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Abstract 
Recent work combining cognitive neuroscience with computational modelling 
suggests that distributed patterns of neural firing may represent probability 
distributions. This paper asks: what makes it the case that distributed patterns of 
firing, as well as carrying information about (correlating with) probability 
distributions over worldly parameters, represent such distributions? In examples of 
probabilistic population coding, it is the way information is used in downstream 
processing so as to lead to successful behaviour. In these cases content depends on 
factors beyond bare information, contra Brian Skyrms’ (2010) view that 
representational content can be fully characterised in information-theoretic terms. 
 
 

1. Introduction 
In Signals Brian Skyrms argues for the existence of “non-propositional” contents 
(2010, 34-42). A “propositional” content asserts just that a particular state of affairs 
obtains, or that one out of a proper subset of available states of affairs obtains. For 
example, in a world with three states, the content S1 or S2 obtains would count as 
propositional. Non-propositional contents don’t merely rule out some states of affairs 
and rule in others; they also assign probabilities to those states (or some other measure 
related to probability).  So a non-propositional content for a signal M might say that 
the probability of state S1 given M is 0.6, the probability of state S2 given M is 0.4, 
and the probability of every other state given M is zero. Skyrms’ particular version of 
the non-propositional idea is an informational content vector that captures how much 
the signal has increased or decreased the probabilities of each world state from their 
unconditional probabilities. 

 
‘[on the propositional view] … the information content in a signal is to be 
expressible as “the proposition that___.” Signals then, in and out of 
equilibrium, are thought of as the sorts of things that are either true or false.’ 
(Skyrms 2010, 34) 
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[The informational content vector tells us how the probability of each state is 
moved by the signal.] ‘… the familiar notion of propositional content as a set 
of possible situations is a rather special case of the much richer information-
theoretic account of content. [The informational content vector] specifies more 
than the propositional content. Furthermore, some signals will not have 
propositional content at all.’ (Skyrms 2010, 42) 

 
 There is nothing novel in the idea that representations can represent 
probabilities of world states. We do that frequently in natural language, as well as in 
the formal languages of mathematics and decision theory. But it is much less common 
to treat a single undifferentiated non-conceptual representation as having a content 
that concerns probability, much less a probability distribution over a range of possible 
states. Skyrms argues that standard philosophical treatments of content are too 
restrictive, in that they focus on contents of the rule-in/rule-out sort. They should also 
be giving an account of contents that consist of probability distributions of world 
states, of which rule-in/rule-out contents are just a special case. It seems to me that 
Skyrms has correctly identified an aspect of content that has been under-explored in 
philosophical discussions of content to date. 
 This paper argues that Skyrms’ insight is apposite beyond the mathematical 
models of signalling with which he and his collaborators were concerned. Recent 
evidence from cognitive neuroscience makes a strong case for probabilistic 
representations in the brain. It is by calculating over representations of probability 
distributions that agents are able to obtain near-optimal levels of reward when making 
perceptual decisions about noisy stimuli. Section 2 argues that probabilistic 
population coding in the brain is an instance of the phenomenon that Skyrms has 
labelled “non-propositional content”. In probabilistic population codes a single non-
conceptual representation, lacking any semantically-significant constituent structure, 
plausibly represents a probability distribution over a worldly parameter (like direction 
of motion). 
 While it supports one of Skyrms’ claims, the neuroscientific data on 
probabilistic population coding also undermines another claim made by Skyrms, 
namely that facts about information, in the sense of information theory (conditional 
probabilities and the like) are adequate to give a complete account of everything 
content-relevant that is going on in cases of signalling. The cognitive neuroscientific 
models only appeal to a very limited subset of the information carried by internal 
states in order to explain behaviour. Section 3 argues that, in order to answer the 
question of why it is that particular information that is explanatorily relevant, rather 
than all the other information also carried by internal states, we need to appeal to the 
way the internal states are used in downstream processing; in particular to aspects of 
the information they carry that are relied on in generating behaviour, that is in 
harvesting near optimal rewards for the task in which the agent is engaged. Therefore 
payoffs or stable task performance also have an ineliminable role to play in fixing 
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representational content in the cognitive neuroscientific case. That conclusion might 
also apply back to the mathematical models of signalling with which Skyrms was 
concerned. 
 

2. Probabilistic population coding in the brain 
What is it to represent (‘code for’) a probability distribution? An influential example 
is the model in Ernst & Banks (2002), which is based only on behavioural data. 
Subjects in their experiment were asked to judge the height of a bar relying on both 
visual and haptic (touch-based) information. Ernst & Banks argued that subjects 
represent that the bar has a range of possible heights, representing a normal 
distribution of the probability of different heights by representing the mean and 
variance of that distribution. Ernst & Banks obtained behavioural evidence that such 
probability distributions are first represented separately for visual and haptic 
information, before being optimally combined based on the respective mean and 
variance of the two distributions. So one form of possible probabilistic representation 
is to have variables separately representing the mean and variance of a normal 
distribution of possible values of a parameter in the world. 
 A more recent example of probabilistic coding is a ‘mechanistic model’, in 
that it is partly based on data about how the putative representations are realised in the 
brain (in neural firing rates), and so goes beyond Ernst & Banks’ ‘descriptive model’. 
Beck et al. (2008) offer an account of how macaques make a perceptual decision 
about the preponderant direction of motion of a collection of moving dots. In each 
stimulus a proportion of the dots all move in the same direction (e.g. 51% may move 
right at 45O to the horizontal), with the rest of the dots moving in random directions. 
The monkey’s task is to make an eye movement in the direction of the coherent 
motion, for which it is rewarded if correct. 
 Single unit recording has shown that individual neurons in various neural 
areas have receptive fields that correspond to a particular direction of motion in the 
visual stimulus. Other neurons have receptive fields that correspond to the reward 
associated with a particular direction of motion. For example, a given neuron might 
be most likely to fire when the monkey is viewing movement at 45%, with a 
decreasing probability for nearby angles dropping off to zero within 120O to either 
side. The standard interpretation is that a distributed pattern of firing across a 
collection of neurons in a given brain area represents a single direction of motion, the 
most likely direction of motion. The direction of motion (a single scalar) can be 
decoded by means of a weighted sum of instantaneous firing rates. The reliability and 
tractability of this form of coding has been studied extensively. 
 More recently Pouget et al. (2003) have argued that a distributed pattern of 
firing of neurons with such receptive fields is actually representing something more 
complicated: not just a single scalar value of a worldly parameter, but a probability 
distribution of that parameter s across the range of values that it can take (e.g. s could 
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be direction of motion from +180O to -180O). They show that the posterior probability 
that the worldly parameter s lies within any given range can be decoded from the 
distributed pattern of firing, for all possible values of s. That is, we can generate a 
probability density function giving the probability over all values of s, based just on a 
linear combination of instantaneous firing rates (with weights that depend on s). 
 Beck et al. (2008) obtained evidence that representations of this form were 
carried in the neural firing that is responsible for monkeys’ near-optimal performance 
in a perceptual decision making task. At the first stage neurons in area MT represent 
the instantaneous probability that the stimulus right now is moving in direction s (for 
all directions s). Downstream area LIP integrates over time, representing the 
probability that the stimulus direction is s (for all s) based on the whole time that the 
monkey has been observing the stimulus. Beck et al.’s major contribution was to 
show how the calculation of accumulated evidence, which is potentially very complex 
mathematically, could be implemented in neural firing rates. (Provided the firing 
patterns of individual neurons are ‘Poisson-like’, i.e. the mean is proportional to the 
variance, and uncorrelated, the calculation can be achieved by individual LIP neurons 
simply adding the activity of individual MT neurons.) At the final stage the 
representation of the integrated probability distribution of s is used to calculate the 
most likely value of s, and an eye movement is programmed in that direction. The 
animal’s optimal performance in obtaining rewards in the task is explained by its 
having an internal mechanism which processes representations of probability 
distributions, performing calculations on those distributions in order to work out the 
most likely direction of motion, which in these experiments is identical to the 
direction of stimulus motion that is most likely to be rewarded (and to the direction of 
eye saccade that is most likely to be rewarded). 
 Pouget et al. (2003)’s probabilistic population coding is just one way in which 
probability distributions could be encoded in the brain. The analysis in Beck at al. 
(2008) was not aimed at testing which particular probabilistic coding scheme is in use, 
but in deciding between probabilistic coding and the standard model in which only 
representations of scalar quantities are involved. 
 A natural but mistaken thought is that the pattern of firing rates distributed 
across a collection of neurons with different receptive fields always did represent 
probabilities: each cell’s firing rate representing the relative probability that the value 
of the stimulus is in its preferred direction. Or perhaps the highest firing rate just 
directly represents the most likely direction. However, that is not how the standard 
model understood the distributed code, and for good reason. To rely on the firing rate 
of just one cell to calculate the probability of a particular direction s would be to 
throw away a large amount of useful information about the probability of s, namely 
information carried by other cells whose receptive fields also overlap with s (because 
their preferred direction is some different nearby direction s’). Indeed, to discriminate 
s from very nearby values, the firing rates of other neurons are more useful, since 
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their rates change more for small changes of direction than do cells for which s is the 
preferred direction. 
 The presence of noise also highlights the importance of information carried by 
cells with other preferred directions. Because of noise a single cell will vary a lot in 
how it responds from occasion to occasion, even to stimuli exactly in its preferred 
direction. The effect of that noise can be reduced by considering information from a 
large array of noisy cells, each of which has some sensitivity to stimuli in direction s. 
So compare the noisy distribution of firing rates in Pouget et al. (2003) with the 
smooth probability distribution that is decoded from them (Fig. 1 below). This point is 
also apparent if we compare the firing rates and probability distributions illustrated in 
Beck et al. (2008) – Fig. 2 below. Plotted in terms of preferred direction, neural firing 
covers a wide range of angles, whereas the probability distribution decoded from that 
distributed pattern of firing is narrower, and narrows further as evidence accumulates 
over time. 
 

[Insert Figure 1 about here] 
 

Fig. 1. From Pouget et al. (2003). The noisy distribution of population 
activity in the top panel (green, blue and red open circles) is 
transformed by a Bayesian decoder into the smooth posterior 
probability distributions in the lower panel (green, blue and red 
curves, respectively). 

 
 

[Insert Figure 2 about here] 
 

Fig. 2. From Beck et al. (2008). The firing rates of model neurons in 
panel A are transformed by a Bayesian decoder into the probability 
distributions in panel B. At each time the width of the probability 
distribution is narrower than the range of preferred directions which 
show non-zero firing rates. (Additionally, the variance of the 
distribution decreases over time as increasing evidence accumulates.) 

 
 

 In short, Beck et al. (2008) offer a representational explanation of how 
monkeys manage to harvest near optimal rewards in a task that involves judging the 
preponderant direction of motion of a visual stimulus. They offer behavioural and 
neural evidence for the conclusion that a three stage computation is responsible for 
this behaviour, and that at two stages distributed patterns of neural firing represent a 
probability distribution across the range of possible directions of motion s. Each 
distributed pattern of firing is a single non-conceptual representation, without 
semantically-significant constituent structure, analogous to a single signal in Skyrms’ 
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models. There is nothing in this representation that corresponds separately to states 
and probabilities (as there is when we represent probabilities of world states 
mathematically, for example). Each different pattern of firing represents a different 
probability distribution, and the way that they do so explains how a calculation can be 
performed that first represents an instantaneous probability distribution, then 
transforms those into an integrated probability distribution, and finally calculates from 
that a maximum likelihood estimate of the stimulus direction. This part of cognitive 
neuroscience therefore offers strong support for Skyrms’ idea that some simple 
signals can do more than just rule-in and rule-out various world states but also 
represent probabilities over world states. It shows that that idea is a plausible 
hypothesis about the working of some real information processing systems underlying 
primate behaviour. 
 

3.  These contents depend on more than just information 
In pointing to the existence of “non-propositional” contents, Skyrms argues that 
informational treatments of content are more general than standard philosophical 
approaches, in that they extend to more cases. He also argues that they cover all the 
cases – they capture everything that standard accounts of content do and more. The 
force of the arguments and analyses collected in Signals is that information-theoretic 
properties capture everything that there is to say about the meaning or content of 
signals, at least in these simple cases. To put it another way, facts about information, 
in the broadly correlational sense of information theory, are adequate on their own to 
ground facts about meaning or content. 
 

‘Some philosophers have looked at information theory and have seen only an 
answer to the question of quantity. They do not see an answer to the question 
of content – or, to use a dangerous word, meaning – of a signal. … I believe 
we can do better by using a more general account of informational content.’ 
(Skyrms 2010, 34) 

 
‘It is part of the structure of the game that the states occur with certain 
probabilities. The probabilities of sender and receiver strategies change over 
time. … At any given time, in or out of equilibrium, all these probabilities are 
well defined. Taken together, they give us all the probabilities that we need to 
assess the content and quantity of information in a signal at that time.’ 
(Skyrms 2010, 35) 
 
‘There is no mystery about the meaning of signals. The object of primary 
interest is information. Signals naturally acquire information of a variety of 
types, and they can carry information both in and out of equilibrium. The 
Platonist’s propositional notion of meaning is an abstraction from one kind of 
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information in perfect equilibrium in an idealized signalling game.’ (Skyrms 
2010, 177) 

 
While probabilistic population coding in the brain supports the suggestion about non-
propositional representation, it also cuts against the idea that facts about information, 
taken alone, are adequate to ground facts about meaning or content. Facts about the 
information carried by distributed patterns of firing in various neural areas are not, 
taken alone, sufficient to make it the case that the representations in the system have 
the contents picked out by Beck et al. (2008). 
 Part of Beck et al.’s motivation was indeed the finding, based on neural data, 
that distributed patterns of activation in the brain probably do carry information about 
probability distributions. But that was not enough on its own to support their 
argument that probability distributions are being coded for. After all, many rival 
coding theories also concern things about which the activation patterns carry 
information. For example they carry information about the scalar values adverted to in 
standard non-probabilistic population coding. The argument that what is represented 
are probability distributions also relies facts about which representations could be 
used to perform certain tasks. Performing calculations over represented probability 
distributions offers a general account of how the brain could manage to perform such 
decision making tasks near-optimally, and so is plausibly how the brain manages to 
perform the decision making task in the experiment in question near-optimally. Not 
all the information carried counts as content, only that information the reliance on 
which forms part of an account of how the agent manages to obtain the kinds of 
rewards it does. 
 This point is just an instance of the familiar general point that information is 
ubiquitous. For example, the distributed pattern of firing in LIP carries information, 
not just about the integrated probability distribution over motion directions, but also 
about lots of local facts: the patterns of firing in upstream area MT, the patterns of 
firing in downstream area SCb, the patterns of light on the animal’s retina, the 
patterns of light passing between the screen and the animal, the direction in which the 
animal is likely to move its eyes, and so on. It also carries some information, albeit 
less reliably, about other properties of the stimuli: the number of coherently-moving 
dots present, the total surface area of dots moving in each direction, and so on. Are all 
these other pieces of information, which are carried by distributed patterns of firing in 
area LIP, also contents or meanings carried by those signals? It is a familiar 
philosophical observation that not all of them can be (the disjunction problem). The 
neuroscientific case study backs this up, because only a very particular aspect of the 
information carried by a signal is picked out and identified as the content which is 
being coded for. 
 The constraint that appears to be operating in the neuroscience case is that the 
correct account of what is being coded in various areas should feed into an 
explanation of how the animal manages to behave as it does – which in these cases is 
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to achieve near-optimal rewards. The monkeys come to have these useful 
configurations of internal states through a process of learning how to perform in a 
way that maximises the delivery of rewarding feedback (e.g. of volumes of juice). 
That fits well with an approach to content that combines teleological considerations 
(Millikan 1984, Papineau 1987) with facts about the correlational information carried 
by internal states (Shea 2007). 
 In this case a kind of teleology is underpinned by learning: the monkeys have 
come to have an internal mechanism configured as it is in virtue of a learning 
mechanism designed to optimise the delivery of reward (cf. Dretske 1988). Learning 
is also the process that stabilises sender-receiver configurations in some of Skyrms’ 
models. The more general idea is that the operation of the system (internal processing 
in the neuroscience case, sender-receiver configurations in the signalling models) is 
subject to change and arrives at a stable configuration in virtue of how that 
configuration gives rise to results that lead to feedback that stabilises the 
configuration. In the replicator dynamics the result is replication and the feedback is 
selection. In reward-guided learning the result is the delivery of reward and the 
feedback is a learning rule that selects amongst internal configurations on the basis of 
maximising reward. 
 Does the population code for a raw probability distribution or for relative 
expected gain? In the experiment all directions are rewarded equally, so the two are 
confounded. However, the firing rates of LIP neurons are strongly affected by relative 
rewards (Platt & Glimcher 1999). The orthodoxy in the past decade has been that LIP 
neurons code for rewards (of either an action-based or goods-based sort).1 This would 
suggest that the distribution identified by Beck et al. (2008) is in fact a distribution of 
expected rewards: probability times reward magnitude. 
 The fact that the monkeys manage to perform the task near-optimally given 
the quality of the information available to them acts as a further constraint on content. 
A content assignment according to which some of the representations were very 
inaccurate would be inadequate for explaining successful behaviour. For example, one 
might claim that all that is represented at every stage of this three stage internal 
process is the saccade direction that will be rewarded. Even the instantaneous 
evidence about motion direction available in the first stage of processing in MT 
correlates a bit with this parameter. So one could claim that neural activity in MT 
represents rewarded direction, only does so very inaccurately. That candidate content 
does not, however, contribute to an explanation of the animal’s successful behaviour. 
Incorrect representation does not explain success. That is not to say that 
verificationism is operating. The probability distributions represented according to 

                                                       
1  That orthodoxy may change in the light of recent evidence that LIP activity is more closely 

related to salience than to expected rewards, when the two are dissociated: Leathers & Olson 
(2012). (Negatively-associated stimuli provoke increasing responses as their negative 
importance increases (hence increasing salience) and their relative reward thereby decreases.) 
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Beck et al. need not match the objectively-correct probability distribution. But 
departures from accuracy are due to noise and other random processes. They are not a 
matter of making systematic errors. 
 Skyrms argued that in his signalling models the content or meaning of a signal 
is fully determined by facts about the probabilities of world states and the facts about 
sender and receiver strategies and their probabilities (2010, 35). Transposed to the 
neuroscience case, that becomes the claim that facts about content are fully 
determined by facts about how the internal states are produced and how they issue in 
behaviour. We saw good reasons to reject that conclusion in the case of probabilistic 
population coding. Facts about the external world task which that internal 
configuration is being used to achieve were also important to singling out one 
particular species of correlational information as being the content carried by 
distributed neural firing in an area. We can draw out Skyrms’ claim slightly in the 
following simple argument: 
 
(P1) All the varieties of information carried by a signal at a time are fully 

determined by the probabilities of world states and the probabilities of sender 
and receiver strategies. 

(P2) The content or meaning of a signal at a time is fully determined by one or 
more of the varieties of information that it carries. 

(C) The content or meaning of a signal at a time is fully determined by the 
probabilities of world states and the probabilities of sender and receiver 
strategies. 

 
We reject the analogue of (C) in the neuroscience case. Content facts are constituted 
by more than facts about inputs, outputs and probabilities of world states. But we can 
accept the analogue of (P1). Therefore we must reject (P2). Information on its own is 
not adequate to specify content. Facts about how reward is produced, and how 
feedback based on reward acts to stabilise internal configurations, also play an 
ineliminable role in making it the case that one part of the information carried by a 
state constitutes its representational content. 
 This approach to content fits well with Peter Godfrey-Smith’s idea that 
representational content is a matter of system making use of an ‘exploitable relation’ 
between a set of internal states and a set of states of the world (Godfrey-Smith 2006). 
All the various varieties of information carried by a distributed pattern of firing are 
exploitable relations that could be made use of. As it turns out, the system is actually 
making use of the relation between patterns of firing rates and probability 
distributions over the motion parameter. 
 That also fits well with an account of the explanatory role of content I have 
argued for elsewhere (Shea 2013). For these simple systems, realist representational 
contents arise when the system is embedded in the context of some externally-
specified task which it manages to achieve and is designed in some way to achieve. 
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The system performs the task by breaking down the externally-specified function into 
a series of steps, and the internal configuration shows how the system manages to go 
through those steps in order to achieve the outcome it does. Each internal step bears 
an exploitable relation to a state that is relevant to the task, and the whole system 
relies on those relations so that the internal steps faithfully instantiate stages that 
constitute a calculation of the externally-specified function. (In these cases ‘design’ is 
a matter of performing the task in a way that contributes to the stabilisation of that 
very internal configuration.) 
 Skyrms does not in fact make the strong claim that all meaning reduces to 
facts about information. He thinks that some complex systems (thinkers) may have a 
kind of mentalistic intentionality. Furthermore, in some cases there is teleosemantic 
intentionality. But these are both add ons – things that can be added to the theory, 
where they apply (2010, 43). Skyrms is clear that neither mental intentionality nor 
teleosemantic intentionality is a requirement for meaning or content. Facts about 
information are sufficient on their own to constitute a substantive kind of meaning or 
content, and do so whether or not teleosemantic intentionality is present. The 
neuroscientific case study above furnishes a reason for resisting that conclusion. 
 These observations apply both to Skyrms’ signalling models and to the three-
stage internal calculation in Beck et al. (2008). But note that the neuroscientific 
computation is not a straightforward instance of a Skyrms-type sender-receiver game. 
Nor are its states getting content in the standard teleosemantic way, by considering 
how they are used by a consumer system (and the stabilising functions and success 
conditions of such uses). It is sometimes suggested that in the brain each subsequent 
stage of processing is the consumer for the representations tokened at the immediately 
preceding stage. But something different is underpinning the contents in the Beck et 
al. case, according to my account. It is the function of the complex system as a whole 
that provides the foundation for content. An interacting network of internal 
components manages to achieve that function and is suited to doing so because of the 
exploitable relations each component bear to relevant world states. Each element is 
exploiting the fact that the other elements with which it interacts bears such 
exploitable relations. 
 A potential challenge to that view, however, is that rival incompatible 
computational variants are available, each of which would be equally good as an 
instrumentalist account of how the system manages to perform its externally-specified 
function, and each of which is equally compatible with the facts about how internal 
processing within the system gives rise to behaviour. I don’t know of a good 
argument that such rival variants will always be available (which would imply a 
worrying degree of content indeterminacy). Whether the actual data in cognitive 
neuroscience permits rival variant contents in some fields is an empirical question. 
It’s still early days in this field, but so far it looks as if debates between rival neural 
coding theories  are substantive and empirically tractable. 
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 One of the things blocking rival incompatible contents is a fairly strong 
assumption about how representations should be realised in neural vehicles. The 
probabilistic representational contents are relatively explicitly represented, in that 
their values can be decoded from the representational vehicle via a linear combination 
of firing rates. That is not as direct as cases where the firing rate of neuron correlates 
directly with the value of the parameter it represents. This raises the question of how 
tight the connection between vehicles and contents has to be in order for vehicles to 
count as neural realisations of those contents. It can’t be that anything goes, otherwise 
there is no way to distinguish instrumentalism from a commitment to real internal 
vehicles of content. Linear decodability is plausibly a direct enough link between 
vehicle and content. But are looser connections permissible? There is not space here 
to address that important question. 
  

4.  Conclusion 
Evidence from cognitive neuroscience for probabilistic population coding in the brain 
suggests that Skyrms’ insight about the importance of non-conceptual contents that 
are probabilistic, and do more than just rule-in and rule-out world states, applies to 
real cases beyond those modelled by sender-receiver signalling games. However, this 
case study also implies that the way internal processing is stabilised by an externally-
specified process is important to fixing content, in particular a connection between 
internal processing and payoffs plays a central role. Meaning in these cases is not just 
a matter of information of the right kind. The same conclusion may be equally 
apposite within Skyrms’ models themselves. 
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Fig. 1. From Pouget et al. (2003). The noisy distribution of population activity in the top panel 
(green, blue and red open circles) is transformed by a Bayesian decoder into the smooth 
posterior probability distributions in the lower panel (green, blue and red curves, respectively). 
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Fig. 2. From Beck et al. (2008). The firing rates of model neurons in panel A are 
transformed by a Bayesian decoder into the probability distributions in panel B. At each 
time the width of the probability distribution is narrower than the range of preferred 
directions which show non-zero firing rates. (Additionally, the variance of the 
distribution decreases over time as increasing evidence accumulates.) 
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