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ON WEAK EXTENSIVE MEASUREMENT* 

HANS COLONIUS 

Technische Universitit Braunschweig, West Germany 

Extensive measurement is called weak if the axioms allow two objects 
to have the same scale value without being indifferent with respect to the 
order. Necessary and/or sufficient conditions for such representations are 
given. The Archimedean and the non-Archimedean case are dealt with 
separately. 

1. Introduction. In the measurement of extensive quantities one gen- 
erally considers a triple (A, >, O) of primitives. The symbol A 
denotes some nonempty set of objects; a > b for a, b E A means 
that b does not exceed a, for the attribute under study (i.e. > is 
a binary relation on A); (a,b) -> a O b denotes the concatenation 
of objects a and b in A forming a new object a O b E A (i.e. 
O is a binary operation on A). For this triple, strong extensive 
measurement (s.e.m.) is defined as the construction of a nonconstant 
real-valued function f on A such that f(a) - f(b) if and only if a 
> b, andf(a O b) =f(a) + f(b). Weak extensive measurement (w.e.m.) 
is defined' as the construction of a nonconstant real-valued function 
f on A such that f(a) 2 f(b) if (but not necessarily only if) a > 

b and f(a 0 b) = f(a) + f(b). Thus, weak extensive measurement 
differs from strong only in permitting two elements to have the same 
numerical value without being indifferent with respect to the relation. 

The axioms for strong extensive measurement often turn out to 
be too restrictive in practice. When pairs of objects similar in size 
(in a sense to be defined below) may exist among the objects under 
study, weak extensive measurement is more appropriate. For a more 
thorough discussion of the problems of application the reader is referred 
to [4]. In this paper, axiom systems for w.e.m. are stated. The 
Archimedean and the non-Archimedean case are dealt with separately. 
It can be shown that for both weak and strong extensive measurement, 
representations are unique up to similarity transformations (see [3]). 

2. Definitions. Certain notational conventions must now be introduced. 

*Received July, 1976. 
'This notion has been introduced in [3]. 
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The above functionf is sometimes called a strong (resp. weak) extensive 
measurement representation. The concatenation symbol O may be 
omitted for the sake of brevity: ab will stand for a O b. For any 
positive integer n, the notation a" is defined recursively, such that 
a = a and a" = a O a". For a > b and a > b we sometimes 
write b < a and b < a, respectively; > and - are the asymmetric 
and symmetric parts of >. > is called a weak order iff it is transitive 
and connected ("iff" is short for "if and only if"). Finally, A may 
stand for the triple (A, >, O) if no ambiguity arises. An element 
a E A is called positive, or negative, or null iff for any b E A, 
we have ab > b and ba > b, or ab < b and ba < b, or ab = 
b and ba - b, respectively. The sets of positive, negative, and null 
elements are called P, N, and 0, respectively. These sets are pairwise 
disjoint. If they constitute a partition on A, A is called sign consistent. 
A is nontrivial iff it contains at least a null and a non-null element. 
For a, b E A, a is said to be Archimedean equivalent to b (a - 

b) iff there is a positive integer n such that at least one of the following 
inequalities holds: 

a b a, b a bn,an b a, or b na <b. 

- can be shown to be an equivalence relation on A if sign consistency 
holds. [a] will denote the Archimedean equivalence class (AEC) 
generated by a. Archimedean axioms are conditions that somehow 
restrict the number of AECs, e.g. postulate that P consist of a single 
class. A pair of elements a, b in A is called anomalous if a * b 
and either, for all n E IN, a" > b"n+ and bn > a"+l or, for all 
n E IN, b"n+ > an and an+ > bn. Intuitively, two elements are 
Archimedean equivalent if none is "infinitely greater or smaller" than 
the other. Analoguously, two elements form an anomalous pair if 
their "difference" is "infinitely small" (with respect to "differences" 
of other pairs of elements2). On the real line with usual order, 
anomalous pairs do not exist and thus, their prohibition is necessary 
for s.e.m. 

3. Axiom Systems. Numerous axiom systems for s.e.m. have been 
proposed. The reader may consult [4], for detailed reference. Few 
systems for w.e.m. have appeared in the literature, however. On 
the other hand, identification of anomalous pairs and thus proof of 
their nonexistence will often be extremely difficult or even impossible 
in practice. Their prohibition may be unduly restrictive. Therefore, 

2For results on the relation between Archimedean equivalence and anomalous pairs 
in ordered commutative semigroups see [1]. 
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w.e.m. representations that do not differentiate between elements 
of an anomalous pair (i.e., map anomalous pairs onto the same number) 
seem to be more appropriate in many practical cases. 

Anomalous pairs may exist even if certain Archimedean properties 
hold (see, e.g., [2], p. 163). In what follows, we shall give representa- 
tions admitting anomalous pairs. First, we deal with the Archimedean 
case, then the Archimedean condition will be deleted entirely. 

Theorem I (Archimedean Case). Let > be a binary relation and 
let O be a binary operation on a nontrivial set A such that for all 
a, b, c E A 

(1) a > b or b a; a > b and b > c imply a > c. 
(2) (ab)c - a(bc). 
(3) a > b implies ac > bc and ca > cb; 

then the following condition is necessary and sufficient for the existence 
of a w.e.m. representation of A such that two distinct elements of 
A (i.e., different with respect to >) are mapped onto the same number 
iff they form an anomalous pair: 

(4) Any non null element b E A satisfies one of the following 
statements: for any a, there are m, n E IN such that b"m 
> a and b"a > b; or, for any a, there are m, n E IN such 
that bm < a and b a < b. 

The proof bearing on a theorem in [3] is deferred until the end 
of the paper. 

Condition (4) is an Archimedean axiom stating that any two elements 
are "comparable" with respect to the order. It is stronger than a 
corresponding condition in [3] but, as Theorem 1 indicates, it is 
a necessary condition for the representation to hold. It includes an 
unboundedness assumption by use of strict inequalities. Since (4) 
holds in any AEC, Theorem 1 implies that a fully ordered semigroup 
consisting of one AEC P of positive elements is order-homomorphic 
to a subsemigroup of the additive positive real numbers such that 
two distinct elements have the same image iff they form an anomalous 
pair. This eliminates cancellativity in the theorem of Hion (1957) 
reported by Fuchs ([2], p. 170). Moreover, positivity being omitted, 
Condition (4) is necessary and sufficient for an analoguous homo- 
morphy into a subsemigroup of the additive real numbers. 

Non-Archimedean extensive structures have been investigated in 
[5] and [6]. The former, extending the notion of s.e.m. has shown 
that these structures can be embedded into non standard models of 
the reals. If only representations into IR are considered the following 
statement can be derived: 
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Theorem 2 (Non-Archimedean Case). Suppose that all conditions 
of Theorem 1 except (4) hold on (A, >, 0) and that A is sign consistent 
(i.e., A = P + N + O); then there is a real-valued function s on 
A such that for all x, y E A, 

(i) x - y implies s(x 0 y) = s(x) + s(y); 
(ii) x - y and x < y imply s(x) < s(y); 

(iii) x < y and not x - y imply s(x 0 y) = s(y) for x O y E 
P and s(x O y) = s(x) for x O y E N; 

moreover, for all z E A, 

(iv) for all x, y E P, x - y and s(x) = s(y) and x 0 z < y 
implies not z - x, and 
for all x, y E N, x - y and s(x) = s(y) and x 0 z > y 
implies not z - x. 

The function s constitutes w.e.m. on every AEC. If two elements 
x, y do not belong to the same A EC, x 0 y is assigned the s-value 
of the greater or the smaller element depending on whether x O y 
is positive or negative. Moreover, if two Archimedean equivalent 
elements get the same s-value, their "difference" cannot belong to 
the same AEC. 

Theorem 2 extends a result in [5] (Theorem 5.8, p. 389) by assuming 
sign consistency instead of positivity and by removing commutativity 
of 0. Clearly, commutativity does not follow from the representation. 
Violations of commutativity, however, will hardly be detected in 
practice: it follows from Theorem 1 that a O b > b O a in an AEC 
iff a 0 b, b 0 a form an anomalous pair. It is interesting to note 
that unlike [5], in the proof of Theorem 2 no model-theoretic methods 
need to be used. Rather the theorem follows almost trivially from 
Theorem 1 by use of the Axiom of Choice. 

4. Proofs. Proof of Theorem 1. (Sufficiency) Theorem 1 in [3] states 
that the existence of a single non-null element x E A satisfying the 
conditions on non-null elements in Condition (4) is sufficient for the 
construction of a w.e.m. representationf of A. All we need to know 
about this construction is that f(x) = 1 or -1; A being nontrivial 
we may take an a E A \ O in order to get a w.e.m. representation 
fwithf(a) = 1 or -1. Suppose f(b) = 0 for b E A \0. If g is 
the w.e.m. representation attained by taking b instead of a, then 
g(b) = 1 or -1. But by uniqueness of the representation there must 
be a real a > 0, such that for all c E A axf(c) = g(c), thus g(b) 
= 0. This contradiction implies f(b) # 0 for all b E A \ 0. 

Now suppose c, d E A do form an anomalous pair; c" < d"+ 
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and d" < c" " for all n E IN imply nf(c) < (n+l)f(d) and nf(d) 
< (n+l)f(c) and thus n/(n+1) < f(c)/f(d) - (n+l) /n for all n E 
IN, i.e., f(c) = f(d). The case cn > dn+l and dn > c"n+ follows 
in the same way. Now suppose c, d E A do not form an anomalous 
pair. It remains to showf(c) # f(d). There are four possible cases: 

(a) there are m andp with d" < c"ml and dP+ cP, 
(b) there are m and q with dm < cm+ and cq+4 < d, 

(c) there are 1 and p with c' d'l+ and dP+' < cP, 
(d) there are 1 and q with c' < d1+' and cq+1 d<, 

with 1, m, p, and q E IN. We distinguish two possibilities: 

(I) d E O; then 

(a) impliesf(d) - f(d) < f(cm) andf(dP) + f(d) < f(cP); 
(b) impliesf(dm) - f(d) ? f(cm) andf(c ) c f(dq) - f(d); 
(c) implies f(c1) < f(d') + f(d) and f(d) + f(d) ( f(cP); 
(d) impliesf(c ) ( f(d) + f(d) andf(c q) f(dq) - f(d). 

For f(d) > 0, we have f(dP) < f(CP) and thus f(d) < f(c) in (a) 
and (b); similarly, we have f(cq) < f(dq) and thus f(c) < f(d) in 
(b) and (d); for f(d) < 0, we have f(dm) < f(cm) and thus f(d) < 
f(c) in (a) and (b); similarly, we have f(c') < f(dl) and thus f(c) 
< f(d) in (c) and (d). 

(II) c EE 0; because of the obvious symmetry of c and d in (a)-(d), 
this case can be dealt with analoguously and we omit it here. 

(Necessity) Suppose f(b) = 0 for b E A \ 0, then b must form 
an anomalous pair with a null element; this is prohibited by the definition 
of anomalous pairs, however; for f(b) > 0, we have: for all a E 
A there exist m, n E IN such that mf(b) > f(a) and nf(b) + f(a) 
> f(b); thus f(b ) > f(a) and f(bna) > f(b) implying bm > a and 
bna > b; for f(b) < 0 we get bm < a and b"a < b, in the same 

way. 

Proof of Theorem 2. The relation - induces a unique partition of 
A into AECs; a E P (or N or O) implies [a] C P (or N or 0), 
obviously. Thus it is readily seen that Condition (4) of Theorem 1 
holds in every AEC. This yields for any k E K, K the class of 
all AECs of A, a w.e.m. representationfk with the properties stated 
in Theorem 1. For k = 0, there is the trivial representation fo = 
0. Now the function s on A may be defined as follows: for x E 
k, s(x) = fk(x), and for x E k, y E k', x < y (k : k') s(x 0 y) 
= s(y) for x 0 y E P, s(x 0 y) = s(x) for x 0 y E N, and 

s(x 0 y) = 0 for x 0 y E O; (i)-(iii) of Theorem 2 are easily 
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verified; for (iv), suppose z E A, x, y E P, x ~ y, s(x) = s(y), 
x 0 z <y, and z- x; thus x 0z E [x] and s(x 0 z) = s(x) + s(z) 
< s(y); this implies s(z) < 0; however, since [z] C P, s(z) > 0; 
the case x, y E N is similarly shown. This completes the proof. 
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