  dashed  oval  around  the  whole  set.         Figure  3.  A  flattened  redrawing  and  elaboration  of  Craver’s  diagram,  with  dotted  ovals   grouping  nodes  that  correspond  to  units  at  the  middle  and  top  level  in  Craver’s  diagram.     If  one  ignores  the  dotted  ovals,  Figure  3  corresponds  to  a  graph-­‐theoretic  representation  of   a  network.  A  graph  representation  uses  nodes  (ovals)  to  represent  entities  and  edges  to   represent  relations  (perhaps  causal)  between  nodes.  In  constructing  a  graph   representation,  one  has  to  settle  on  which  entities  are  to  be  represented  as  nodes.  Often  in   systems  biology  the  nodes  represent  relatively  low-­‐level  entities  such  as  genes  or  proteins.   Here  I  have  simply  taken  the  entities  in  the  bottom  level  in  Craver’s  diagram  as  nodes.  This   does  not  presuppose  that  there  is  a  lowest  level  (or,  as  I  will  discuss  below,  that  all  entities   are  at  the  same  level).  As  inquiry  proceeds,  researchers  may  elect  to  treat  the  entity   represented  as  a  node  as  a  mechanism  and  replace  the  node  with  a  set  of  nodes   constituting  its  constituents.    Edges  may  represent  either  structural  connections  or   functional  connections  (for  purposes  of  this  paper  I  will  assume  they  are  functional).  In   graph  representations  more  generally,  the  edges  in  a  graph  may  be  directed  or  undirected,   but  in  a  graph  representation  of  a  mechanism,  the  edges  are  directed  and  represent   operations  in  which  one  node  exercises  a  causal  effect  on  another.     By  showing  all  edges  as  between  nodes,  the  graph  representation  brings  out  what  is   challenging  in  explicating  top-­‐down  or  bottom-­‐up  causation—there  does  not  seem  to  be   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   any  principled  criterion  for  identifying  levels.  The  dotted  and  dashed  ovals  that  correspond   to  entities  at  higher  levels  in  Craver’s  diagram  appear  to  be  purely  arbitrary  impositions  on   the  graph  representation.  One  could  draw  ovals  that  group  nodes  in  different  ways.   Moreover,  since  they  are  not  the  endpoint  of  edges,  the  dotted  and  dashed  ovals  or   whatever  they  represent  seem  to  be  causally  inert.  Rather  than  providing  an  account  of   causation  at  multiple  levels,  it  appears  that  all  higher  levels  appear  to  have  been  rendered   epiphenomenal.       I  will  argue,  however,  that  there  is  a  way  to  use  graph-­‐theoretic  analysis  to  identify   structures  within  networks  that  correspond  to  the  sort  of  entities  traditionally  viewed  as   residing  at  higher  levels  and  to  show  in  what  respect  these  entities  constrain  causal   processes.  To  do  so,  I  need  to  introduce  three  measures  graph  theorists  have  introduced  to   characterize  graphs:   1. Mean  shortest  path-­‐length  is  a  measure  of  the  average  number  of  edges  that  must   be  traversed  on  the  shortest  path  between  two  nodes.     2. The  clustering  coefficient  is  a  measure  of  how  connected  to  each  other  the  nodes   linked  to  a  given  node  are.     3. Degree  distribution  is  a  measure  of  how  the  number  of  connections  from   different  nodes  is  varied.       In  terms  of  these  measures,  one  can  describe  different  network  topologies.  A  randomly   connected  network  will  have  a  small  mean  shortest  path-­‐length  (there  are,  on  average,   short  paths  between  any  two  units),  allowing  for  rapid  transmission  between  nodes,  but   exhibit  little  clustering  of  units.  Lattice  or  near-­‐neighbor  structures  exhibit  high  clustering,   allowing  nodes  to  combine  operations  to  produce  collective  effects,  but  have  long  mean   shortest  path-­‐lengths.  Highly  clustered  units  are  often  referred  to  as  modules.  Networks   that  Watts  and  Strogratz  (1998)  designated  small  worlds  retain  the  short  mean  shortest   path-­‐length  of  random  networks  but  contain  modules  of  clustered  units  more  typical  of   near-­‐neighbor  networks.  Figure  4  presents  a  toy  example  network  in  which  nodes   represent  entities  and  arrows  causal  interactions  between  them.  It  exhibits  small-­‐world   organization—there  are  distinct  modules  of  interconnected  units  but  a  number  of   connections  linking  components  in  different  modules.  As  discussed  further  below,  the   interconnections  within  these  modules  enables  them  to  function  as  higher-­‐level  units  in   which  the  response  to  an  input  from  outside  depends  on  the  state  of  the  module.     Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting     Figure  4.  A  graph  representation  of  modules  organized  around  provincial  hubs  and  integrated   through  a  connector  hub.     When  these  network  topologies  were  being  explored,  most  researchers  assumed  that  node   degree  would  be  distributed  normally.  However,  Barabási  and  Albert  (1999)  found  that  in   many  real  world  networks,  degree  distribution  corresponds  to  or  approximates  a  power   law:  most  units  have  few  connections  to  other  units,  but  some  units  are  very  highly   connected  to  other  units.  Networks  with  power-­‐law  degree  distribution  are  referred  to  as   scale-­‐free  as  there  is  no  characteristic  scale  on  which  to  describe  the  network.  Highly   connected  nodes  are  commonly  referred  to  as  hubs.  Provincial  hubs  are  ones  that  exhibit   high  clustering  and  so  serve  as  integrators  of  activity  in  modules.  Connector  hubs,  on  the   other  hand,  often  have  low  clustering  and  serve  to  integrate  activity  between  modules.   Although  the  number  of  nodes  is  too  small  to  produce  a  truly  scale-­‐free  network,  the  graph   in  Figure  4  illustrates  how  modules  can  be  organized  around  provincial  hubs  and   integrated  together  through  a  connector  hub.       What  is  important  for  present  purposes  is  that  the  modules  in  these  networks  are   differentiated  on  principled  grounds—the  nodes  within  a  module  are  more  interconnected   with  each  other  than  they  are  with  nodes  elsewhere.  The  extensive  interactions  between   the  nodes  constituting  a  module  enable  them  to  work  together  as  a  unit.  This  does  not   mean  that  the  connections  to  components  outside  the  module  are  not  important;  inputs   from  them  may  figure  critically  in  regulating  some  behaviors  of  the  module  and  enabling   the  output  of  the  mechanism  to  affect  other  processes.  But  the  enhanced  connectivity   enables  greater  coordination  within  the  module,  allowing  the  components  to  work  together   and  justifies  treating  them  as  constituting  a  mechanism  when  they  produce  a  phenomenon   we  seek  to  explain.  To  return  to  Zhang  et  al.’s  (2009)  discovery  of  an  additional  300  genes   that  affect  circadian  rhythms  when  knocked  down,  it  is  noteworthy  that  they  did  not  view   them  as  core  clock  components  since  they  are  not  nearly  as  interconnected  as  the   components  shown  in  Figure  2.  Rather,  they  viewed  the  proteins  expressed  by  these  genes   as  external  factors  that  interact  with  the  mechanism.  One  of  the  interesting  consequences   of  the  application  of  network  analyses  in  systems  biology  is  that  often  researchers  identify   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   clusters  or  modules  within  them  that  correspond  more  or  less  closely  to  mechanisms  that   have  been  identified  using  more  traditional  approaches  in  cell  and  molecular  biology.   Ravasz  et  al.  (2002)  provide  one  example  of  this.  The  researchers  constructed  an  overlap   matrix  for  the  metabolic  network  in  E.  coli  and  identified  substrates  that  form  clusters  or   modules  based  on  edges  corresponding  to  metabolic  interactions.  The  modules  identified   through  this  analysis  closely  approximated  those  traditionally  identified  as  constituting   mechanisms,  but  often  included  components  not  previously  identified.       4.  From  Graphs  to  Dynamics:  Coordinated  Dynamics  in  Mechanisms     So  far  I  have  tried  to  show  that  biological  mechanisms  more  closely  correspond  to   interconnected  modules  in  scale-­‐free  small-­‐world  networks  (Figure  4)  than  to  ovals  in   Craver’s  diagram  (Figures  1  and  3).  To  appreciate  the  importance  of  interconnected   modules,  we  must  move  beyond  graph-­‐theoretic  representations  and  consider  the  types  of   dynamic  behavior  such  organization  supports.  When  one  starts  with  one  part  and  traces   connections  in  interconnected  networks,  such  as  those  shown  in  Figures  2  and  4,  one  often   discovers  that  the  parts  affected  by  the  operation  themselves  perform  operations  that   directly  or  indirectly  affect  the  operation  of  the  part  from  which  one  started.  That  is,  the   operations  feed  back  onto  parts  that  were  envisioned  as  earlier  in  the  process.  Such   feedback  does  not  involve  backwards  causation,  since  the  effects  are  not  on  current  but   future  operations  of  the  part,  but  over  time  it  can  give  rise  to  coordinated  dynamical   behavior  that  constrains  the  behavior  of  the  parts  of  the  module.       Understanding  feedback  has  proven  challenging  for  humans.  Although  we  know  it  was   already  employed  by  Ktesibios  of  Alexandria  in  the  3rd  century  CBE  to  regulate  the  flow  of   water  in  his  water  clock,  negative  feedback  did  not  become  recognized  as  a  general  design   principle  until  the  20th  century,  when  cyberneticists  such  as  Wiener  (1948;  Rosenblueth,   Wiener,  and  Bigelow  1943)  presented  it  as  a  principle  for  enabling  engineered  and  natural   systems  to  achieve  target  outcomes.  Prior  to  that  it  had  been  rediscovered  many  times,   including  by  Watt,  who  employed  it  in  his  governor  for  the  steam  engine,  which  inspired  to   Maxwell’s  mathematical  analysis  of  governors  (Mayr  1970).  But  even  when  negative   feedback  was  recognized  as  a  design  principle  for  regulating  systems  to  pursue  target   outcomes,  many  theorists  did  not  attend  to  the  fact  already  recognized  by  engineers  that   negative  feedback  could  generate  oscillations.       Oscillations  in  biological  organisms  were  often  concealed  by  such  techniques  as  examining   mean  behavior  and  not  attending  to  time-­‐series.  Physiological  processes  were  envisioned,   in  accord  with  Machamer,  Darden,  and  Craver  (2000),  as  proceeding  “from  start  or  set-­‐up   to  finish  or  termination  conditions.”  Variation  in  activity  was  regarded  as  noise.  But   increasingly  through  the  20th  century  researchers  came  to  recognize  that  a  broad  range  of   physiological  processes,  from  glycolysis  to  neural  processing,  generate  oscillations.   Following  on  models,  such  as  one  advanced  by  Goodwin  (1965),  negative  feedback  was   recognized  as  a  design  principle  for  generating  endogenous  oscillations  and  when   oscillations  were  discovered  in  biological  organisms,  investigators  proposed  negative   feedback  mechanisms.  Circadian  rhythms  were  no  exception,  and  circadian  researchers   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   were  on  the  hunt  for  a  feedback  mechanism  for  several  decades  before  Hardin,  Hall,  and   Rosbash  (1990)  provided  critical  empirical  evidence.3  Using  cloning,  they  demonstrated   that  the  mRNA  and  proteins  produced  by  the  first  identified  circadian  gene,  Period  (Per)   oscillated  with  a  circadian  period,  with  the  concentration  of  the  protein  peaking  several   hours  after  the  mRNA.  On  this  basis,  they  proposed  the  feedback  loop  described  above  in   which  PER  inhibits  the  transcription  of  Per.  Mental  simulation  of  the  operations  proposed   reveals  how  the  mechanism  could  oscillate:  when  PER  levels  are  low,  synthesis  of  new  PER   proceeds,  but  as  PER  accumulates,  it  inhibits  further  synthesis.  Only  when  sufficient  PER   has  broken  down  can  synthesis  resume.  Mental  simulation  cannot  determine  whether  the   oscillations  will  dampen  or  be  sustained  indefinitely  (assuming  a  sufficient  supply  of  free   energy);  accordingly,  Goldbeter  (1995)  constructed  a  computational  model,  inspired  by   Goodwin’s,  that  demonstrated  that  the  proposed  negative-­‐feedback  mechanism  could   produce  sustained  oscillations  under  physiological  conditions.       What  is  important  for  thinking  about  top-­‐down  causation  is  that  the  overall  state  of  the   circadian  mechanism  determines  how  components  within  it  behave  and  how  they  will   respond  to  perturbations  arising  outside  the  mechanism.  This  state  of  the  whole   mechanism  might  be  described  in  terms  of  the  states  of  some  components  of  the   mechanism  (for  example,  PER  concentrations  in  the  nucleus  are  high).  The  effect  on  Per   transcription  at  that  time  is  determined  by  conditions  generated  within  the  mechanism,  not   from  outside  it.  This  point,  however,  extends  far  beyond  the  circadian  example.  Any   network  in  which  the  edges  are  not  all  in  one  direction  is  subject  to  complex  dynamical   behavior,  such  as  oscillation,  in  which  the  behavior  of  parts  is  constrained  by  the  behavior   of  other  parts  in  the  network.       The  constraining  effect  of  the  whole  on  the  parts  is  clearly  seen  in  how  the  parts  respond  to   external  inputs  differentially  depending  upon  the  state  of  the  mechanism.  This  is  manifest   in  the  process  by  which  the  circadian  clock  is  entrained  to  local  conditions,  especially  light   conditions.  Light  has  different  effects  at  different  times  of  day,  as  exhibited  in  the  phase-­‐ response  curve  shown  in  Figure  5  (time  is  shown  in  Circadian  Time,  according  to  which  0   corresponds  to  dawn).  During  the  early  part  of  the  night  a  light  pulse  delays  the  phase  of   the  oscillation,  but  a  light  pulse  late  at  night  advances  the  phase.  During  daytime  light   pulses  have  no  effect.  Once  details  of  the  clock  mechanism  in  mammals  were  worked  out,   researchers  determined  that  entrainment  to  light  resulted  when  a  light  signal  from  the   retina  to  the  suprachiasmatic  nucleus  functions  to  increase  Per  transcription.  Now   researchers  could  understand  why  light  exposure  had  different  effects  on  the  phase   depending  on  time  of  day.  If  Per  transcription  is  already  at  its  maximum,  as  it  would  be   during  anticipated  daytime,  light  input  could  have  no  further  effect.  At  dusk  and  early  night,   as  Per  concentration  is  diminishing  due  to  the  feedback  mechanism,  a  light  signal  can   counter  the  increasing  inhibition  and  keep  transcription  going  longer.  This  has  the  effect  of   delaying  the  phase  of  the  oscillator.  On  the  other  hand,  later  in  the  night  as  dawn  is   approaching,  Per  concentration  is  again  beginning  to  increase  due  to  the  endogenous                                                                                                                   3  They  used  fruit  flies  as  their  model  organism,  but  within  the  decade  the  homologs  of  Per   were  found  in  mammals.   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   oscillation.  A  light  signal  at  this  phase  will  speed  up  transcription,  resulting  in  reaching   daytime  levels  in  PER  concentration  earlier  and  advancing  the  phase  of  the  oscillator.       Figure  5.  Typical  phase  response  curve  for  rodents  kept  for  total  darkness  and  then   administered  light  pulses  at  different  times.  Circadian  time  0  is  the  time  of  expected   dawn.       The  circadian  example  makes  clear  the  functional  importance  of  the  type  of  integration  of   nodes  found  in  modules  in  network  representations  of  biological  systems.  The  operations   of  individual  components  (e.g.,  transcribing  genes)  depend  on  the  state  of  other  parts  of  the   mechanism  (e.g.,  the  concentrations  of  the  PER  protein  in  the  nucleus).  As  a  result  of  the   interconnectivity  of  the  parts,  especially  the  feedback  loops,  the  module  identified  as  the   mechanism  functions  as  a  unit,  with  the  operations  of  the  individual  parts  of  the   mechanism  determined  by  other  parts  of  the  mechanism.  If  there  were  no  feedback  loops,   the  parts  that  receive  the  input  would  not  be  sensitive  to  conditions  elsewhere  and  would   always  respond  in  the  same  manner  to  the  input.  There  would  also  be  little  reason  to   identify  the  parts  as  constituting  a  module.  The  feedback  loops  are  responsible  for  the  state   of  the  module  modulating  the  responsiveness  of  its  parts  to  external  input.  Even  though  the   input  to  the  mechanism  may  only  affect  one  or  a  few  components,  the  mechanism  as  a   whole  is  the  relevant  unit  due  to  the  interconnections  that  run  through  the  mechanism.         As  network  analyses  have  been  pursued  in  fields  such  as  systems  biology  and  neuroscience,   it  has  become  apparent  that  modules  often  form  a  hierarchy:  modules  often  have  far  more   connections  to  some  modules  than  others.  The  toy  network  in  Figure  4  shows   interconnections  among  all  the  modules  that  render  the  whole  into  a  module.  The   interconnections  that  give  rise  to  these  larger  modules  also  result  in  dynamics  that  affect   the  behavior  of  the  individual  modules.  A  last  circadian  example  provides  an  illustration  of   such  a  hierarchy  and  how  it  contributes  to  control  over  individual  components  multiple   levels  below.  An  important  feature  of  oscillatory  systems,  already  recognized  by  Huygens  in   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   the  case  of  pendulum  clocks,  is  that  a  very  weak  signal  is  capable  of  causing  the  oscillations   to  synchronize.  I  noted  above  that  the  suprachiasmatic  nucleus  (SCN),  a  bilateral  structure   with  about  10,000  neurons  on  each  side,  serves  as  the  master  circadian  clock  in  mammals.   By  dispersing  SCN  neurons,  Welsh  et  al.  (1995)  determined  that  individual  neurons  sustain   oscillations  but  with  widely  varying  periods.  When  they  are  connected  in  the  SCN  or  in   slices,  they  synchronize  with  each  other,  thereby  enabling  sloppy  oscillators  to  generate  a   highly  regular  signal  to  transmit  to  the  rest  of  the  organism  (Aton  and  Herzog  2005).   Synchronization  of  components  depends  on  the  long-­‐distance  connections  exhibited  in   Figure  4.  It  begins  with  operations  in  which  molecules  such  as  the  hormone  VIP  are   synthesized  in  individual  cells.  These  are  dispersed  out  of  the  cell  to  bind  to  receptors  on   other  cells,  initiating  a  signaling  cascade  in  those  cells  that  ultimately  affects  the  processes   of  Per  transcription  and  translation  within  these  cells.       To  understand  synchronization,  one  must  identify  modules  at  two  different  levels,  and   understand  how  conditions  in  modules  at  each  level  affect  both  their  own  components  and   those  at  still  lower  levels.  The  interactions  between  SCN  neurons  determines  the  rate  and   efficiency  of  synchronization  among  them,  while  the  interactions  within  neurons   determines  how  they  respond  when  VIP  binds  to  one  of  their  receptors.  Although  the   individual  operations  are  described  at  the  molecular  level,  they  are  constrained  by  the   current  conditions  in  the  large-­‐scale  modules.     5.  Top-­‐Down  Effects  Due  to  Constraints  Imposed  by  Networks  Dynamics     My  strategy  in  the  previous  sections  has  been  to  use  network  analyses  to  identify  modules   and  the  dynamic  behavior  that  arises  in  some  modules  with  rich  interactive  connections  to   characterize  the  constitutive  relation  that  holds  between  parts  and  a  mechanism.  When   network  analyses  are  applied  to  biological  systems,  one  frequently  finds  small-­‐world   organization  in  which  node  degree  is  distributed  according  to  a  power  law.  This  has  the   result  of  creating  modules  of  highly  interconnected  nodes  in  which,  nonetheless,  several   nodes  still  receive  inputs  from  outside  the  module.  These  modules  often  correspond  to   biological  mechanisms  that  have  been  identified  through  more  classical  techniques.       In  Craver’s  diagram  (Figures  1  and  3),  the  ovals  drawn  around  mechanisms  seemed   arbitrary,  but  on  the  network  account  there  are  principled  reasons  for  picking  these  out  as   modules.  What  renders  a  group  of  entities  into  a  module  is  the  interconnections  and   interactions  between  them.  When  the  entities  work  together  to  produce  a  phenomenon,   they  count  as  a  mechanism.  The  interconnections  and  interactions  often  yield  dynamic   behavior  in  which  components  in  a  mechanism  behave  differently  at  different  times  due  to   activity  elsewhere  in  the  mechanism.  As  a  result,  determining  the  organization  and   dynamics  of  the  module  is  crucial  for  understanding  the  behavior  of  its  parts  when  they   receive  external  inputs.     A  concern  I  raised  earlier  about  Craver  and  my  treatment  of  top-­‐down  causation  is  that  it   rendered  all  causal  relations  at  the  lowest  level.  To  first  appearances,  graph  theoretic   representations  of  networks  seem  to  reinforce  that  concern.  In  cases  in  which  things   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   outside  the  mechanism  exercise  effects  on  the  mechanism,  it  will  typically  be  by  affecting   one  or  more  parts  of  the  mechanism.  These  altered  parts  then  causally  modify  other   components  of  the  mechanism.  Even  endogenous  activities  such  as  oscillations  are   explained  in  terms  of  the  feedback  between  components  of  the  mechanism.  The  network   representation  seems  to  favor  a  highly  reductionistic  account  that  represents  all  activity  at   one  lowest  level.       This  interpretation,  however,  is  mistaken.  First,  the  nodes  in  a  network  need  not  belong  to   a  common  level  in  any  of  the  standard  senses.  In  some  cases  a  graph  representation  of  a   network  is  developed  by  identifying  interactions  between  entities  that  might  be  taken  to  be   at  a  common  level  on  grounds  such  as  common  size  or  common  type  of  entity.  Gene   regulation  and  protein  interaction  networks  are  examples.  In  other  cases  the  nodes   correspond  to  entities  that  are  structurally  or  functionally  connected  independently  of   whether  they  are  situated  at  what  is  regarded  as  a  common  level.  The  only  sense  of  level   that  is  explicitly  embodied  in  a  network  diagram  is  between  nodes  and  modules  that   comprise  them.  This  is  the  familiar  mechanistic  sense  of  level.  As  Craver  and  I  argued,   however,  this  provides  only  a  very  local  conception  of  level—the  parts  of  a  mechanism  that   interact  are  at  the  same  level.  This  account  provides  no  guidance  for  judging  whether  the   nodes  of  different  modules  correspond  to  entities  at  the  same  level  or  whether  the  sub-­‐ parts  of  the  parts  belong  to  the  same  level.  On  this  conception  of  level,  there  are  no  grounds   for  treating  the  nodes  in  a  given  graph  as  at  a  common  level.     Second,  although  in  any  graph  representation  there  will  be  a  set  of  nodes  that  correspond   to  what  are  taken  as  the  basic  entities,  they  should  not  be  treated  as  representing  entities  at   some  base  level.  At  best  they  represent  the  entities  at  which  the  graph  representation   bottoms  out.  Just  as  researchers  investigating  a  mechanism  have  a  choice  as  to  whether  to   characterize  the  behavior  of  the  mechanism  as  it  interacts  with  other  entities,  many  of   them  mechanisms  (thereby  elaborating  the  characterization  of  the  phenomenon)  or  to   decompose  it  and  appeal  to  its  parts  and  operations  to  explain  its  behavior,  those   developing  a  graph  representation  have  a  choice  as  to  whether  to  represent  a  whole   mechanism  as  a  node,  or  decompose  it  into  other  nodes  representing  the  parts  of  the   mechanism.  On  many  occasions  researchers  seek  to  decompose  one  part  of  the  mechanism,   leaving  others  untouched.  The  graph  representation  will  show  the  components  into  which   the  one  mechanism  has  been  decomposed  interacting  with  the  other  mechanisms  that  have   not  been  decomposed.       Third,  in  developing  a  graph  representation,  one  might  deliberately  represent  a  set  of   entities  as  a  single  node.  Researcher  may  have  already  identified  the  components  of  a   mechanism,  but  deem  them  not  to  be  relevant  to  their  analysis.  For  example,  in  analyzing   the  interactions  between  SCN  neurons,  researchers  may  choose  to  treat  the  neurons  as   units,  ignoring  the  interactions  of  molecules  within  them.  The  graph  representation  will   employ  units  for  neurons  and  edges  for  the  connections  between  them.  There  are  contexts   in  which  the  whole  SCN  becomes  a  single  node  and  the  edges  are  the  connections  between   the  SCN  and  the  various  organs  that  the  SCN  regulates  and  which,  in  many  cases,  send   inputs  back  to  the  SCN.  The  graph  representation  format  does  not  privilege  a  lowest  level,   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   but  represents  as  nodes  those  entities  whose  interactions  are  deemed  relevant  for   understanding  the  phenomenon  of  interest.     Although  a  graph  representation  provides  a  convenient  way  to  identify  modules  in   networks,  by  using  the  same  type  of  arrow  to  relate  nodes  within  a  module  and  those   between  nodes  in  different  modules,  it  glosses  over  an  important  distinction  relevant  to   understanding  top-­‐down  causation  in  mechanisms.  Looking  diachronically  both  the  edges   between  nodes  inside  a  module  and  those  between  modules  may  represent  causal   relations.  But  in  the  moment  when  the  mechanism  receives  causal  input  from  outside  by   having  the  state  of  one  or  more  of  its  parts  altered,  the  relation  between  the  parts  and  the   mechanism  as  a  whole  is  not  diachronic  but  synchronic.  At  a  given  time,  the  mechanism  is   constituted  of  its  various  parts.  The  natural  language  to  use  to  talk  about  how   synchronically  the  parts  are  affected  by  the  whole  is  that  of  constraint—being  situated  in   the  mechanism  constrains  the  behavior  of  the  part.       The  notion  of  constraint  has  roots  in  mechanics.  Fundamental  laws  such  as  those  proposed   by  Newton  characterize  possible  ways  a  system  might  evolve  given  initial  conditions.  But  in   a  given  situation  constraints  restrict  those  possibilities,  foreclosing  some  while  leaving   others  open  (Hooker  2013).  Constraints  such  as  an  inclined  plane  limit  the  motion  a  marble   can  take  as  a  result  of  the  gravitational  attraction  between  it  and  the  earth.  In  terms  of   mathematical  representations  of  the  evolution  of  a  system,  constraints  are  captured  in   relations  added  to  dynamical  equations  that  limit  the  degrees  of  freedom  available  through   which  the  system  might  evolve.       Some  constraints,  such  as  an  inclined  plane  or  an  electric  wire,  are  fixed  with  respect  to  the   system  in  question.  They  provide  a  minimalist  notion  of  top-­‐down  causation.  The  path  a   marble  takes  after  being  deposited  on  an  inclined  plane  is  governed  by  the  angle  of  the   plane.  Other  constraints  change,  often  in  response  to  other  activities  in  the  system.  A   switch  in  an  electrical  system  can  direct  electricity  along  different  paths  in  a  circuit.  More   interesting  sets  of  constraints,  and  more  interesting  examples  of  top-­‐down  causation,  arise   as  parts  of  a  system  constrain  each  other  in  ways  that  change  dynamically.  In  the  much-­‐ discussed  example  of  Bénard  cells,  after  the  application  of  heat,  molecules  begin  to  move   and  exert  constraints  on  each  other.  Eventually  coordination  between  the  molecules  results   in  a  macro-­‐scale  convection  pattern  in  which  individual  molecules  are  constrained.     The  notion  of  constraint  has  been  applied  to  biology  by  a  number  of  authors  (Pattee  1971;   Rosen  1985;  Hooker  2013;  Moreno  and  Mossio  2015).  A  key  foundation  of  their  thinking  is   that  biological  organisms  exist  far  from  thermodynamic  equilibrium  and  in  order  to  build   and  maintain  themselves,  they  must  constrain  the  flow  of  free  energy  to  perform  work  that   builds  the  structures  that  perform  the  constraint  role.  The  different  mechanisms   constituting  a  biological  organism  each  play  a  role  in  such  a  process  by  restricting  the  range   of  activities  that  can  occur.  The  circadian  mechanism  that  provided  my  example  throughout   this  paper  figures  in  such  a  network  of  constraints  as  it  constrains  various  physiological   processes  (typically  by  regulating  expression  of  other  genes)  to  occur  at  times  when  they   can  work  together  to  maintain  the  organism.  The  parts  of  the  mechanism  itself  are   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   generated  by  the  operation  of  the  mechanism  (the  protein  PER  is  synthesized  when  BMAL1   binds  to  the  promoter  on  the  Per  gene)  and  perform  operations  in  it  (PER  inhibits  the   ability  of  BMAL1  to  activate  the  transcription  of  the  Per  gene).       The  notion  of  constraint  provides  a  way  to  understand  how  the  constitution  of  a   mechanism  results  in  the  phenomena  referred  to  as  top-­‐down  causation.  Appealing  to   graph  theoretic  representations  of  systems,  I  have  identified  mechanisms  as  dynamical   systems  that  can  arise  in  modules.  The  degrees  of  freedom  available  to  entities  of  such   interactive  dynamical  systems  are  reduced  and  so  they  behave  differently  than  they  would   if  not  part  of  the  system.  Especially  when  the  constraints  are  changing  as  a  result  of  the   dynamical  activity,  these  entities  may  exhibit  different  behavior  on  different  occasions.       Thinking  in  terms  of  constraints  also  facilitates  a  response  to  the  assumption  of  the   closedness  of  the  physical  that  lies  at  the  foundation  of  Kim’s  exclusion  argument.   Fundamental  dynamical  laws  do  apply  universally  and  as  long  as  one  can  specify  initial   conditions  for  each  entity  in  the  system,  one  can  determine  its  behavior  by  invoking  these   laws.  But  even  to  address  problems  of  analytic  mechanics,  physicists  recognize  the  need  to   invoke  constraints.  These  constraints  are  not  derived  from  the  laws  themselves  but  must   be  ascertained  empirically  and  added  to  the  laws  to  determine  behavior.  The  set  of  possible   constraints  is  not  closed.  Yet,  only  in  terms  of  constraints  can  one  predict  or  explain   outcomes.  Moreover,  they  are  determined  locally.  In  biology,  the  constraints  imposed  in  a   mechanism  are  specific  to  the  conditions  in  the  living  system.  From  this  perspective,  the   physical  is  far  from  closed  but  rather  is  extremely  open-­‐ended.  Wherever  one  finds  a  set  of   components  organized  into  a  module  with  sufficient  interactions,  one  will  encounter   constraints  that  limit  the  behavior  of  the  components  and  how  they  respond  to  external   inputs.  The  phenomenon  described  as  top-­‐down  causation  is  not  unusual,  but  common.       6.  Conclusion     Craver  and  I  proposed  that  bottom-­‐up  as  well  as  top-­‐down  causation  could  be  understood   by  limiting  causal  processes  to  within  levels  of  mechanisms  and  treating  the  constitution  of   mechanisms  as  mediating  between  levels.  We  did  not,  however,  provide  an  account  of  what   it  was  about  constitution  of  mechanisms  that  motivates  appeals  to  effects  or  causes  at  other   levels.  Invoking  graph  representations,  in  this  paper  I  have  characterized  mechanisms  as   modules  that  appear  in  many  graphs  of  biological  networks.  Modules  consist  of  nodes  that   are  highly  clustered  and  in  that  respect  are  distinguished  from  other  nodes  (with  which   they  still  have  a  number  of  edges).  Particularly  important  in  integrating  nodes  into  modules   that  can  exhibit  what  are  taken  to  be  top-­‐down  effects  are  feedback  connections  that  are   common  in  biological  systems.  With  feedback,  modules  are  capable  of  endogenous  activity   that  results  in  them  being  in  different  states  at  different  times.  When  this  happens,  some  of   their  components  are  in  different  states.  Depending  on  the  state,  the  component  will   produce  different  responses  to  inputs.  This  is  the  sort  of  behavior  that  has   characteristically  motivated  talk  of  top-­‐down  causation.  In  developing  this  account,  I  have   employed  flat  graph  representations  of  systems  in  which  modules  can  be  identified.  Their   dynamics  can  then  be  analyzed.  This  has  allowed  me  to  pick  out  mechanisms  in  which   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   phenomena  traditionally  characterized  as  top-­‐down  causation  can  be  understood  without   directly  appealing  to  levels.  But  this  explication  of  levels  also  allows  us,  if  desired,  to   reintroduce  reference  to  levels  and  characterize  what  is  meant  by  top-­‐down  or  bottom-­‐up   causation  in  non-­‐problematic  ways.  Finally,  by  characterizing  how  a  mechanism  affects   parts  in  terms  of  constraint  I  have  differentiated  how  the  mechanism  restricts  the  behavior   of  its  parts  from  the  way  the  parts  are  affected  by  external  inputs  and  provided  a  way  to   resist  the  assumption  that  the  closedness  of  the  physical  underlying  Kim’s  exclusion   argument.         References       Aton,  Sara  J.,  and  Erik  D.  Herzog.  (2005).  "Come  Together,  Right...Now:  Synchronization  of   Rhythms  in  a  Mammalian  Circadian  Clock."  Neuron  48:531-­‐534.   Barabási,  Albert-­‐László,  and  Réka  Albert.  (1999).  "Emergence  of  Scaling  in  Random   Networks."  Science  286:509-­‐512.   Barabasi,  Albert-­‐Laszlo,  and  Zoltan  N.  Oltvai.  (2004).  "Network  Biology:  Understanding  the   Cell's  Functional  Organization."  Nature  Reviews  Genetics  5:101-­‐113.   Bechtel,  William.  (2006).  Discovering  Cell  Mechanisms:  The  Creation  of  Modern  Cell  Biology,   Cambridge:  Cambridge  University  Press.   ———.  (2008).  Mental  Mechanisms.  Philosophical  Perspectives  on  Cognitive  Neuroscience,   London:  Routledge.   ———.  (2015).  "Can  Mechanistic  Explanation  Be  Reconciled  with  Scale-­‐Free  Constitution   and  Dynamics?"  Studies  in  History  and  Philosophy  of  Science  Part  C:  Studies  in  History   and  Philosophy  of  Biological  and  Biomedical  Sciences.   Bechtel,  William,  and  Robert  C.  Richardson.  (1993/2010).  Discovering  Complexity:   Decomposition  and  Localization  as  Strategies  in  Scientific  Research,  Cambridge,  MA:   MIT  Press.  1993  edition  published  by  Princeton  University  Press.   Churchland,  Patricia  S.,  and  Terrence  J.  Sejnowski.  (1992).  The  Computational  Brain,   Cambridge,  MA:  MIT  Press.   Craver,  Carl  F.  (2007).  Explaining  the  Brain:    Mechanisms  and  the  Mosaic  Unity  of   Neuroscience,  New  York:  Oxford  University  Press.   Craver,  Carl  F.,  and  William  Bechtel.  (2007).  "Top-­‐Down  Causation  without  Top-­‐Down   Causes."  Biology  and  Philosophy  22:547-­‐563.   Fazekas,  Peter,  and  Gergely  Kertész.  (2011).  "Causation  at  Different  Levels:  Tracking  the   Commitments  of  Mechanistic  Explanations."  Biology  &  Philosophy  26:365-­‐383.   Goldbeter,  Albert.  (1995).  "A  Model  for  Circadian  Oscillations  in  the  Drosophila  Period   Protein  (Per)."  Proceedings  of  the  Royal  Society  of  London.  B:  Biological  Sciences   261:319-­‐324.   Goodwin,  Brian  C.  (1965).  "Oscillatory  Behavior  in  Enzymatic  Control  Processes."  Advances   in  Enzyme  Regulation  3:425-­‐428.   Hardin,  Paul  E.,  Jeffrey  C.  Hall,  and  Michael  Rosbash.  (1990).  "Feedback  of  the  Drosophila   Period  Gene  Product  on  Circadian  Cycling  of  Its  Messenger  Rna  Levels."  Nature   343:536-­‐540.   Copyright  Philosophy  of  Science  2016   Preprint  (not  copyedited  or  formatted)   Please  use  DOI  when  citing  or  quoting   Hitchcock,  Christopher.  (2003).  "Of  Humean  Bondage."  British  Journal  for  the  Philosophy  of   Science  54:1-­‐25.   Hooker,  Clifford  A.  (2013).  "On  the  Import  of  Constraints  in  Complex  Dynamical  Systems."   Foundations  of  Science  18:757-­‐780.   Kim,  Jaegwon.  (1998).  Mind  in  a  Physical  World,  Cambridge,  MA:  MIT  Press.   Lewis,  David.  (2000).  "Causation  as  Influence."  Journal  of  Philosophy  97:182-­‐197.   Machamer,  Peter,  Lindley  Darden,  and  Carl  F.  Craver.  (2000).  "Thinking  About   Mechanisms."  Philosophy  of  Science  67:1-­‐25.   Mayr,  Otto.  (1970).  The  Origins  of  Feedback  Control,  Cambridge,  MA:  MIT  Press.   Moreno,  Alvaro,  and  Matteo  Mossio.  (2015).  Biological  Autonomy:  A  Philosophical  and   Theoretical  Inquiry,  Dordrecht:  Springer.   Noble,  Denis.  (2006).  The  Music  of  Life:  Biology  Beyond  the  Genome,  Oxford:  Oxford   University  Press.   Pattee,  Howard  Hunt.  (1971).  "Physical  Theories  of  Biological  Co-­‐Ordination."  Quartery   Review  of  Biophysics  4:255-­‐276.   Ravasz,  Erzsébet,  A.  L.  Somera,  D.  A.  Mongru,  Zoltan  N.  Oltvai,  and  Albert-­‐Laszlo  Barabasi.   (2002).  "Hierarchical  Organization  of  Modularity  in  Metabolic  Networks."  Science   297:1551-­‐1555.   Rosen,  Robert.  (1985).  "Organisms  as  Causal  Systems  Which  Are  Not  Mechanisms:  An   Essay  into  the  Nature  of  Compleixty,"  In  Robert  Rosen,  ed.,  Theoretical  Biology  and   Complexity:  Three  Essays  on  the  Natural  Philosophy  of  Complex  Systems,  165-­‐203.   New  York:  Academic  Press.   Rosenberg,  Alex.  (2015).  "Making  Mechanism  Interesting."  Synthese:1-­‐23.   Rosenblueth,  Arturo,  Norbert  Wiener,  and  Julian  Bigelow.  (1943).  "Behavior,  Purpose,  and   Teleology."  Philosophy  of  Science  10:18-­‐24.   Soom,  Patrice.  (2012).  "Mechanisms,  Determination  and  the  Metaphysics  of  Neuroscience."   Studies  in  History  and  Philosophy  of  Science  Part  C:  Studies  in  History  and  Philosophy   of  Biological  and  Biomedical  Sciences  43:655-­‐664.   Sporns,  Olaf.  (2010).  Networks  of  the  Brain,  Cambridge,  MA:  MIT  Press.   Watts,  Duncan,  and  Steven  Strogratz.  (1998).  "Collective  Dynamics  of  Small  Worlds."   Nature  393:440-­‐442.   Welsh,  David  K.,  Diomedes  E.  Logothetis,  Markus  Meister,  and  Steven  M.  Reppert.  (1995).   "Individual  Neurons  Dissociated  from  Rat  Suprachiasmatic  Nucleus  Express   Independently  Phased  Circadian  Firing  Rhythms."  Neuron  14:697-­‐706.   Wiener,  Norbert.  (1948).  Cybernetics:  Or,  Control  and  Communication  in  the  Animal  and  the   Machine,  New  York:  Wiley.   Zhang,  Eric  E.,  Andrew  C.  Liu,  Tsuyoshi  Hirota,  Loren  J.  Miraglia,  Genevieve  Welch,  Pagkapol   Y.  Pongsawakul,  Xianzhong  Liu,  Ann  Atwood,  Jon  W.  Huss,  Jeff  Janes,  Andrew  I.  Su,   John  B.  Hogenesch,  and  Steve  A.  Kay.  (2009).  "A  Genome-­‐Wide  Rnai  Screen  for   Modifiers  of  the  Circadian  Clock  in  Human  Cells."  Cell  139:199-­‐210.