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Suppose that entities composed o f  two independent components are qualitatively 
ordered by  a relation that satisfies the axioms o f  conjoint measurement. Suppose, i n  
addition, that each component has a concatenation operation that, together either with 
the ordering induced on the component by  the conjoint ordering or with its converse, 
satisfies the axioms o f  extensive measurement. Without further assumptions, nothing 
can be said about the relation between the numerical scales constructed from the two 
measurement theories except that they are strictly monotonic. A n  axiom is stated that 
relates the two types o f  measurement theories, seems to  cover all cases o f  interest in  
physics, and is sufficient to  establish that (the multiplicative form o f )  the conjoint 
measurement scales are power functions o f  the extensive measurement  scale^.^ 

1. Intrsdnctian, To illustrate the problem considered in this paper, consider a 
specific physical relation such as E = &v2, where E is the kinetic energy of an 
object, m is its mass, and v is its velocity. Classically, each of these quantities is 
measured separately and the numerical relation among them is empirically verifiable. 
In principle, at least, both nz and v can be measured fundamentally by means of 
the theory of extensive measurement, which, in each case, rests upon having an 
empirical operation of concatenation: two masses can be concatenated (placed 
together) to form a third mass; two velocities in a given direction can be concatenated 
(added) to form a third velocity in that direction. Energy is not usually measured 
fundamentally, but rather in some derived fashion. 

Applying the general results of Luce and Tukey [I], to this example, it can be 
shown that if an empirical method exists for determining which of two moving 
objects has the greater kinetic energy and if that qualitative relation satisfies certain 
axioms (see Sec. 2), which it would according to classical physics, then "energy" 
measures 4, and 4, can be assigned to the mass and velocity components in such a 
way that the object (m, v) qualitatively has greater kinetic energy than (m', v') if and 
only if 

# ' I ( ~ )  + 4 2 ( ~ >  > #' I (~ ' )  f 42(~')7 

or, setting u = exp 4, if and only if 

Thus, this system of fundamental measurement, which is called conjoint measurement, 
yields in this case the simultaneous measurement of the energy contribution of all 
three variables, and it provides an alternative to the theory of extensive measurement. 
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It  should be noted that no concatenation operations are postulated in the axioms of 
conjoint measurement; rather, the construction is based upon a trade-off between 
the two independent components. I t  therefore offers a possible means of fundamental 
measurement when no operation of concatenation has been identified, and so it is of 
at least potential interest to the behavioral sciences. 

A problem is created, however, in those cases, such as the one above, in which 
concatenation operations exist, because we now have two equally plausible methods 
of fundamental measurement. And there is no clear assurance that they yield the 
same measures. One would like to know that the two measures are, in fact, the same 
in physically interesting cases-in this example, that u,(m) = film and u,(v) = /3,v2. 
Actually, the relations cannot possibly be quite this simple since the multiplicative 
conjoint measurement scales are unique only up to the choice of scale and a common 
exponent, i.e., if u, and u, satisfy the representation then so do ,B1ula and P 2 ~ 2 a ,  where 
ol > 0. Thus, the strongest result that we can hope to establish for this example is 
that u,(m) = ,B,ma and u,(v) = 

The purpose of this paper is to state an axiomatic structure sufficient to prove a 
result of which the above is a special case. In essence, I assume that the axioms of 
conjoint measurement hold for quantities having two independent components, that 
the axioms of extensive measurement hold for each of these components scparately, 
and that a new axiom relates the two measurement systems. From these assumptions 
it is shown that the desired relation holds between each of the two pairs of numerical 
measures. Moreover, if such relations hold betwcen the numerical scales, the axiom 
relating the measurement systems is necessary. This result justifies the "it can be 
shown" assertion about the relation between the conjoint measurement of momentum 
and the extensive measurement of mass and velocity in Sec. I11 of [I]. 

2. Axioms and Preliminary Results. Let A, and A, be sets, R a binaiy relation 
over A, x A, ,  and o, a binary operation on A,, p = 1,2. Denoting the converse 
of R by R', then in the usual fashion let I = R n R' and P = R - P. Thc first 
three of the four axioms of conjoint measurement are: 

Axiom Cl. R is a zoeak ordering of ill x A, . 
Axiom 6 2 .  For each a in A, andp,  q in A, , the equation (a,  p)I( f ,  q) has a solution 

f i n  A,; and for each a, b in A, and p in A , ,  the equation (a, p)I(b, x) has a solutio?~ x 
in A,. 

Axiom C3. For a, b, f in A, and p, q, x in A,, if (a,  x)R( f ,  g) and ( f ,  p)R(b, .Y), 
then (a,  p)R(b, $4. 

Definition 1. Dejine the relations R, on A!, p = 1,2, by: aR,b if arrd o n b  if 
(a,  x)R(b, x )  for some 3 in A,; pR,g $ and only zf ( f ,  p)R( f ,  q)  for some f in A, . 

Theorem 1, If axioms C1-C3 hold, then R ,  is a weak orderihg of A,. 

Proof. Theorems V H and V I<, [I]. 

Next we introduce all save one of Suppes's, [2], axioms for extensive measurement 
in (A,, R,*, o,), p = 1,2, where R,* denotes either R, or its converse, R,'. This 
complication about which relation is involved is necessary in order to cope with laws 
of the form F = m r 2 ,  for which the conjoint ordering on the second component 
corresponds to l / r  whereas the extensive measurement theory is based on an ordering 
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that corresponds to r. Observe that there is no need to distinguish between I, and 
I,* since I,' = I,. There is no real need to state the first axiom of the Suppes 
system since the transitivity of R,* is guaranteed by Theorem 1, but in order to 
retain his numbering I state it explicitly. In  all axioms, a, b, c are in A,. 

Axiom El. IS,* is transitive (Theorem 1). 

Axiom E2. ao,b is in A,. 

Axiom E3. [(ao,b)o,c]R,*[ao,(bo,c)]. 

Axiom E4. If aR,*b, then (ao,c)R,*(co,b). 

Axiom E5. If aP,*b, then there exists c in A, such that aIp(bopc). 

Axiom E6. (ao,b)P,*a. 

Suppes's final (Archimedean) axiom is not listed since it mill be derived from the 
Archimedean axiom of conjoint measurement and the other axioms. T o  state the 
final axiom of conjoint measurement, we need: 

Definition 2. A doubly injinite sequerzce of pairs (ai ,pi) ,  i = 0, & I ,  &2, ..., 
where ai is in A, and pi is in A, , is a non-trivial dual standard sequence (dss) provided 
that for all i 

i. o t  ( a 1 I l i )  andrzot (pi+,12pi), 
ii. (at , pi-+l)I(ai+I , Pi) ,  . . . 

111. (%+I 9 Pi-l)I(% 3 Pi). 

The Archimedean axiom for conjoint measurement is: 

Axiom C4. If ((ai , p i )  is a non-trivial dss, b is in A, , and q is in A ,  , then there 
exist integers j, k such that 

(.I; , p,c)R(b, q)R(aj 9 PA. 
Definition 3. Let o, be a binavy operation of 13,. For a in A, and i an integer, 

ia is deJined recursively by: l a  = a, ia = (i - l)ao,a. 

The next axiom guarantees that A, includes all "rational fractions" of elements. 
I t  is not needed in the usual statement of extensive measurement, but I have been 
unable to prove the desired result (Theorem 3) without it. 

Axiom F. For each a ilz A, and for each positive integer i, there exists b in A ,  
such that aIpib. 

It follows immediately from this axiom that the following quantities exist. 

Definition 4. Let r = ilj whe7.e i and j are positive integers and let a he ilz A,. 
Denote by ra any element, which is uniyue up to I ,  , such that iaI,j(ra). 

Throughout the rest of the paper, let i, j, k ,  1 denote positive integers and r = i / j  
and s = k / l  rationals. 

Lemma 1. Suppose that Axioms El-ES and F hold. If r > s, then for all a in 
A, , raPp*sa. 

Proof. Since r > s, il  > jk. By Def. 4 and Axiom F, 

j(ra)Ipia and l(sa)Ipka. 
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By Theorems 11, 12, and 15 of Suppes [2] 

(ra)Il(ia)Ip(li)aPP*(jk)aIpj(ka)I,jl(sa), 

and the assertion follows from Theorem 16. 

Lemma 2. Suppose that Axioms E1-E6 and F hold. Then r(sa)Ip(rs)a. 

Proof. By Def. 4 and Axiom F, 

,j[r(sa)]IPi(sa), jl[(rs)a]Ip(ik)a, l(sa)lT,ka. 

By Theorems 11 and 15 of Suppes [2], 

lj[r(sa)]Ipli(sa)Ipi(ka)Ip(ik)aIpjl[(rs)a], 

from which the assertion follows by Theorem 16. 
The final, and crucial, axiom establishes the needed relation between the con- 

catenation structures on A ,  and A, and the conjoint ordering relation R on A, x A, .  
Note that Axiom F is needed to state it since im is a rational when i is an integer and 
m is a negative integer. 

Axiom C-E. There exist non-zero integers nz and n such that for all positive 
integers i and j, all a in A, , and all p in A, , 

(inza, p 'p)I(pa,  inp). 

11/1o~eover, m is positive ov negative according as R,* = R, or R i ;  n is positive or 
negative according as R,* - R ,  or R,'. 

Lemma 3. Suppose that Axioms C1-C3, E1-E6, C-E, and F hold. Then for any 
positive rationals r and s, any a in A ,  , and any p in A,, 

(Y"", snp)I(sma, rnp). 

Proof. Let r = iij and s = kll. Then 

(Lemma 2 and Axiom F) 

(Lemma 2 )  

The next theorem shows that Suppes's Archimedean axiom can be derived from 
the axioms stated. 

Theorem 2. Suppose that Axioms C1-C4, E1-E6, C-E, and F hold. For any 
a,  b in A, , there exists a positive integer j such that jbRPLa. 

Proof. Let m and n be the integers whose existence is asserted in Axiom C-E. 
With no loss of generality, suppose p = 1. Letp be in A ,  . Since m, n # 0, 2m, 2% # 1, 
and so by Lemma 1 not (2"bI1b) and not (2npl,p). Moreover by Axiom C-E, 
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Thus, by Theorem IX J, [I], there exists a nontrivial dss (b, , p,) that passes through 
b, 2"b, p, and 2 % ~ .  We now show that bil,(2mib) and p,I2(2"<p). Since dss's with two 
terms fixed on each component are unique up to indifference, it is sufficient to show 
that these quantities satisfy the three conditions of Def. 2. 

i. By Lemma 2, 

[2m(i+1)b]~l[2m(2mih)]. 

By Lemma 1 and the fact that 2" # I, 

not{[2"(2mib)] Il(2"'b)), 

and so by the definition of b, , 
n~t(b,+~I,b,). 

A similar argument shows that 

not(p,+,I2Pi). 

ii. (b,+, , p,)1[2~'~+"b, 2%9] (Def. of b, , pi; Theorem V L [I]). 

~prnib, 2n'ii ,)Pi (Lemma 3) 

, Pi+,) (Def. of b, , pi; Theorem V L). 

iii. (bi+, , pi-,)I[2 m'ii-l)b, 2"'i-1)p] (Def. of b, , pi; Theorem V L). 

1~2"~(2"b), 2n'i-1)p] (Lemma 2) 

I[2m'i-1'(2"b), 2"%] (Lemma 3) 

I(2mib, 2^,p) (Lemma 2) 

3 pi) (Def. of hi,  pi; Theorem V L). 

By Lemma XI1 A [I], there exist integers p and v such that b,R,aR,b, , and by 
what we have just shown bi11(2mib). If R,* = R, , let j be the next integer larger than 
2""; and if R,* = R,', let j be the next integer larger than 2n". By Lemma 1 and the 
transitivity of Rl* (Theorem I), jbRl*a. 

3. The Principal Theorem. From Suppes, [2], we know that Axioms El-E6 plus 
Theorem 2 are sufficient to show that there exists a positive real-valued function v, 
on A, such that for a and b in A, 

Ei. aR,*b if and only if v,(a) 2 v,(b), 
Eii. v,(ao,b) = v,(a) + v,(b), and 
Eiii. If v,' is any other function satisfying Ei and Eii, then there exists a constant 

6, > 0 such that v,' = S,v, . 
From Euce and Tukey, [I], we know that Axioms GI-C4 are sufficient to show 

that there exist positive real-valued functions up on A, such that for a and b in A, 
and p and q in A, 

Ci. aR,b if and only if u,(a) 2 u,(b) and 
pR,q if and only if u,(p) 2 u,(q), 
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Cii. (a,p)R(b,  q) if and only if u,(a)u,(p) u,(b)u,(q), and 
Ciii. If u,', p = 1, 2, is any other pair of functions satisfying Ci and Cii, then 

there exist constants a: > 0 and p, such that 

ul' = P1ula and u,' = p2uza. 

The principal theorem shows that when Axioms C-E and F hold the functions 
u, and v, are very simply related. 

Theorem 3. Suppose that Axioms C1-C4, El-E6, C-E, and F hold. If up  are 
conjoint measures for ( A ,  x A ,  , R) and v, are extensive measures for (A,  , R,*, o,), 
then there exist constants a > 0 andp, such that 

Proof. It  suffices to work out the proof for A, ,  the proof for A, being completely 
parallel. From the conjoint measurement representation applied to Axiom C-E, we 
have for positive integers i and j, a in A, , and p in A , ,  

Clearly, this ratio is independent of either a or p and depends only on i and j. Denote 
its value by g(i, j). 

First, observe that there exists a positive real-valued function f on the rationals 
such that f(ilj) = g(i,  j). For let 1, = ilj = kll be rational. Since there exists an 
integer t such that k = t i  and 1 = tj, 

So we define f ( r )  = g(i, j )  for r = ilj. 

Second, f is strictly monotonic. Suppose ilj = r > s = k/l ,  then il  > jk. There 
are two cases: 

i) mn > 0. If m > 0 and n > 0, then R,* = R,  and (il)m > (jk)m. By Theorem 17 
of Suppes, 

[(il)""a] PI [( jk)"a]. 

By property Ci of conjoint measurement, this implies 

ul[(il)"a1 ;> ul[(ik)mal, 
and so 

f ( r )  = ~ ~ ( i ~ ~ a ) / z ~ , ( j ~ a )  
= ul [ ( i l ) " a ] / ~ ~ [ ( j l ) ~ a ]  

> ul [(jk)mal /al [(jllma1 
= v [km(jilla)] /ul [ l r n p a ) ]  

=f(+ 
If 7n < 0 and n < 0, then Rl* = R,' and (i1)n" < (jk)m. By Theorem 17, 

hence [(i l)"~] Pl[(ik)ma]. 
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The remainder of the argument is unchanged, so f is strictly increasing if mn > 0. 
ii) mn < 0. A similar argument shows that f is strictly decreasing. 

Third, f satisfies the functional equation f(rs) = f ( ~ ) f ( s ) .  Let r = ilj and s = kll, 
then 

f (rs) = u,[(ik)*a]/z~,[(jl)nla] 

By Lemma 4, stated and proved following the completion of this proof, there 
exists a constant y f 0 such that f (r )  = rv. Note that by choosing j = 1 above, 
this means that 

ul(irna) = iyu,(a). 

Moreover, we may write y = amn, where a: > 0, since y >( 0 if and only if mn >( 0. 
Since, by property Ei, v, preserves the order R,* and, by property Ci, u, preserves 

the order R, , there exists a strictly monotonic function h, such that u, = h,(v,.) 
Note that h, is increasing or decreasing according as R,* = Pi, or R,'. By an ap- 
propriate choice of units, there is no loss of generality in assuming h,(l) = 1. To  
determine the form of h, , let P = iij be a rational and let a be in A,. By what was 
just shown and Def. 4, 

iyul(a) = ul(ima) = u,[jm(r'lna)] = jyul(rma), 
and so 

U , ( Y ~ ~ )  = r~u,(a). 

By properties Ei and Eii, 

imvl(a) = vl(ima) = vl[jm(rma)] = jmvl(rma), 
and so 

vl(rma) = rmvl(a). 
Therefore, 

r~h,[v,(a)] = ryu,(a) 
= ul(rma) 
= hl [ V , ( Y ~ ~ ) ]  

= hl[rmvl(a)]. 

Define $(x) = h,(xm), then for r rational and x* in the range of v,  , 

By the choice of units, x = 1 = xm is in the range of v, ,  so +(r) = rY since 
$ ( I )  = h,(l) = 1. 

Observe that by the relation of the monotonicity of lz, to n, $ is strictly monotonic 
increasing if mn > 0 and decreasing if mn < 0. From this and the fact that +(r) = rv, 
it is easy to show that +(x) = xy. For example, suppose + is decreasing and +(x) > xy. 
Then we may choose a rational r such that 4(x )  > 4(r)  = ry > xr. Since + is decreasing, 
x < r; but also y < 0, and so xy > rr, which is contrary to choice. Writing y = anzn, 
a > 0, 

h,(x) = +(xllm) = A?. 
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A parallel argument shows that 
h2(x) = xUm. 

Lemma 4. Suppose that f is a stpictly monotonic, positive, real-valued function 
defined on the rationals such that for r and s rational f(rs) = f(r)f(s). Then there 
exists y # 0 such that f (r) = rY. 

Proof 3. Let f be any function that satisfies the assumption. I f f  is increasing we 
extend f to the reals by the following definition: for X real, 

This function is also strictly monotonic increasing since when h < 7, there exists a 
rational s with h < s < 7, and so for r < A, f(r) < f (s). Thus, f (A) < f (9). Further- 
more, the extended f satisfies the same functional equation since 

The inequality also holds in the other direction since if r < A7, we can choose 
rationals s and t such that r < st, s < A, and t < 7. It  is well known that under 
these conditions f(X) = XY, y > 0. Iff  is decreasing, a similar proof yields the same 
result with y < 0. 

4, Discussion. There are three aspects of Axiom C-E, the only new axiom, that 
need discussion. First, as was mentioned, this axiom is a necessary property if the 
representation is assumed to hold. By the representation and Eii, 

from which the axiom follows by Cii. 
Second, the question must be raised why this axiom has been stated with integer 

exponents nz and n. The consequence of this formulation is that the ratio of exponents 
in the representation has to be rational: anlam = nlm. In point of fact, this happens 
to be the case in all representations of this general type in classical physics of which 
I am aware, and so the theory as stated is adequate to handle the cases of interest. 
Within the theory itself, however, the reason for requiring HZ and n to be integers 
is the fact that we have only defined the notation ya for rational r, not irrational. 
Were we to suppose that m and n are rationals and to continue to restrict i and j to be 
integers, there would be trouble because, for example, 21J2 is irrational. 

I am indebted to David Krantz for suggesting this method of proof. 
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It is clear, therefore, that if we wish a representation theorem without any restriction 
on the exponents, it is necessary to increase the density of elements so that ha can be 
defined for all irrational A. One way to proceed is as follows. Before Axiom C-E, 
introduce the following axiom that insures the existence of "irrational" elements in A. 

Axiom I. For every a in A, and every positive irrational number A, there exists an 
element, Xa, in A, which is unique up to indifference (I,) and is such that for all rationals 
r a n d s w i t h r  < h < s ,  

(sa)P,(Xa)P,(ra). 

By standard arguments, one czn then show that 

and 

where v is the measure from the theory of extensive measurement. Then, Axiom C-E 
is modified to read: 

Axiom C-E*. There exist non-zero numbers p and v such that for all positive real 
?lumbers .A and 7 and all a in A, and p in A, 

Moreover, p is positive or negative according as R,* = R, or R,', and v is positive or 
negative according as R,* = R, or R,'. 

These assumptions lead again, with slight modifications in the proofs, to Theorems 2 
and 3 with, of course, m and n replaced by p and v.  Lemma 4 is not used in the proof 
of Theorem 3 since f is now defined on the positive reals, not just the rationals. 

The third, and final, point about Axiom C-E is that it is a qualitative formulation 
of a class of laws that, traditionally, have been formulated only in terms of relations 
among numerical scales constructed by means of extensive measurement theories. 
I t  is, perhaps, of some philosophical significance to have a purely qualitative equivalent 
to the standard numerical formulas. 
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