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Evolving to Divide the Fruits of
Cooperation*

Elliott O. Wagner†‡

Cooperation and the allocation of common resources are core features of social be-
havior. Games idealizing both interactions have been studied separately. But here,
rather than examining the dynamics of the individual games, the interactions are com-
bined so that players first choose whether to cooperate, and then, if they jointly co-
operate, they bargain over the fruits of their cooperation. It is shown that the dynamics
of the combined game cannot simply be reduced to the dynamics of the individual
games and that both cooperation and fair division are more likely in the combined
game than in the constituent games taken separately.

1. Introduction. Norms of cooperation and fairness pose something of a
puzzle for game theoretic explanations of behavior. Cooperation is often
conceived of as joint cooperation in a prisoner’s dilemma or a stag hunt.
But joint cooperation is not an equilibrium of a prisoner’s dilemma, and
it is not the only equilibrium of a stag hunt. And moreover, evolutionary
analyses of the stag hunt have consistently shown that the uncooperative
equilibrium is a more likely outcome of adaptive processes such as the
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82 ELLIOTT O. WAGNER

replicator dynamics and reinforcement learning.1 Similarly, fairness is of-
ten viewed as an equal split in a bargaining game. But models of bar-
gaining almost always have an infinite number of equilibria,2 and there
is no immediate reason to suppose that fair division will be the equilibrium
selected by a dynamic process of learning or evolution.

Simple models of bargaining involve two or more parties who have an
opportunity to divide some resource between them. But the acquisition
or creation of this resource lies outside of standard bargaining models; it
is imagined as a pure windfall, which the participants in the interaction
haggle over. This is the case in, for example, the Nash demand game. The
game begins with two players demanding shares of a pie, but the model
says nothing about where the pie comes from. This is also the case in
Rubinstein’s bargaining model. Rubinstein invites us to imagine two play-
ers alternating proposals as to how to divide a pie, but the model does
not specify how the agents acquire the pie. In real life, however, it is not
often that players are merely presented with a windfall. Here I explore
the possibility that players bargain over a surplus that they had a hand
in jointly creating. Players must first cooperate, and only then do they
bargain over how the fruits of cooperation are allocated. The creation of
the pie is thus a preliminary stage to the bargaining process. Cooperation
here is modeled as choosing to hunt stag in a stag hunt game, and the
bargaining process is simply the Nash demand game.

One might think that one could straightforwardly predict behavior in
this compound game from knowledge of behavior in the constituent
games, but this is wrong. It will be shown that, under the replicator
dynamics, this combined game in which players cooperate and then bar-
gain has different dynamical properties than the individual games. In
particular, the compound model increases the size of the basin of attraction
for fair division. And for some payoff values, unequal division in the
bargaining subgame is dynamically unstable. Furthermore, for some pay-
offs the basin of attraction for cooperation in the stag hunt is also in-
creased. This compound model demonstrates not only that norms of co-
operation and fairness can coevolve but that the joint setting in which
cooperation is a prerequisite for bargaining can be more favorable for
the evolution of both cooperation and fairness than either of the individual
games when taken by themselves.

1. For example, Skyrms (2004) shows that the uncooperative state has a larger basin
of attraction than the cooperative state under the replicator dynamics, and Kandori,
Mailath, and Rob (1993) argue that, in the long run, a stochastic evolutionary system
will spend almost all of its time in the hare-hunting equilibrium.

2. This is the case in both the Nash demand game (Nash 1950) and Rubinstein’s model
of negotiation (Rubinstein 1982).
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FRUITS OF COOPERATION 83

TABLE 1. PAYOFF MATRIX FOR A

STANDARD STAG HUNT GAME

Stag Hare

Stag S, S 0, H
Hare H, 0 H, H

Note.—It is assumed that .S 1 H 1 0

2. Dividing the Fruits of Cooperation. In a stag hunt game, shown in table
1, players each have two strategies. They can choose to hunt stag or they
can choose to hunt hare. If both players cooperate by jointly hunting
stag, they receive a large reward. However, if either player goes it alone
by hunting hare, then the stag hunt fails. Hunting hare receives a smaller
reward, but the reward is independent of your partner’s choice. If S 1

, this game has two strict Nash equilibria: Astag, stagS and Ahare,H 1 0
hareS. In the terminology of Harsanyi and Selten (1988), the stag hunting
equilibrium is payoff dominant, and the hare-hunting equilibrium is risk
dominant.3

The stag hunt has been repeatedly suggested as a model of the strategic
interaction underlying the formation of a social contract. Rousseau (1755/
1984, 111) noted that each member of a group hunting a stag “well realized
that he must remain faithful to his post; but if a hare happened to pass
within reach of one of them, we cannot doubt that he would have gone
off in pursuit of it without scruple.” The stag hunt also appears as the
meadow-draining problem in Hume (1739/2000). In this story, neighbors
may jointly benefit from the draining of a common meadow, but although
joint cooperation is mutually beneficial, it may be difficult to coordinate
on because draining your portion of the meadow takes work, and a half-
drained meadow is no better than a meadow that has not been drained
at all. The essence of this strategic interaction is that joint cooperation
is mutually beneficial but riskier than going it alone.

Stag hunts also frequently appear in biological models as idealizations
of cooperation. For instance, Bergstrom (2002) showed that haystack
models of group selection are equivalent to one-shot stag hunts played
by the founding individuals of the haystacks. As another example, con-
sider social microbes, such as Myxococcis xanthus, that coordinate feeding
on larger microbial prey (Crespi 2001). These “wolfpack bacteria” secrete
enzymes in order to digest their prey, but a single bacterium cannot excrete
a sufficient quantity of the enzyme alone. In order to feed, multiple bac-
teria must cooperate. This appears to be a stag hunt.

In the Nash demand or bargaining game, however, players simulta-
neously demand portions of a pie of size C. If both their demands can

3. To be precise, the hare-hunting equilibrium is only risk dominant when .H 1 S/2
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84 ELLIOTT O. WAGNER

TABLE 2. NASH DEMAND MINIGAME IN WHICH PLAYERS

CAN DEMAND 1/3, 1/2, OR 2/3 OF A PIE OF SIZE C 1 0

1/3 1/2 2/3

1/3 C/3, C/3 C/3, C/2 C/3, 2C/3
1/2 C/2, C/3 C/2, C/2 0, 0
2/3 2C/3, C/3 0, 0 0, 0

be satisfied (i.e., if the demands sum to something less than or equal to
C), then both players receive their demand. If their demands are incom-
patible, then both players receive nothing. To simplify the analysis, we
can assume that the players demand 1/3, 1/2, or 2/3 of the pie. The payoff
matrix for this Nash demand minigame is shown in table 2.

This game has one symmetric Nash equilibrium in pure strategies. Both
players in this equilibrium demand 1/2. There are also two notable sym-
metric mixed equilibria. In the first of these equilibria, the players demand
1/3 with probability 1/2, and they demand 2/3 with probability 1/2. They
never demand 1/2. This mixture is evolutionarily stable. There is also a
totally mixed equilibrium in which the players demand 1/3 with probability
1/2, demand 1/2 with probability 1/6, and demand 2/3 with probability
1/3.

Like the stag hunt, bargaining games have also been suggested as ide-
alizations of social contract formation. In particular, Harsanyi (1953),
Rawls (1958), and Binmore (1993) observe that a society’s selection of a
fair social contract resembles a choice (perhaps made from behind a veil
of ignorance) of a societal arrangement from a set of feasible arrange-
ments. Some of these setups may be preferred more by some members of
society than others. Thus, the arrival at a social contract requires some
mechanism for negotiating which one of these societal outcomes is chosen
as the actual social contract or the fair arrangement of society. This ne-
gotiation can be modeled as a bargaining game.4

This sort of strategic interaction is also common in biological models.
Bargaining games have been used to explain the conflict of interest be-
tween mates in species that exhibit cooperative biparental care (Houston
and Davies 1985; McNamara and Houston 2002; Johnstone and Hinde
2006). In these sorts of models, mating pairs are understood as negotiating
their level of investment in their joint offspring. And territorial behavior
has also been illuminated through the application of bargaining games.
Periera, Bergman, and Roughgarden (2003) argue that some species, such
as Anolis lizards, partition their home ranges in such a way as to ap-
proximate solutions to bargaining games.

4. Indeed, it is explicitly modeled as a bargaining game by Harsanyi (1977) and Bin-
more (1993).
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Figure 1. Compound game.

The stag hunt and Nash demand minigames can be easily combined
into an extensive form game in which players first simultaneously choose
whether to hunt stag or hare. If either chooses hare, then both players
receive the corresponding payoffs from the stag hunt game. However, if
both players choose stag, then they generate some surplus of size C. After
creating this surplus, the players bargain over how it is allocated. This
negotiation is modeled as the Nash demand game. The extensive form
structure of this game is illustrated in figure 1. To interpret this strategic
interaction, one might think of early hominids choosing to cooperate in
a group hunt and then, if the hunt is successful, distributing the fruit
between the hunters. Or one might think of a male and a female of a
species, such as hedge sparrows, that jointly raise their offspring, choosing
whether to mate and, then, if they do mate, negotiating the level of pa-
rental investment each provides to their young.

Notice that if both players choose to hunt stag, then they end up
engaged in the simultaneous-move Nash demand minigame, so that the
demand game is retained as a subgame of the larger compound game. It
is also worth noting that if both players cooperate and then equally divide
the pie, then they receive the same payoffs as they would from the ordinary
stag hunt (with ). For this reason, the standard stag hunt is alsoS p C/2
retained in the compound game. This compound setting makes obvious
an assumption implicit in the payoff matrix of the ordinary stag hung,
namely, the assumption that both players profit equally from mutual co-
operation. So the combined game can be viewed as relaxing assumptions
present in both individual models. From the bargaining game, we are
relaxing the presupposition that players are able to jointly obtain a de-
sirable and scarce resource. And from the stag hunt, we are relaxing the
assumption that whatever benefit is created through cooperation is au-
tomatically distributed equally between the cooperators.

Pure strategies in an extensive form game stipulate actions to take at
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86 ELLIOTT O. WAGNER

each information set. Thus, each player’s strategy consists of a move in
the stag hunt and a move in the demand game. In other words, each
player’s pure strategy is a pair As1, s2S, where ands � {stag, hare} s �1 2

. Notice that, when , any pair of strategies that has{1/3, 1/2, 2/3} H 1 0
both players choose hare is a Nash equilibrium of this game. Additionally,
when , the strategy profile in which both agents play Astag,0 ! H ! C/2
1/2S is a strict Nash equilibrium. In this equilibrium, players cooperate
and then split the surplus equally. And when , the asymmetric0 ! H ! C/3
profile in which one agent plays Astag, 1/3S and the other plays Astag, 2/
3S is a strict Nash equilibrium. In this state, the agents cooperate but then
unequally divide the fruits of their labor. Corresponding to this asym-
metric equilibrium, there is also a mixed symmetric equilibrium in be-
havioral strategies. In this symmetric equilibrium, both players choose
stag and then demand 1/3 with probability 1/2 and demand 2/3 with
probability 1/2. There are many other mixed equilibria of this game, but
they are not dynamically stable, and so I omit a description of them here.

3. The Replicator Dynamics. An obvious way to begin an investigation
into the dynamics of the compound game is with the one-population
replicator dynamics. The one-population continuous-time replicator dy-
namics are given by the set of differential equations

ẋ p x [(Ax) � x 7 Ax], (1)i i i

where x is a vector in which each element is the frequency of the ith
strategy in the (infinitely large) population and A is the game’s payoff
matrix. Because the components of x must sum to one, the replicator
dynamics for a game with n pure strategies lives in the -dimensional(n � 1)
simplex. The replicator dynamics was originally proposed by Taylor and
Jonker (1978) as a model of the evolution of an asexually reproducing
population. But this dynamic is also suitable as a simple model of cultural
evolution or social learning (see, e.g., Börgers and Sarin 1997; Schlag
1998). For example, consider a learning scheme that has agents sponta-
neously revise their strategies by imitating a player chosen with probability
proportional to the difference between that player’s expected payoff and
the average payoff of the entire population. Schlag (1998) shows that,
provided that limits are taken in the appropriate way, this general learning
scheme yields the replicator dynamic as its aggregate behavior.

Evolutionarily stable equilibria are always asymptotically stable states
in the replicator dynamic.5 Therefore, in both the stand-alone stag hunt
and the stand-alone Nash demand minigame, there are two asymptotically
stable states. Phase portraits for both games are shown in figure 2. Al-

5. All strict Nash equilibria are also evolutionarily stable.
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Figure 2. Phase portraits for both the stag hunt (a) and the Nash demand game
(b) in the replicator dynamic. Sinks are indicated by black circles, saddles by gray
circles, and sources by open circles.

though the replicator dynamics do not uniquely identify an equilibrium
as the sole stable outcome of the evolutionary process, not all equilibria
have basins of attraction with the same size. For example, in the stag
hunt, the probability that a randomly selected initial condition converges
to the cooperative state is . So if the payoff for mutual coop-1 � (H/S)
eration is 3 and the payoff for going it alone is 2, just 1/3 of the state
space converges to mutual cooperation. Additionally, if chance mutations
are added to the model, the population spends most of its time in the
uncooperative state because this is the state with the larger basin of at-
traction (Foster and Young 1990).

When examining the dynamics of the compound model of cooperation
and bargaining, there is a sense in which incorporating three hare-hunting
strategies is redundant. After all, if either player chooses hare, then the
branch of the game tree corresponding to the bargaining problem is never
reached. A consequence of this fact is that the three strategies Ahare, 1/
3S, Ahare, 1/2S, Ahare, 2/3S are behaviorally indistinguishable. This means
that, for instance, an experimenter cannot determine which of these three
strategies a hare hunter is employing just by observing play in the com-
pound game. So it is convenient, at least for a first pass of analysis, to
limit the state space to four strategies: hare, Astag, 1/3S, Astag, 1/2S, Astag,
2/3S. This selection of strategies maintains all of the interesting equilibria
of the extensive form but eliminates the weak Nash equilibria that are
formed by mixing over the various behaviorally identical hare-hunting
strategies. Payoffs are given by the strategic form representation of the
extensive-form game. These strategic form payoffs are shown in table 3.

Since there are four pure strategies in the compound game, the replicator
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88 ELLIOTT O. WAGNER

TABLE 3. STRATEGIC FORM REPRESENTATION OF THE COMPOUND COOPERATION/
BARGAINING GAME

AStag, 1/3S AStag, 1/2S AStag, 2/3S Hare

AStag, 1/3S C/3 C/3 C/3 0
AStag, 1/2S C/2 C/2 0 0
AStag, 2/3S 2C/3 0 0 0
Hare H H H H

dynamic here lives in the three-dimensional tetrahedron. As long as 0 !

, there are two symmetric strict Nash equilibria: one that has bothH ! C/2
agents play hare and one in which both agents play Astag, 1/2S. These
strict equilibria are asymptotically stable. Furthermore, when 0 ! H !

, the mixed symmetric Nash equilibrium in which both agents playC/3
Astag, 1/3S with probability 1/2 and Astag, 2/3S with probability 1/2 is an
evolutionarily stable strategy. Thus, it is also asymptotically stable in the
replicator dynamics. A phase portrait of this entire three-dimensional
system is shown in figure 3.6 When the rewards of going it alone are small,
the evolutionary process will take the system to one of three states: hare
hunting, cooperation followed by equal division, or cooperation followed
by unequal division.

However, when the payoff for hare hunting is large, the dynamics of
the system are fundamentally different. Specifically, when C/3 ! H !

, the mixed Nash equilibrium corresponding to cooperation followedC/2
by unequal division is dynamically unstable. The system’s phase portrait
is illustrated in figure 4. This difference in the qualitative nature of the
system in these two cases is due to a bifurcation that occurs at H p

. When hare hunting yields this payoff, the strategy hare weakly dom-C/3
inates the strategy Astag, 1/3S, and the two unstable rest points on the

face of the system collide with the saddle on the Astag, 1/Astag, 1/2S p 0
3S vertex and the mixed rest point corresponding the unequal division.
These two rest points become a source and a saddle, respectively. And
then, for , hare strictly dominates Astag, 1/3S, and thus the latterH 1 C/3
strategy is driven to extinction on that face of the dynamics. Consequently,
the mixed rest point becomes dynamically unstable.

We see here that the opportunity to hunt hare in the first stage of the
game effectively adds an outside option that, for some parameter values,

6. Because the replicator dynamics are smooth and continuous, the behavior inside
this three-dimensional space is determined by the dynamics on the faces of the space
(see Hofbauer and Sigmund [1998] for a technical introduction to the replicator dy-
namics). It is the dynamics on these four two-dimensional faces that are shown in fig.
3.
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FRUITS OF COOPERATION 89

Figure 3. Replicator dynamics for the compound cooperation/bargaining game
with payoffs from table 3 when . Sinks are indicated by black circles,0 ! H ! C/3
saddles by gray circles, and sources by open circles.

alters the nature of the strategic interaction.7 If the payoff for hare hunting
is high enough, then unequal division does not pay. Although such dis-
tribution is asymptotically stable in the ordinary Nash demand game, it
is dynamically unstable in the compound game. There is no point in
cooperating if you are going to get the short end of the stick when dividing
the spoils of cooperation.

But what of parameter values ? Although unequal division0 ! H ! C/3
remains asymptotically stable provided that the players evolve to stag
hunting, it is less likely that the system converges to unequal division in

7. Economists have taken two approaches to studying the impact of outside options
on bargaining. The first treats outside options as the disagreement point in the Nash
bargaining game. In the Nash demand minigame, the disagreement point is reached if
the players’ demands are incompatible. The second treats outside options as moves
the bargainers can make during the negotiation process (see Binmore, Shaked, and
Sutton [1989] for a discussion of the merits of both approaches in applications to wage
negotiation). The method pursued in this article is fundamentally different from both
of these approaches. Hare hunting is an outside option that the players may take before
the bargaining process begins, not the result of unsuccessful negotiation or an option
after negotiation has begun.
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90 ELLIOTT O. WAGNER

Figure 4. Replicator dynamics for the compound cooperation/bargaining game
with payoffs from table 3 when . Sinks are indicated by black circles,C/3 ! H ! C/2
saddles by gray circles, and sources by open circles.

the compound game than it is in the ordinary Nash demand game. Ap-
proximately 71.7% of state space evolves to the equal division equilibrium
in the stand-alone bargaining game.8 But as figure 5 shows, the frequency
of equal division is greater in the compound game than in the ordinary
Nash demand game for all values of H. These data were obtained by
fixing and then varying H from .05 to 1.6. Each data point is theC p 4
average of 50,000 randomly chosen initial conditions. Notice that above

, unequal division is never seen as a result of the evolutionaryH p 4/3
process. This is because although this state is a rest point of the dynamics,
it is dynamically unstable for the reasons described above. But even when
H is below the bifurcation point, provided that the system evolves to
cooperation (of course the system could also evolve to the uncooperative
hare-hunting state), it is more likely to end at equal division here than in
the stand-alone bargaining game.

Additionally, it is possible to investigate the likelihood of convergence

8. All approximations of the relative sizes of basins of attraction were obtained by
numerically integrating the trajectories of 50,000 randomly chosen initial conditions.
This integration was performed in Mathematica to 10�8 precision.
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Figure 5. Relative size of the basin of attraction of the fair division equilibrium
in the compound game (dotted line) compared to that in the ordinary stand-alone
miniature bargaining game (solid line). Each dot indicates the proportion of ran-
domly chosen initial conditions that ended at fair division in the joint game out
of those initial conditions that evolved to cooperation in the first stage of the
game.

to cooperation in the compound game. In the standard stag hunt, in which
the payoff for jointly hunting stag is S and the payoff for hunting hare
is H, the relative size of the basin of attraction for cooperation is 1 �

. Figure 6 shows the estimation of the size of the basin of attractionH/S
for stag hunting in the compound game (again with and H rangingC p 4
from 0.05 to 1.6). As the plot makes clear, there is a range of H values
in which the evolution of cooperation is more likely in the compound
game than it is in the stand-alone stag hunt. Moreover, this range overlaps
with the range in which fair division in the compound game (provided
the agents evolve to cooperate) is more likely than fair division in the
stand-alone bargaining game. In other words, for some parameter values
the combined strategic interaction in which players must cooperate and
then divide the pie is more favorable for the evolution of both cooperation
and fair division than either the stand-alone stag hunt is for cooperation
or the stand-alone Nash demand game is for fair division.9

9. One might think there is something odd about comparing the size of the basin of
attraction for stag hunting in the compound game to that of the stand-alone stag hunt.
Perhaps the enlarged basin of attraction described here is an artifact of the choice to
limit the dynamic model to a single hare-hunting strategy? Are the dynamics of the
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92 ELLIOTT O. WAGNER

Figure 6. Relative sizes of the basins of attraction for cooperation in the com-
pound game (dotted line) and cooperation in the ordinary stand-alone stag hunt
(solid line). The payoff for cooperating in the stand-alone stag hunt was fixed at

and the joint surplus created by cooperation was fixed at in theS p 2 C p 4
compound game.

4. Conclusion. One approach to studying the evolution of cooperation
and fairness would be to consider both types of strategic behavior as
modules that evolve separately and are then combined. This approach
would entail examining the evolutionary dynamics of stag hunt games
independently from the dynamics of bargaining games. This sort of anal-
ysis is appropriate for modeling interactions in which mutual cooperation
does not lead to the creation of a resource that must be distributed. The
alternative approach, taken here, sees cooperation and fairness as co-
evolved strategies in a compound game. This approach provides a perhaps
more realistic idealization of situations, such as group foraging, in which
the benefits of cooperation must be allocated between the cooperators. I
have shown here that the two approaches give different results.

In particular, the compound stag hunt/demand game changes the pros-

larger compound game with all three behaviorally indistinguishable hare-hunting strat-
egies identical to those of the stand-alone game? No, they are not. For some payoff
values, the larger game still shows an increased basin of attraction for cooperation,
although the range of payoffs for which this is true is somewhat reduced. And for all
payoff values the full game continues to show increased likelihood of converge to equal
division. So the results described here are not just a side effect of the decision to remove
two of the identical hare-hunting strategies from the model.
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FRUITS OF COOPERATION 93

pects for the evolution of cooperation and fairness in two distinct ways.
First, the option of hunting hare in the preliminary stage of the compound
game functions as an outside option to the bargaining problem. The
presence of this outside option makes accepting the loser’s payoff in the
bargaining game unattractive. Consequently, in the replicator dynamics,
the likelihood of observing fair division in the bargaining subgame is
greater than the likelihood of observing fair division in the stand-alone
bargaining game. This is especially perspicuous when the ratio of the
payoff to hare hunting to the payoff for getting the short end in the
bargaining game is greater than one. For parameter values that fall in
this regime, unequal division is dynamically unstable and thus never the
outcome of the evolutionary process. Second, for a wide range of possible
parameter values, the compound game also favors the evolution of co-
operation. Namely, if the ratio of the payoff for hunting hare to the size
of the public surplus created by jointly hunting stag is small, then a larger
portion of phase space converges to stag hunting in the compound game
than in the stand-alone stag hunt.
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