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Summary
This paper, intended to be accessible for a general philosophical audience having
only some fleeting acquaintance with set-theory and category-theory, concerns the
philosophy of mathematics, specifically the bearing of category-theory on the foun-
dations of mathematics. The author defends six claims. (I) A founding theory for
category-theory based on the primitive concept of a set or a class is worthwile to
pursue. (II) The extant set-theoretical founding theories for category-theory are
conceptually flawed. (III) The conceptual distinction between a set and a class can
be seen to be formally codified in Ackermann’s axiomatisation of set-theory. (IV) A
slight but significant deductive extension of Ackermann’s theory of sets and classes
founds Cantorian set-theory as well as category-theory and therefore can pass as
a founding theory of the whole of mathematics. (V) The extended theory does not
suffer from the conceptual flaws of the extant set-theoretical founding theories. (VI)
The extended theory is not only conceptually but also logically superior to the com-
peting set-theories because its consistency can be proved on the basis of weaker as-
sumptions than the consistency of the competition.
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4.4 The Lévy-Vaught Theorem . . . . . . . . . . . . . . . . . . . . . . 23

5 Conclusions and Reflections 25

5.1 Neo-Bourbakistan . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Classes and Membership: Superfluous or Unavoidable? . . . . . 29

References 31



1 Exordium

1.1 Motivation

The Rise of Category-Theory. We take for granted the impact on and fertility of category-
theory for mathematics, logic and, more recently, mathematical physics.1 Readers of this
journal have been served over the years one paper per decade on the subject-matter
of category-theory: a critical voice by Mayberry [1977], who has vehemently rejected
category-theory as the provider of foundations for the whole of mathematics; another
critical voice by Bell [1981] who, at another place at another time, became a convert (Bell
[1986]); and a “philosophical history” of the subject by McLarty [1990], who criticised
Mayberry severely. The present paper is neither a response to nor prompted by the men-
tioned papers, although it will now and again refer to what is said therein. In the light
of the pervasive use of category-theoretical methods in many branches of mathematics
(think only of commutative diagrams) and of Lawvere’s daring claim on the founding
throne of mathematics on behalf of category-theory, comparisons to set-theory obtrude.

We do not subscribe to the view there ought to be a single occupant of the founding
throne for mathematics. On the contrary, we submit a view that presumably is shared
by most mathematicians because it explains the peaceful status quo — no founding battle
is raging in mathematics as we speak. This view reads that more founding theories of
mathematics increase our understanding of the nature of mathematical knowledge, just as
the various axiomatisations of Euklidean geometry and quantum mechanics, say, increase
our understanding of these theories. We therefore turn to the only two theories that can
legitimately lay a claim on being a founding theory of the whole of mathematics, for that
will be the subject-matter of the present paper. In order to state the aim of this paper more
precisely, we need a few more introductory sentences.

Category-theory axiomatises the notions of an object (about which next to nothing
is assumed) and of an arrow and arrow-composition, just like set-theory axiomatises the
notions of a set and the membership-relation; we denote their respective 1st-order formal
languages by L∈ and L↑ (see Fraenkel et al. [1973, h. 1).

Axioms can be seen as extra-logical deduction-rules and therefore tell us, together
with the formation-rules of the language, how the primitive concepts are permitted to
be used; by their use concepts acquire meaning (Wittgenstein). The standard axiomati-
sation of set-theory is what Von Neumann [1925; 1928; 1961, p. 321, 348] baptised Zermelo-
Fraenkel set-theory (ZFC), although a slight reformulation of Von Neumann’s own function-
theory, called Cantor-Von Neumann set-theory (CVN), is the superior legislator of what
Hilbert has baptised ‘Cantor’s Paradise’.2

1For an impossible overview of the entire field of mathematics, category-theory included, see magis-
ter Saunders Mac Lane’s [1986, pp. 386-408]; see further J.L. Bell’s philosophically oriented papers on the
subject-matter [1981; 1982; 1986]. The most accessible introduction to date remains Goldblatt [1979], which
includes a category-theoretical approach to Logic.

2Von Neumann’s theory became known among set-theoreticians after Paul Bernays moulded it into a
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Lawvere [1966] proposed CAT, the category of all categories (save itself), as the domain
of discourse of mathematics, and embarked on the endeavour to axiomatise CAT directly:

In the mathematical development of recent decades one sees clearly the rise of the
conviction that the relevant properties of mathematical objects are those which can be
stated in terms of their abstract structure rather than in terms of the elements which
the objects were thought to be made of. The question thus naturally arises whether
one can give a foundation for mathematics which expresses wholeheartedly this con-
viction concerning what mathematics is about, and in particular in which classes and
membership in classes do not play any rôle.

Founding father Mac Lane [1968] effectively sketched how to translate L↑ into L∈ and
extended ZFC to a more encompassing set-theory in order to found category-theory (see
below). More than a quarter of a century later, Mac Lane subscribes to the following view
[1994, p. 30]:

With recent increasing use, the question of proper foundations has come to the fore.
Here experts are still not in agreement; our present assumption of ‘one universe’ is an
adequate stopgap, not a forecast of the future.

In short, for category-theory there still is, half a century after its birth, no universally ac-
cepted axiomatisation — a remarkable state of affairs that calls for an explanation. All
putative axiomatisations of category-theory stand in marked contrast to the simple ax-
ioms of ZFC in that the afore-mentioned can be understood if and only if comparatively
sophisticated knowledge of category-theory is available.

Challenges. The situation of having two theories that found mathematics presents pro-
ponents of each theory with a challenge. In order to remain on the founding throne of
mathematics, set-theory faces the challenge to found category-theory. If some set-theory
founds category-theory, then all entities in the domain of discourse of category-theory
are construed as entities in the domain of discourse of set-theory, i.e. as sets. Since be-
sides category-theory all other branches of mathematics are or can unproblematically be
founded on set-theory, the only challenge that faces set-theory is to found category-theory.
Category-theory faces the converse challenge. This is also the only challenge that faces
category-theory, because if set-theory is reduced to a branch of category-theory, then all
results of the founding labour in the past on the basis of set-theory (notably the reduction
of all other branches of mathematics to set-theory) can very probably be transported to
category-theory without much ado.

But why should we face these challenges at all? What is so interesting about them?
Claim I reads that it is worthwile to pursue set-theoretical foundations for category-theory. So to
answer this question is to argue in favour of Claim I. We shall next mention five reasons;
they provide the motivation of the present paper.

logicist class-theory; the moulded theory is known under the name of ‘Von Neumann-Bernays set-theory’,
or even ‘Bernays-Gödel set-theory’. For all of this, see Muller [1998, pp. 411-477] and [2000].
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The first, perhaps trivial reason is that the sheer presence of these intellectual chal-
lenges is sufficient motivation to face them — think of the answer George Mallory pro-
vided to the question why he wanted to climb Mount Everest.

Secondly, when we take it for granted there are various epistemic and ontic consider-
ations that motivate the hunt for a founding theory of mathematics, then, in the light of
the founding claims that both set-theory and category-theory lay, the project to found set-
theory on category-theory and the converse project are eo ipso motivated. Suppose you
are a Platonist, who holds there is some realm of existence beyond space-time populated
by the entities of mathematics; they are causally inept but somehow epistemically acces-
sible for us. A founding theory then gives you a clear idea what the population of this
Platonic realm is. Suppose you are a Nominalist, who holds there is no such thing as the
Platonic realm; the names and descriptions in the languages of mathematical theories do
not refer to some extra-linguistic reality; their meaning derives from their use. A founding
theory then gives you a clear idea what the ultimate primitive concepts of mathematics
are and the ‘semantic rules’ govering their rigourous use. So in both cases a founding the-
ory clarifies something about mathematics and is therefore of interest to the philosophy
of mathematics.

Thirdly, it is intrinsically interesting to know how these theories of mathematics com-
pare, irrespective of their foundational capacities, because of the generality of their piv-
otal concepts and their widespread use in mathematics. Such knowledge constitutes
knowledge about the conceptual workings of mathematics.

Fourthly, to understand how category-theory relates to set-theory is to understand
how a novel mathematical theory relates to the mathematical tradition. Mathematical
knowledge, independent of your favourite philosophical view on it, is undeniably grow-
ing and it is growing rapidly in ever more directions. When we want to know how the
(comparatively) novel category-theory relates to the extant body of mathematical knowl-
edge, if only because we want to be convinced we can still speak of a single body of
mathematical knowledge, then we certainly are satisfied when it is demonstrated that set-
theory founds category-theory, because the last-mentioned theory poses the only threat to
the afore-mentioned theory as a founding theory. If it turns out that the standard axioms
of set-theory need to be strengthened to achieve this, then we have the perfect reason to
conclude that category-theory is not only — to remain in the metaphor —, an extension
in the width of the body of mathematical knowledge, but also an extension in depth.

Fifthly, we mention Bourbaki’s structural architecture of mathematics and the out-
and-out structural nature of category-theory. Bourbaki erected his structural architecture
of mathematics, which is in spirit category-theoretical with its uncompromising emphasis
on form and structure, on the basis of set-theory.3 When we now realise that category-
theory was more-or-less created by Bourbaki4, and that Bourbaki’s exposition of his ar-

3Bourbaki [1949; 1950]. See Muller [1998, pp. 21-126] for an overview and evalutation.
4Eilenberg and Grothendieck belonged to Bourbaki; Mac Lane did not, but he worked in Chicago and we

know for a fact that Bourbaki resided in Nancago — concatenation of Nancy (France) and Chicago (United

3



chitecture, in spite of its set-theoretical foundations, frequently deploys typical category-
theoretical means (natural transformations, commutative diagrams), we expect category-
theory to fit in seamlessly. So the fifth reason to pursue set-theoretical foundations for
category-theory is to verify this expectation and thus to verify that a category is ‘just an-
other’ species of Bourbakian structure — yet such an important one that it ought to be
counted among Bourbaki’s ‘mother structures’.

1.2 Overview

We commence in the next Section by quickly rehearsing the reasons why standard set-
theory is unable to found category-theory (§2.1) and give an overview from the bird’s
eye point of view of new, stronger set-theories whose promulgators claim they found
category-theory (§2.2). We claim however that all these stronger set-theories are concep-
tually flawed and that every other pure set-theory will be flawed too (Claim II, §2.3). In
§3 we briefly rehearse the differences and agreements between the concept of a set and of
a class (§3.1) and list six requirements that a certain kind of founding theory for mathematics
has to meet (§3.2).

In §4 we re-interpret and strengthen Ackermann’s set-theory of 1956, which results in
a theory we abbreviate as ARC (Sections 4.1 and 4.2). Ackermann intended his theory
to be a thoroughly Cantorian set-theory, in some respects improving upon ZFC (such as
recognising and admitting ‘absolute-infinite’ wholes). But we re-interpret it as a theory
of sets and classes (Claim III: this is possible), which means we shall qualitatively extend
the realm of pure set-theory. We further discuss a few useful theorems of ARC (§4.4) and
a few meta-theorems, e.g. its relation to ZFC, in order to make ARC, besides conceputally,
logically respectable too (§4.3).

We next sketch how the revision of Bourbakistan we propose can be founded on ARC,
and how ARC encompasses both Cantorian set-theory and category-theory (§5.1); thence
it follows that ARC founds mathematics (Claim IV) without suffering from the flaws of
the set-theoretic competition (Claim V), and without the need for so strong an axiom
as the competition believes to be inevitable to prove its consistency (Claim VI). We end
by arguing that although the structures of some branches of mathematics are more con-
veniently handled by means of category-theory, this does not imply the inadequacy of
theory of sets and classes as a founding theory (§5.2).

Before we embark on our endeavour, we need to fix a few terminological conventions
and to recall a few results.

1.3 Terminology

For theory Th2 formulated in language L2 to found Th1 formulated in language L1, we
say it is necessary and (until further notice) sufficient to interpret Th1 in Th2 in Tarski’s

States of America).
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sense, i.e. to translate L1 into L2 and to prove all translated theorems of Th1 in Th2. When
both theories have the same deductive apparatus, as in the present case of set-theory
and category-theory, namely 1st-order classical predicate logic, it suffices to prove the
translated axioms of Th1 in Th2. Now, to found mathematics on theory T means to found
all theories of mathematics on T. Since the absurdity (⊥) is a translation-invariant, the
proof of an interpretation is also a relative consistency-proof: if Th2 interprets Th1, then
Th1 is consistent relative to Th2. So if theory T founds mathematics, then all mathematical
theories are consistent if T is. We notice that this notion of ‘foundation’ is rather strong:
it is both ‘logical’ and ‘ontological’.

Theory Th2 deductively extends theory Th1 iff language L2 inlcudes language L1 and
Th2 includes Th1; the deductive extension Th2 is conservative over Th1 iff all theorems of
Th2 in the language L1 are already theorems of Th1, i.e. L1 ∩Th2 = Th1; and it is progressive
iff it is not conservative. One easily proves that if Th2 is a conservative extension of Th1,
or vice versa, then Th2 and Th1 are equiconsistent.

Further we use the symbol ≡ for term-definition (left the definiendum and right the
definiens) and ⇐⇒ for sentence-definition (idem dito). Throughout the paper we use
‘informal rigour’ (Kreisel).

2 Category-Theory versus Set-Theory

2.1 The Downfall of Set-Theory

Category-Theoretical Foundations of Set-Theory. Although founding set-theory on category-
theory is not the topic of this paper, we want to devote a few sentences to it nonethe-
less for the sake of overview. The enterprise to give simple definitions of a set and the
membership-relation in terms of objects, arrows and their composition ran initially into
serious difficulties, as Bell [1981, p. 355] reported; they have been overcome, because in
topos-theory, a prominent branch of category-theory, a route is walked similar to how
Von Neumann [1925; 1961, p. 38] defined the membership-relation in terms of character-
istic functions, namely as a ‘sub-object classifier’; see Osius [1974] and Bell [1982, p. 306
ff.]. Joyal & Moerdijk [1995] explore another avenue to obtain sets and the membership-
relation. By observing how the cumulative hierarchy arises, namely by making power-
sets, union-sets and replacement-sets, they arrive at a category they call a Zermelo-Fraenkel
algebra; they succeed, first, in providing a a binary relation which is algebraically indistin-
guishable from our familiar ∈ and, secondly, in constructing, as they call it, “simulacrum
ordinal numbers”. This leads to a proof of all the axioms of ZFC (ibid. p. 18, 29). All re-
search in set-theory can now be construed as the study of the Zermelo-Fraenkel algebra.
One cannot qualify these reductions as natural, simple or elegant. But certainlyl they are
possible. And now we turn to the main topic of this paper.

Set-Theoretical Definitions of the Basic Category-Theoretical Concepts. We present defini-
tions in L∈ of the primitive concepts of category-theory and of a few central defined ones.
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To begin with, an object simply is a set.
The standard definition in L∈ of function f from set D to C, due to Hausdorff, is to take

f as a relation between the members of D and C, i.e. a subset of the Cartesian product-set
D × C, that relates to every member in D exactly one member of C. This makes f a partic-
ular kind of set of ordered pairs 〈x, f (x)〉 ∈ D × C. This set f ∈ ℘(D × C) determines its
domain D f (= D whenever D is the given domain) and its range R f , but not its co-domain:
C ⊇ R f . We now define an arrow as an ordered pair 〈 f , C〉 of a function f and a given
co-domain C; in this fashion an arrow trivially determines its co-domain, as it should. This
reveals that the arrow-notation f : D → C is tailor-made for arrows but a misfit for func-
tions. Ordered pairs, and polytuples generally, can be defined in a variety of manners
(Wiener, Kuratowski, Haussdorf, Skolem, Quine, Kitcher); any choice will do.

Let {D → C} ⊂ ℘(D × C) denote the set of all arrows 〈 f , C〉 with domain D and
co-domain C. The identity-arrow on D now simply is 〈idD, D〉, where idD is the set of
ordered pairs 〈x, x〉 for all x ∈ D; this ‘diagonal-set’ of D also qualifies as a function, the
identity-function on D. The definition of composition of arrows is essentially the same as
the definition of composition of functions: h : X → Z is the arrow-composition of f : X → Y
and g : Y → Z, denoted by h = g ◦ f , iff

∀ x ∈ X, ∃ y ∈ Y
(

f (x) = y ∧ g(y) = h(x)
)

. (1)

In every set-theory one easily proves that arrow-composition is associative (an axiom in
category-theory), and that idD : D → D meets the defining conditions of an identity-
arrow on D in category-theory: f ◦ idD = f for all f : X → D and idD ◦ g = g for all
g : D → Y.

Since all concepts in category-theory are defined in terms of its primitives (object,
arrow and composition), which we now have translated in L∈, all defined concepts of
category-theory, e.g. functor, functor-category, natural transformation, topos (a particular
kind of category), allegory, can be translated in L∈. We shall nonetheless indicate how
some of the major defined notions of category-theory are defined in L∈.

We define the set
−→
B of exactly the arrows in B, i.e. whose domain and co-domain are

members of set B:
−→
B ≡

{

〈 f , Y〉 ∈ {X → Y} X, Y ∈ B
}

=
⋃

X,Y∈B {X → Y} . (2)

A category C we provisionally define as a particular species of Bourbakian set-structure,
namely as an ordered triple consisting of: a non-empty set B (which harbours the ob-
jects); a set A(B) ⊆

−→
B of arrows in C which contains all identity-arrows in

−→
B ; and the

composition-operation ◦ between arrows in A(B) such that this set is closed under it:

C ≡
〈

B, A(B), ◦
〉

. (3)

Composition is a function (not an arrow) from A(B)×A(B) to A(B). In Bourbakian ter-
minology: set B is the ‘Base-set’ of structure (3) and A(B) and ◦ are ‘echelon-sets’.5 Hence

5See Corry [1992] for the historical career of Bourbaki’s conception of structure; see Muller [1998, pp. 106-
115] for an accessible discussion of Bourbaki’s rigourous definition and for numerous illustrations.
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a category is just an associative arrow-composition magma (Bourbaki calls a set equipped
with a single operation a ‘magma’ — volcanic terminology referring to hot material un-
derground?).

A functor F from category X = 〈X,A(X), ◦〉with base-set X to category Y = 〈Y,A(Y), ◦′〉
with base-set Y, denoted by F : X → Y, we define as an ordered pair of arrows:

F ≡ 〈Fobj, Farr〉 , were Fobj ≡ 〈 fobj, Y〉 and Farr ≡ 〈 farr,A(Y)〉 , (4)

where function fobj sends objects in X to objects in Y, and where function farr, which
sends arrows of X to arrows of Y, is such that it preserves composition and sends identity-
arrows to identity arrows, i.e. farr is an algebraic morphism with regard to arrow-composition
(it preserves the composition-structure). The set of all functors from X to Y, we denote by
Func(X,Y), then is related to X and Y as follows:

Func(X,Y) ≡
{

F ∈ {X → Y} × {A(X) → A(Y)}
}

. (5)

A functor-category of X to Y, denoted by YXXX, is a category whose objects are all functors
from X to Y and whose arrows send functors to other functors:

YXXX ≡
〈

Func(X, Y), A
(

Func(X, Y)
)

, ◦
〉

. (6)

The natural transformations are among the arrows of this functor-category.
There is nothing wrong with these definitions in L∈. There is however something wrong

with the axioms of standard set-theory, ZFC, or CVN for that matter, because on the basis
of these axioms one proves that virtually all category-theoretical objects, when defined as
sets, turn out not to exist! We next rehearse a few examples to illustrate this.

Non-Existent Sets. Let V be domain of discourse of set-theory; as the set of all sets it
does not exist according to ZFC, but as the ultimate set of all Cantor-sets, it does exist
according to CVN.6 Categories whose base-set of objects exists as a set according to ZFC
are called ‘small’ (ZFC-sets; they are legitimate members of V according to CVN); and
those who demonstrably can be construed as subsets (but not as members) of V are called
‘large’ (the absolute-infinite sets of CVN).7 Categories which are neither small nor large
lie beyond the mentioned set-theories.

For the sake of concreteness and future reference, we mention a few familiar cate-
gories: Set has as its objects all sets (members of V) and as its arrows all functions between
sets (the co-domains coincide with the ranges); Cls has as its objects all subsets of V and
as its arrows all functions between these; Grp has as its objects all group structures, i.e.

6An ultimate set is a set which is not a member of some other set — in CVN they are all equinumerous to
V according to Von Neumann’s Axiom of Limitation; a Cantor-set is a well-founded, increasible set which
has a unique ordinal number when ordered well, and a unique cardinal number, where increasible means:
included in a set amplinumerous to it. Theorem: a set is a Cantor-set iff it is not ultimate. See Muller [1998,
pp. 411-475] for the why & how of these concepts and (proofs of) similar theorems.

7These definitions were introduced by Mac Lane [1994, p. 23] for the sake of comparing category-theory
to set-theory.
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quadruples of the form 〈G, �, (·)inv , 1 〉 obeying the set-theoretical predicate ‘is a group’,
and has as its arrows all group-homomorphisms; Top has as its objects all topological
structures, i.e. quadruples of the form 〈S, T(S),

⋃

,∩〉, where T(S) is the usual topological
subset familly of set S obeying the Hausdorff axioms, and has as its arrows all continuous
mappings; Man has as its objects all differentiable manifolds and as its arrows all smooth
maps; Cat is the category of all small categories, which are its objects, and the functors
between them are its arrows. These categories are then defined in L∈ as follows:

Set ≡
〈

V,
−→
V , ◦

〉

,

Cls ≡
〈

℘V,
−→
℘V, ◦

〉

,

Grp ≡
〈

G, Hom(G), ◦
〉

,

Top ≡
〈

T, Cont(T), ◦
〉

,

Man ≡
〈

M, Smooth(M), ◦
〉

,

Cat ≡
〈

C,
⋃

X,Y∈CFunc(X, Y), ◦
〉

.

(7)

These categories are large: their base-sets exist in CVN as ultimate subsets of V, but
neither the sets of their arrows nor the category structures (7) themselves exist (as ulti-
mate sets). For example, on the basis of the Kuratowksi-definition of an ordered pair,
Set is a member of a set a number of power-sets of V upward. From the definitions of
functor and functor-category we see that all these, when starting from the large categories
just mentioned, e.g. to obtain the functor-categories SetGrpGrpGrp and SetTopTopTop, do not exist either.
Hence it is generally held that standard set-theories, notably ZFC and CVN, cannot pro-
vide foundations for the whole of mathematics.8

Conclusion: if one pursues set-theoretical foundations of category-theory, then the
axioms of ZFC or CVN need to be strengthened. We next take a quick look at four extant
manners of how to achieve this; they are all four formally distinct but some of them are
very similar.

2.2 The Resurrection of Set-Theory

Mac Lane [1969; 1994, p. 23] postulated inside the domain of discourse of ZFC, which
is V, a copy of sorts of V that plays the rôle of a domain of discourse for ZFC just as
good as V itself. This move suffices to found category-theory set-theoretically, Mac Lane
propounded and still propounds in his [1994, pp. 21-23].

Definition: a MacLane universe is (U1) a transitive set which (U2) contains the set of
all finite ordinals (N), (U3) is closed under the formation of power-sets and union-sets,
and (U4) contains the ranges of all functions whose domain it contains and whose range it
includes, i.e. it is closed under the formation of replacement-sets. Observe that V does not
qualify as a MacLane universe because it is not a set. The Universe Axiom (U) states that

8Mac Lane [1994, pp. 23-24], McLarty [1990, p. 366].
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there exists a MacLane universe. Call it U; theory ZFCU is the deductive extension of ZFC
with U. Set U by definition cannot be reached from inside V by making power-sets, union-
sets and replacement-sets; U has the first non-denumerable inaccessible cardinality (#U =

i1, when i0 ≡ ℵ0). It ought to be clear from the definition of a MacLane universe, whose
conjuncts are essentially the Axiom of Infinity (U2), the Power and the Union Axiom (U3)
and the Axiom of Replacement (U4), that U provides us with a transitive model 〈U, ∈〉
of ZFC (and of a variety of weaker set-theories for that matter). If U could be derived
from ZFC, then ZFC would thus contain a model of itself, which means, according to the
Model Existence Lemma, that ZFC proves its own consistency; but this is impossible due
to Gödel’s Consistency Theorem, unless ZFC is inconsistent. Hence the consistency of
ZFCU cannot be proved relative to ZFC. In order to prove the consistency of ZFCU one
needs to axiomatically add two strongly non-denumerable inaccessible cardinals to V of
ZFC (i1 and i2), which results in ZFC++, say.

Mac Lane now re-defines a set to be small iff it is a member of U, otherwise large.
Mac Lane [1969, p. 195]:

Our intention is that the small sets can serve as the objects of Mathematics, while the
other sets, not necessarily small, may be used to describe the various categories and
functor-categories of these Mathematical objects.

Mac Lane further illustrated how to capture the various other notions of category-theory
in set-theoretical terms.9

Proposals similair to Mac Lane’s are submitted by Feferman [1969], based on reflection
principles and a primitive ‘set of small sets’ [(ibid., p. 218] (see also Kreisel in Mac Lane’s[1969,
pp. 201-247] for elucidating comments). Just as ZFCU, this theory needs a meta-theory
with two inaccessibles to prove its consistency. And mutatis mutandis for Cantor-Von Neu-
mann set-theory (CVN) when we throw in an inaccessible.10 Finally, Feferman [1977,
pp. 154-155] reports how Grothendieck once proposed a set-theory that does not have
a single set-universe, as Mac Lane’s ZFCU has, but for every category a different set-
universe (itself a set), such that every set-universe is contained in the next one: U0 ∈ U1 ∈

U2 ∈ · · · . This leads to a denumerable number of inaccessible cardinal numbers ij (j ∈ N)
being added to ZFC, leading to ZFCω. Its consistency can only be proved in ZFC plus
more inaccessible cardinal numbers than there are natural numbers.

So can we conclude there are no troubles anymore in Cantor’s Paradise? Has set-
theory risen from its ashes, stronger than ever, and successfully founded category-theory?
In the next Section we argue in favour of a denial.

9For further foundational discussion by Mac Lane, see his [1969; 1986, pp. 386-406; 1994, pp. 21-23].
10There are other, even more powerful theories of sets (and classes) than those just presented that are able

to accommodate category-theory, but they are contrived and appalingly ad hoc: they lack any motivation
and are still born. An example is the ga-ga theory called ST2, cf. Fraenkel [1973, pp. 142-143].
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2.3 Criticism of the Resurrection

We level two objections against the attempts outlined in the previous Section to found
category-theory set-theoretically, which apply to all four of them. The objections are sup-
posed to ground Claim II that all extant set-theoretical foundations are, no matter how impec-
cable logically, flawed conceptually.

First Objection: Superabundancy. Bourbaki defines a mathematical structure, U say, as
a polytuple of sets: the first occupants are plain sets, so-called base-sets, and the other oc-
cupants, e.g. relations, functions, mappings, operators, operations, subset families, sets of
operators, sets of functions and what have you, are constructed by set-theoretical means
from the base-sets and are called echelon-sets. One now can define the niche of U, denoted
by Ni(U), as the set which includes and contains all base-sets and echelon-sets of U; see
Muller [1998, p. 114]. Bourbaki characterises branches of mathematics by the structures
they study; then Ni(U) can be conceived as the domain of discourse of the branch of
mathematics characterised by U. If the structure U is an n-tuple, then it is a member of
the following n-fold Cartesian product-set: Ni(U)n. For large categories, the base-set of
objects is not a member of V but a subset of V; for categories which are neither small nor
large, the base-set simply does not exist. Then neither do the echelon-sets exist nor does
the niche exist. However, if V exists and we can apply all the set-theoretical operations
on V an arbitrary but finite number of times without blasting ourselves out of the domain
of discourse of the theory that provides us with such a license, then every category will
be a member of some ‘set’ that we can construct out of V. We briefly elaborate.

Let us call n ∈ N the power of set Y over X iff X ∈ ℘nY. If some theory of sets permits
the existence of domains of sufficiently large but finite power over V, and permits the
usual set-theoretical operations upon its members, then category-theory can be founded
on this theory provided the objects and arrows are members of some set of some finite
power over V. From this perspective, Bourbaki ‘limited’ his attention to a domain of
power 0 over V. We must generalise from 0 to arbitrary natural numbers. Notice that
‘union-sets’ are then also available:

⋃

℘n+1V = ℘nV. For a member X ∈ ℘nV we then
have that ℘X ∈ ℘n+1V,

⋃

X ∈ ℘n−1V; and if Y ∈ ℘mV, then 〈X, Y〉 ∈℘2(℘nV ∪ ℘mV)

and X × Y ∈℘3(℘nV ∪ ℘mV), when one adopts Kuratowski’s definition of an ordered
pair.

The conclusion of this brief informal analysis coincides partly with an assertion of
Fraenkel, Bar-Hillel, Lévy and Van Dalen [1973, p. 143]:

Category Theory involves only objects which are members of the classes V, ℘V,
℘℘V, . . ., ℘nV, where V is the class of all sets and n is some fixed finite number.

This brings us to our first objection against the four attempts to found category-theory
set-theoretically: they are not just a bit abundant, they are mindboggingly, flabbergast-
ingly abundant. In all four approaches the inaccessible cardinal i1 exists and therefore
we have an unimaginably transfinitude of ever increasing cumulation sets beyond Ψ(i1),
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where α 7→ Ψ(α) is the set-cumulator (α ∈ Ω, the ultimate set of all ordinals; the range of
Ψ is the cumulative hierarchy). Comparing the size of Ψ(i1) to the size of Ψ(i1 + ω

ω), say,
does not even begin to compare as a fire-cracker to a zillion Hydrogen bombs, say. We
have to realise that Ψ(i1 + ω

ω) only is a drop in an unlimited universe of sets still to come:
Ψ(i1 + ℵω), Ψ(iω1 ), etc. It keeps on increasing indefinitely. The gigantic universe that
Feferman creates with ZFCS, that Mac Lane creates with ZFCU, we created with CVN

+

and Grothendieck with ZFCω, is so ridiculously large in comparison to what we actually
need to found category-theory, that is unbelievable it has even been considered seriously.
What is needed and sufficient is ‘only’ a denumerable sequence of increasing cumulation
sets Ψ(i1 + 1) for ℘V, Ψ(i1 + 2) for ℘2V, until Ψ(i1 + ω), but certainly no more.

In the light of the previous paragraph, Grothendieck’s set-theory ZFCω, not with 1
or 1,000 or 1, 0001,000 but with a denumerably transfinite number ω of inaccessibles in V,
simply is beyond perplexity.

If these proposals are so exessively comprehensive as this author says they are, then
why have they been seriously considered in the first place? The answer is simple: because
it is generally held that if you want to found category-theory on a set-theory of sorts, then
there is no other way but to throw in inaccessibles. We shall presently see there is another
way. But first we turn our attention to a second objection.

Second Objection: Insufficiency. In the three set-theories we do not only have far too
much, but what we have is, paradoxically, not sufficient. Let us now denote by V+ the
domain of discourse of either theory ZFCU (Mac Lane), ZFC∗ (Feferman) or CVN+. When
a category-theoretician talks about Set, he means all sets, i.e. all sets available in the domain of
discourse of mathematics, which has now become V+, not V ⊂ V+, because old V comprises
less than a thee spoon of the sets in the indefinitely expanding cosmos V+. When a
category-theoretician hears there are sets available of cardinality i1, 2i1 , iω1 , ℵi1 , etc., he
means to include these too in Set, because these are also sets according to these stronger
set-theories, not mathematical objects distinct from sets. But V+ cannot in turn be the
base-set of the category structure Set because it is not a set. A functor-category such
as SetGrpGrpGrp lies manifestly beyond V+. All arguments demonstrating that category-theory
blasts out of the confines of V can now be repeated with V+ replacing V. Our star-witness
is founding father Mac Lane [1994, p. 24], who made the following confession concerning
his own attempt (ZFCU):

Our foundation by means of one Universe does provide, within set-theory, an accurate
way of discussing the category of all small sets and all small groups, but it does not
provide sets to represent certain meta-categories [= categories outside V, — FAM] such
as the meta-category of all sets or that of all groups.

Any stipulation to the effect that the category-theoretician is only allowed to grab
at some fixed set whereas outside this set there are more sets, so that he is not permit-
ted to grab at all of them, is artificial and barks at his explicit intentions. The category-
theoretician has every right to refuse to dance to the cardinality tunes the set-theoretician
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whistles. Category-theory is about form & structure, irrespective of how much & how
many; it ‘only’ wants to have everything which is available. The category-theoretician
means all sets when he makes the category Set of all sets, period. Set-theories which
cannot accommodate this are flawed. Even Grothendieck’s stultifying theory ZFCω is
conceptually inadequate in this respect.

We conclude that Categoristan defeats the strongly inaccessible set-troopers with ex-
actly the same weapons as it earlier defeated ZFC and CVN. No matter how many strongly
inaccessible cardinals one mobilises against category-theory, certain defeat will await all
such attempts. Not a single pure set-theory is a match for this task. What we need is
an entirely different strategy. One key to this strategy is the distinction between sets and
classes: this might give us more than V but not more of the same.

3 Sets and Classes

3.1 Sets as Classes

Classes. A growing number of philosophers of mathematics has reminded us that two
conceptions of a ‘collection’ have to be sharply distinguished, i.e. combinatorial collec-
tions and logical collections. This distinction finds it historical roots in the divide between
the logicists (Frege, Russell, Quine) and the set-theoreticians (Cantor, Zermelo, Fraenkel,
Von Neumann).11 A logical collection, or synonymously class, E say, is the extension of
a predicate, ψ(·) say, i.e. the whole that contains exactly those things which fall under
ψ(·); this is expressed by Church’s Schema: X ∈ E←→ ψ(X). A class simply is the kind
of thing which has members that pass a criterion and is completely determined by its
members (Extensionality), full stop. Prior to every class is the predicate which tells us
which things belong to its class-extension and which do not. The only attributes and
interrelations we are permitted to ascribe to classes are those they inherit from the pred-
icates of which they are extensions. Look at how the following class-theoretical opera-
tions mirror the logical connectives: intersection of extensions/conjunction of predicates,
non-membership/negation of the predicate, union/disjunction, subset/indicative condi-
tional, etc. The license to perform these basic operations with classes are logicist desirables
if not necessities, but for other, notably Cantorian necessities, the logicist has no taste, e.g.
well-foundedness, ordinal numbers, cardinal numbers and choice-sets.

Sets. A combinatorial collection, or synonymously set, is the product of combinatorial
activities, as formally codified by the axioms and theorems of set-theory. “A set is the
result of combining into a whole definite, distinct objects of our thought or intuition”, as
Cantor famously said [1895, § 1]. The meaning of the psychological notion of a definite,

11Maddy [1983, pp. 117-119] has traced awareness of the distinction back to the German mathematician
J. König (1904), and has found it explicitly in the works of Zermelo, Gödel and Martin. We add Frege [1984,
p. 212], much earlier than König, Russell [1919, pp. 12-13] and Bernays [1958, p. 56] to this lot. See also
Lavine [1994, pp. 63-77].
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distinct object of thought is admittedly not as bright as the sun shining on a hot summer’s
day, but it has proved sufficiently illuminating for most mathematicians to give some
guidance through the dark, as a star in the sky on a cold winter’s night. The heuristic mo-
tivation for the axioms of ZFC usually is ‘combinatorial’ through-and-through: making
union-sets, pair-sets, power-sets, replacement-sets, subsets and choice-sets out of given
sets seems so plausible because we can somehow easily imagine these ‘combinatorial ac-
tivities’ without having to drift on the high plains of abstraction. Eggs and apples will
do. And we fiercely extrapolate from the realm of the market place to the realm of infi-
nite sets. This combinatorial understanding of the set-concept is standardly conceived to
be captured rigourously by the cumulative hierarchy of all pure sets: a set is the kind of
thing that is produced by the set-cumulator α 7→ Ψ(α).

The conceptual distinction between the combinatorial set and the logical class (where
the adjectives ‘combinatorial’ and ‘logical’ are now redundant but will occasionally be
added for emphasis) helps us, for example, to understand the vehement historical strife
over the Axiom of Choice: it is a clash of different meanings. The proponents of Choice
(Zermelo, Fraenkel) usually have the combinatorial set in mind, whereas the adversaries
of Choice (Borel, Lebesgue, Russell, Quine) have the logical class in the back of their mind.
Recall that Choice postulates a ‘whole’ without giving a predicate for it that determines
it. If ‘whole’ means ‘set’, then Choice is plausible because we can so easily imagine the
combinatorial activity that produces a choice-set: choosing members from every set con-
tained in a given set is like choosing one sweet from every jar in a candy store. But if,
on the other hand, ‘whole’ means ‘class’, then Choice is implausible because of the very
reason that for a class we first must have a predicate of which it is the extension, we must
have a criterion to decide whether something belongs to it or not; this is something Choice
exactly fails to deliver — the very reason why Zermelo’s Separation Schema cannot give
us a choice-set.12

For the sake of simplicity, rather than using ‘whole’, or ‘collection’, as the general term
to encompass both sets and classes, we twist things a little by preferring to use ‘class’ as
the general term and to consider a set as a particular kind of class. Like a class, a set nec-
essarily has members (save ∅) and is determined by its members (Extensionality). Like
a class, a set can be considered as the extension of some predicate, but it need not be.
Unlike a class, a set necessarily is well-founded, well-orderable, increasible and has a
unique ordinal number when its members are ordered well, and a unique cardinal num-
ber. In ancient terminology, these are essential attributes of a set and accidental attributes
of a class. Sets are what Cantorian set-theories are all about, e.g. ZFC and CVN; classes
are what logicist theories are all about, e.g. Frege’s Grundgesetze, Whitehead & Russell’s
Principia Mathematica and Quine’s Mathematical Logic.

12Cf. Maddy [1983, pp. 118-120], Lavine [1994, pp. 103-117]; see for Choice the Section ‘Speakable and
Unspeakable in Set-Theory’ in Muller [1998, pp. 502-505].
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3.2 Requirements for a Founding Theory

Our founding theory will be a synthesis between Cantorian set-theory and logicist class-theory,
thus ‘dialectically transcending’ both set-theory and class-theory to a theory of the ruling
classes, intended to encompas Cantorian set-theory, category-theory and carrying an ex-
tended Bourbakian architecture of mathematics consisting of class-structures rather than
set-structures. In this fashion we can exploit the similarities between sets and classes. We
list six requirements for such a founding theory of mathematics.

(A) Class Reductionism. Every mathematical object is a class that demonstrably exists;
and every variable used in some branch of mathematics is a variable over a fixed
range, which is a class that demonstrably exists. Mathematics can be construed
as pure class-theory.
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(B) Sets and Classes. The conceptual distinction between the combinatorial set and
the logical class is honoured: sets are a particular type of class, which are well-
founded, increasable, well-ordered and have a unique ordinal number when or-
dered well and a unique cardinal number; and there are classes which are not
sets.

(C) Cantor’s Paradise. There exists a class of all sets that can pass as the cumulative
hierarchy as we know it.

(D) Categoristan. Category-theory must be founded on our theory of sets and classes
without falling prey to the objections of Superabundancy and Insufficiency.

(E) Bourbakistan. A concept of mathematical structure needs to be developed that ex-
tends Bourbaki’s concept of a set-structure, and a structural architecture of the
whole of mathematics needs to be erected that encompasses Bourbaki’s original
architecture of set-structures.

(F) Practice. Practice-hampering features are unwelcome, e.g. requiring definitions
to be predicative (Russell) or stratified (Quine).

A few comments are in order. Class Reductionism (A) implies we can found category-
theory on our class-theory. When we further treat the domains of discourse of mathe-
matical theories as mathematical objects, then they are classes by virtue of the first part
of (A) — with the possible exception of the domain of discourse of the founding theory
itself. The requirement (B) of honouring the distinction between sets and classes should
not come as a surprise after the previous Section. Why do we desire to have classes be-
sides sets and not some other mathematical object? One reason is thoroughly logicist:
classes are logical abstract objects because of their generality, universal applicability and
topic neutrality; when one has predicates that apply to whatever, it is a small step to
have their extensions containing whatever, so that predication can be replaced with class-
membership. Another reason is Occam’s Principle of Parsimony. Since sets are a particu-
lar type of class (B), we shall arrive at a parsimonious domain of discourse for the whole
of mathematics: nothing but classes exist, some of them being sets. There must also be
classes which are not sets, otherwise the conceptual distinction would collapse logically.
The next requirement (C), Cantor’s Paradise, means that we want to encompass Cantorian
set-theory and all its delights, e.g. a theory of the infinite.

Requirement (D), Categoristan, needs no further comment; see also the arguments
supporting Claim I (§1.1). Part of requirement (D) follows from (A) but we have men-
tioned it for the sake of emphasis. Concerning (E), Bourbakistan, we mentioned earlier
that category-theory is thoroughly Bourbakian in spirit. Categories, functor-categories,
toposes and what have you, ought to be species of Bourbakian set-structures. But we
know they cannot be. This is however not because Bourbaki’s conception of structure is
wrong; it is because the Bourbakian architecture of set-structures employs a language (L∈)
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which is too sparse and is erected on pillars which are too weak. The conceptual inno-
vation of having classes as well as sets, as a particular kind of class, must carry over to a
more general definition of structure (presumably just Bourbaki’s set-structures but now
classes replacing sets), such that we can build an architecture of class-structures that en-
compasses Bourbaki’s original architecture of set-structures, i.e. Bourbakistan. Thus Neo-
Bourbakistan arises. Concerning the final requirement (F) Practice: we find a founding
theory unappealing if it outlaws what the working mathematician is doing, rather than
validates it.

4 A Theory of Sets and Classes

4.1 The Language of Sets and Classes

Our theory of sets and classes, which formally is a slight deductive extension of Ack-
ermann’s set-theory [1956], is formulated in a 1st-order language, which we denote by
Lsc. The deductive apparatus of Lsc is the same as that of the formal language L∈ of set-
theory, which is 1st-order classical predicate logic or preferrably the system of 1st-order
natural deducton. The primitive vocabulary of Lsc is a slight amendation of L∈. First of
all we speak of class-variables rather than set-variables, and we have class-membership (∈),
rather than set-memberhsip, as the only primitive relation. Further we have one primi-
tive class-name, V, for the class of all sets. We call V the Cantor-class because it will turn
out to contain exactly all Cantor-sets. Then a class is a set iff it is a member of V. Ack-
ermann [1956] originally had a primitive monadic predicate Set(X ) for pX is a setq; the
existence of V was then easily established as the class-extension of Set(·). For reasons of
exposition it is however more expedient to have V around ab ovo rather than the predicate
Set(·).

Grewe [1969, p. 484] proved that V of Ackermann’s set-theory is undefinable in terms
of ∈ alone, which entails that V cannot be eliminated from Lsc so as to be left with L∈

again. Thus out of meta-mathematical necessity Lsc is richer than L∈, an enrichment that
merely consists of a single primitive term, the logical constant V.

For the sake of emphasis and contrast, we use two sorts of variables: A, B, C, D, . . .
for sets and A,B, C ,D, . . . for classes. This convention is logically speaking redundant
because every sentence ϕ(X) in Lsc with set-variable X is a mere abbreviation of: pX ∈

V ∧ ϕ(X )q. For emphasis of sethood we shall often write pX ∈ Vq rather than pX ∈ Vq.
The Hilbert-Bernays definition of identity for classes (and consequently for sets) reads

that two classes are identical (=) iff they share their members and are shared as members.
We finally mention that all definitions of subclass, power-class (℘X ), union-class (∪X ),
relation, category, arrow, functor, function, operation, structure, etc., carry over from L∈

to Lsc, as well as the usual names for sets (ℵα, ω, etc.).
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4.2 Axioms for Sets and Classes

We shall denote Ackermann’s [1956] axioms jointly by A′, its extension with Regularity by
A′R, and its extension with our generalisation of one of Ackermann’s axiom schemas by
A; the theory we shall adopt is A extended with Regularity and Choice for sets, denoted
by ARC.

Class Existence. We start with the most uncontroversial axiom in the history of set-
theory, which expresses that a class is determined when its members are determined.

Axiom of Extensionality (Ext). Classes are identical if they have the same members.

The converse is a theorem of logic due to the Hilbert-Bernays definition of identity; hence
two classes are identical iff they are each other’s subclass. If there is such a thing as an
‘analytic truth’ about classes, then Extensionality is the prime candidate. The next axiom
permits us to make classes of sets at will.

Axiom Schema of Class Existence (ClsEx). For any predicate ϕ(·, Y), where Y stands for any
finite number of set-parameters, there exists a class which contains exactly those sets for which the
predicate holds.

By virtue of Extensionality every class-extension A ⊆ V is unique. The prime motiva-
tion for ClsEx, we submit, is that it is nothing less than the perfect embodiment of the
logicist character of a class: any well-defined monadic predicate leads to the existence of
a class-extension, full stop. In this sense Ackermann, by restoring the Principle of Full
Comprehension almost in its full glory, unintendedly lit a candle for the logicist spirit.

Ackermann’s original axiomatisation (A′) does not have an existence axiom to create
classes of classes, which is why little can be proved in A′ for classes in general. However,
as we shall see shortly, the existence of classes of type ℘nV remarkably can be proved in
AR. So in contrast to CVN, subclasses of V are never ultimate. Clearly the presence of
such classes is not exploited to the fullest because A′ does not permit us to grab at them
with a predicate — ClsEx allows us to grab in V. By implication all classes of type ℘nV
and their members are lying waste in A′. We therefore are going to replace Ackermann’s
axiom schema ClsEx with a more powerful axiom which (a) permits us also to ‘create’
classes of (non-set) classes, and which (b) entails ClsEx so that it is a generalisation of
Ackermann’s axiom schema. We achieve this by adopting Zermelo’s Separation Schema
for classes.

Axiom Schema of Class Separation (ClsSep). For any predicate ϕ(·,Y), where Y stands for
any finite number of class-parameters, and for every class Z , there exists a class A which contains
exactly those members of Z for which ϕ(·,Y) holds.
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Just as Zermelo’s Separation Schema for sets (SetSep), a theorem schema in ZFC, which
parenthetically is logicist in spirit because it postulates the existence of an extension of
some given predicate, ClsSep allows us to grab only in classes whose existence is already
secured: A ⊆ Z . In this fashion we live safely, because we only label in Lsc by a predicate
what is already there in the domain of discourse. Among the available separation-classes
is V. We recover Ackermann’s ClsEx by choosing V for Z and restricting Y to assume
values from inside V. Zermelo’s Separation Schema for sets of ZFC follows in turn from
ClsEx when we add to the predicate at hand pX ∈ Zq; then Z ∈ V is the separation-set.

In ARC nothing more about classes is assumed! From a logicist point of view little
more can be justified than Extensionality and ClsEx. We have nevertheless mentioned
that the existence of subclasses, intersections, unions, complements and power-classes
can be given a logicist motivation because they reflect the logical connectives between
predicates and can be used to mimic quantification over predicates. We need however not
assume these classes, because their existence follows from ClsSep, as a moment’s thought
will reveal (substitute their definitions for ϕ(·) in ClsSep), provided these classes are in-
cluded in some antecedently existing class. Next we turn to the sets and by implication
shift from a logicist perspective back to a Cantorian one.

Sets as Sharply Delineated Wholes. Ackermann [1956] interpreted Cantor’s idea about
the important absolute-infinite sets (best defined as, following Von Neumann: sets equinu-
merous to V) in that they cannot be conceived of as ‘combinatorial wholes’, as asserting
they are indefinite, unsharply distinguished objects of thought, rather than Cantor’s “definite,
distinct objects of thought”; and he interpreted identically Cantor’s assertion that they
cannot, in contradistinction to finite and transfinite sets, be “mathematically determined”.
Ackermann called these unsharply delineated wholes Gesamtheiten and followed Cantor
in calling the sharply delineated wholes Mengen (Eng.: sets). We take these unsharply
delineated wholes to be classes which are not sets. So here comes a heuristic principle that
replaces the well-known Limitation of Size Doctrine of ZFC:

Limitation of Sharpness Doctrine (Ackermann). Exactly sets are sharply delineated classes
but the existence of unsharply delineated classes must also be recognised and admitted.

The meaning of this Doctrine will be sharpened when we observe how it motivates ax-
ioms.

Completeness. Let A be a ‘sharply delineated’ class, i.e. a set. Throwing members out
of A will not make it ‘unsharp’. Hence subclasses of sets are sets. Next consider the
members of A. They must be ‘sharply delineated’ objects otherwise we could not have
combined them into a set in the first place. When these members are classes, which they
are because all objects in our theory are classes, then these classes are sets because ‘sharply
delineated’ classes are sets. Hence members of sets are sets. So the class of all sets must
be complete.
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Axiom of Completeness (Compl). The class of all sets V is complete, i.e. all classes contained
or included in sets are sets.

This Axiom thus eliminates the possibility of finding non-set classes hiding inside the
Cantor-class V. The Axiom of Completeness also gives us two sufficient conditions for
sethood: being a member or a subclass of a set.

Set Existence. Following Reinhardt [1970, p. 246], we now attempt to delineate more
sharply the concept of a ‘sharply delineated whole’; this will suggest an axiom for the
existence of sets. Let us abbreviate the sentence ‘class X is a set satisfying predicate ψ(·)’:

Setψ(V,X ) ⇐⇒ ψ(X ) ∧ X ∈ V , (8)

where V is added as an ‘axiomatically fixed parameter’ in the predicate for the sake of
transparency (it is not a parameter in the normal sense of the word). The existence of the
class-extension of this predicate is guaranteed by Ackermann’s existence axiom (ClsEx).
In contrast to its sharply delineated members, class V is not sharply delineated, for if it
were, it would be a set and we would have been dead meat (Russell’s antinomy). Remem-
ber Cantor saying that V is too big a whole to be imagined in its entirety: it is unsharply
delineated, we say.

When V is not sharply delineated, we plausibly cannot distinguish it from other, sim-
ilarly unsharply delineated classes of sets. Suppose that V′ is such a class. Let us fur-
ther suppose, for modesty, that V′ ⊃ V. (To suppose that V′ ⊂ V would also do; but
V′ ∩ V = ∅ would not do, because then V and V′ would not be merely ‘unsharply distin-
guished’ from each other, they would be distinguished as sharply as is possible.) We now
express in the meta-language what it means for some predicate ψ(V, ·) to be delineated
sharply in the presence of V and V′: whenever it is irrelevant whether we take V or V′ as the
Cantor-class:

Sharp
(

V, V′, ψ(·)
)

⇐⇒ ∀X
(

Setψ(V,X )←→ Setψ(V′,X )
)

. (9)

Ackermann’s Limitation of Sharpness Doctrine is then formally expressed as follows:

Sharp(V, V′, Setψ(·)) → ∃ S ∈ V, ∀X
(

X ∈ S ←→ Setψ(V,X )
)

. (10)

Suppose ψ(·) is such that all classes satisfying it happen to be sets:

∀X
(

ψ(X ) → X ∈ V
)

. (11)

Then by virtue of supposition V′ ⊃ V we have that:

∀X
(

ψ(X ) ∧ X ∈ V ←→ ψ(X ) ∧ X ∈ V′
)

, (12)

which is definition (9). Hence if the only classes that satisfy ψ(·) are sets (11), then its
extension is sharply delineated: ψ(·) has a set-extension! Formally:

∀X
(

ψ(X ) → X ∈ V
)

→ ∃ S ∈ V, ∀X
(

X ∈ S ←→ ψ(X )
)

. (13)
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We now straightforwardly accept (13) as our axiom schema of set-existence, provided one
thing is taken care of.

Ackermann argues that when we are hunting down an axiom that gives us sets of
sets, i.e. sharply delineated classes of sharply delineated classes, then, first, the unsharply
delineated V in which we grab must not occur in ψ(·,Y), and, secondly, the parameters in
ψ(·,Y) must not assume unsharp values, i.e. they must be sets. Let us call such a predicate
safe:

Safe(ψ) ⇐⇒ ψ only contains set-parameters and V does not occur in it. (14)

We are now in a position to formulate

Ackermann’s Axiom Schema of Set Existence (AckSet). For any safe predicate ψ(Y, ·),
where Y stands for any finite number of set-parameters, if the only classes for which it holds are
sets, then these sets form a set.

Ackermann’s axiom is in a slogan: Have Safe Sets. If we denote by S the purported
class-extension13 of some safe predicate, then AckSet says:

S is obtained safely ∧ S ⊂ V → S ∈ V . (15)

In AckSet something entirely different from Zermelo’s Separation (SetSep) is pro-
posed. Instead of permitting the predicate to grab at members of a given set Z ∈ V,
Ackermann in a sense walked a logicist avenue by letting the predicate still make a grab
inside the entire class of sets (V) but in a slightly impeded fashion. Russell required pred-
icates to be predicative: they are not permitted to mention sets or classes of which their
extension is a member; Quine required predicates to be stratified, which is a weaker con-
straint.14 Many definitions in mathematics are however not predicative and not stratified;
but they are all safe, because it is a simple fact of mathematical practice that in defini-
tions the whole of all sets is never mentioned and need not be mentioned as long as
one is defining some set. Standardly the quantifiers in virtually all definitions of mathe-
matics are bound to some antecedently given set. Whereas Russell and Quine impeded
the grabbing-faculties of the comprehension cat severely and whereas Zermelo simply
locked the cat in the cupboard of a separation-set, Ackermann polished her nails and let
her freely wander about the house. We can therefore safely conclude that to outlaw the
use of unsafe predicates does not hamper the practice of mathematics — this in the light
of requirement (F) of §3.2.

This comprehension cat of Ackermann’s thus wanders freely about the house. Is it
safe? If the Cantor-class V were allowed to occur in ψ(Y), then we could form a new

13We say ‘purported’, because not licensed by ClsEx.
14Fraenkel [1973, p. 38, pp. 193-200].
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predicate ψ(Y) ∧ pY ∈ Vq, which would then have yielded a set accordingly. Then choos-
ing for ψ(·) the Russell predicate ‘being not self-membered’ would have yielded Russell’s
antinomy:

R ∈ R ←→ R 6∈ R , where R ≡
{

Y Y 6∈ Y ∧ Y ∈ V
}

∈ V . (16)

Similarly, it can be demonstrated that lifting the restriction on set-parameters (the other
restriction to make predicates safe) also leads to Russellian calamities (see Fraenkel et al.
[1973, p. 150]).

Fraenkel et al. [1973, p. ] have criticised the following aspect of AckSet in the light of
Ackermann’s motivation: if quantification for the parameters is restricted to V, then why
is the variable allowed to go outside V? (ibid.). In other words: why do we want to make
sure whether there is no class outside V satisfying ψ(·) before we license the inference to
call a set the extension of ψ(·), whose existence as a class is already secured by virtue of
ClsEx?

We propose to respond as follows. If we were to restrict the variable X to V, we
would be presupposing that V is a sharply delineated whole, so that for every value that
X assumes we can say: it is or it is not in V. It would not begin to make sense to consider
some other V′ ⊃ V as the class of all sets, as Ackermann’s Doctrine invites us to do. In
other words, to restrict X would run afoul against the Limitation of Sharpness Doctrine
as we have motivated it above. We have consciously accepted this Doctrine and we shall
not betray it now.

Regularity. If a class were to give rise to a Mirimanoff-chain (i.e. an infinitely descend-
ing membership-chain), we would never call it sharply delineated, for then there is no end
in ‘unpacking’ its members to see what we have on our hands; hence for every class to be
a sharply delineated whole, it must be well-founded.

Axiom of Regularity (Reg). Every non-empty set has a member disjoint with it.

We expect that, just as in ZFC, Regularity will prevent various features anathema to the
combinatorial set to arise, such as self-membered sets, the Narcissus set N = {N} (which
is full of itself), Siamese twin-sets (X ∈ Y and Y ∈ X) and Mirimanoff-chains.15

Choice. Suppose a class, X say, is sharply delineated. Then it is a set. According to
Completeness its members are sets and their members too. The choice class then also
consists of sets. Is it really a set? Arguably it is, because it is not amplinumerous to X .

Sharply delineated class, i.e. set X, arguably has a unique cardinal number, for if X had
no cardinal number, i.e. no definite number of members, then we can hardly call it sharply
delineated. Of different sharply distinguished classes we plausibly must also be able to
say how their cardinalities compare; in ZF the comparability of all cardinal numbers is
equivalent to the Axiom of Choice (Hartog’s Theorem). Mutatis mutandis for X having

15See Muller [1998, pp. 38-40] for a discussion of these sets.
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a unique ordinal number when ordered well: since X is sharply delineated, counting its
members in-the-generalised-sense of well-ordering them somehow, ends at a particular
ordinal number that characterises the way in which the members of X are ordered well,
i.e. it characterises the ensuing well-ordered set.

Further, without Choice, a startling number of theorems which are considered part &
parcel of mathematics become unavailable (every vector-space has a basis, etc.), and trans-
finite cardinal arithmetic, the crown on Cantor’s theory of infinity, becomes an impossible
mess: one cannot even prove the most elementary statements in cardinal arithmetic.16

Hence there is ample Cantorian motivation to adopt Choice.

Axiom of Choice (C). For every disjointed set X which does not contain the empty set ∅, there
exists a non-empty choice-set, i.e. a set that contains exactly one member of the sets contained in
X.

As with Regularity, we adopt Choice for inhabitants of the Cantor-class only, not for
classes generally.

Axiomatics. Let us say succinctly what we assume in ARC in order to have an overall
view. First of all we have that classes are determined by their members (Ext). We have
a complete class V of all sets (Compl). We have an elementary axiom schema to grab in
classes whose existence has been secured (ClsSep), without any syntactical restrictions
whatsoever; it entails Ackermann’s original license to make classes of sets only (ClsEx).
We also have an axiom schema to make sets of sets in a manner which safeguards us
against the known antinomies (AckSet). Notation:

A′ ⇐⇒ Ext ∧ Compl ∧ ClsEx ∧ AckSet ,

A ⇐⇒ Ext ∧ Compl ∧ ClsSep ∧ AckSet .
(17)

To repeat, A′ is Ackermann’s original theory [1956] and A is our extension with a stronger
class existence schema (we then drop the prime). Fraenkel et al. [1973, p. 150] declared
about Ackermann’s theory that it is “the beauty of the proofs” which makes A′ interesting.
Finally, we have a prohibition on irregularities which are baneful for the combinatorial
character of sets (Regularity), and the usual axiom that prolongues to the transfinite case
a combinatorial intuition about making combinatorial sets by choosing elements from
available sets (Choice). The suffix ‘RC’ to A′ and A, to obtain A′RC and ARC, respectively,
signal their deductive extensions with Regularity (Reg) and Choice (C).17 So our founding
theory of sets and classes is:

ARC ⇐⇒ Ext ∧ Compl ∧ ClsSep ∧ AckSet ∧ Reg ∧ C . (18)

16Cf. Muller [1998, p. 503] and references therein for lists of theorems implied by or equivalent to Choice.
17The enrichment of Ackermann’s theory (A′) with Regularity is due to Lévy [1959], who added it (to

obtain AR) in the interest of comparing Ackermann’s axioms to ZF.
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What we do not have is the Power Axiom, the Union Axiom, the Replacement Axiom
and some Axiom of Infinity, postulating some transfinite set. So at this point we can
only hope that V is Cantor’s Paradise. But as one surely will expect, this hope will be
fulfilled. This is the topic of the next Section, wherein we relate Ackermann’s theory and
our extension to ZFC.

4.3 Logical Respect

The purpose of this Section is to find out how ARC relates to standard set-theory (ZFC)
and how strong assumptions are needed to prove its

Known Results. A sequence of results by Ackermann [1956], Lévy [1959] and Rein-
hardt [1970] culminated in the surprising result that in spite of the fact that Ackermann’s
axiomatisation looks completely different from ZF (no axiom of infinity, no axiomatic li-
cense to make power-sets, union-sets and replacement-sets), it is nonetheless so that his
original theory, when extended with Regularity to obtain AR, is conservative over, hence
equiconsistent with ZF. This means that the Cantor-class V of ARC is identical to the do-
main of discourse of ZFC. Ackermann’s Limitation of Sharpness Doctrine gives us a novel
perspective on the very same sets of ZFC.

Novel Results. All proofs of the results we are about to mention are in Muller [1998,
pp. 516-526]. Theorem I: the theory of sets and classes ARC is consistent relative to the
set-theory ZFC+, which is ZFC plus the first non-denumerable strongly inaccessible car-
dinal number i1. Since the consistency of all extant founding set-theories, i.e. Mac Lane’s
ZFCU and siblings, can only be proved relative to ZFC++, whereas ARC can be proved
consistent relative to ZFC+, we conclude that ARC is logically superior to the competitor
set-theories (Claim VI). Grothendieck’s ZFCω can only be proved consistent relative to a
set-theory having more inaccessible cardinal numbers than there are natural numbers.

Theorem II: the consistency of the theory of sets and classes ARC can neither be proved
in ZFC nor in A′RC, unless these are inconsistent. The results obtained so far are depicted
schematically in Figure 1. The question whether it is excluded or not that we prove in
ARC more about sets in V than we are able to do in ZFC is answered by our final Theo-
rem III: ARC is a progressive extension of ZFC and hence of A′RC.

4.4 The Lévy-Vaught Theorem

Since there is no axiom in A′ which allows one to define classes of non-set classes by
means of a predicate, little can be proved in A′ about classes in general.18 This was the
reason for us to extend Ackermann’s existence axiom schema for classes to a Zermel-
onian class Separation Schema (ClsSep). To invoke this Schema, we need however an

18For a simple argument why in AR classes do exist which have non-set members, see Fraenkel [1973,
p. 153].

23



Con(A′RC)

Con(ZḞ)
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Figure 1: Consistency and equiconsistency relations between the various theories (ZḞ
is ZF without Regularity). The arrow points to the weaker theory; as a consequence of
Gödel’s Consistency Theorem, the single arrows cannot be drawn in the opposite direc-
tion.

antecedently established separation-class and it is far from evident how to construct sep-
aration classes that go beyond V, because the axioms of AR do not seem to provide the
means to do so. In 1960 the tide turned for AR, when Lévy introduced his principles of
reflection. Lévy & Vaught [1961] proved that certain principles of reflection hold in AR,
and they were able to prove the existence of classes of non-set classes of a particular type,
namely classes which are in a well-defined sense ‘tied to’ V. They proved that various
features of sets are reflected in such ‘V-tied’ classes.

Earlier we defined Y to be of power n over X iff X ∈ ℘nY. We call V a good class of
grade n, for some n ∈ N, iff V ∈ ℘nV and n is its smallest power over V. Sets are good
classes of grade 0 because ℘0V ≡ V. Further we can, more relevantly, define a class V to
be good iff there is a grade such that V is a good class of that grade.

Theorem for Good Classes (AR). The following classes are good: (i) the power-class and (ii) the
union-class of a good class, and (iii) the union-class, the intersection-class, the complement-class,
the pair-class, the ordered pair-class, and the Cartesian product-class of every n ∈ N

+ members
of one good class.

In A′R there is no such theorem, because without ClsSep this Theorem cannot be proved.
The fact that good classes are ‘V-tied’ implies they inherit some set-attributes, such as
them being all regular. Most important and highly non-trivial is what we baptise the

Lévy-Vaught Theorem [1961, p. 1061]. All good classes exist.

Until now the Lévy-Vaught Theorem was some side result without consequence for foun-
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dational investigations, laying dormant for about forty years at the periphery of meta-
mathematical research in set-theory. We shall use it however as the Archimedean point
to lift category-theory on top of the axioms of ARC. Thus only now we begin to under-
stand the relevance of this theorem for foundational investigations. This comes about as
follows.

When all classes of type ℘nV exist, so do their members, which all are the good classes.
Consequently, all classes mentioned in the Theorem above exist according to AR and
ARC. An easy argument by complete induction establishes that both V as well every set
it contains is contained and included in every ℘nV, for all n ∈ N. So when we leave the
Cantor-class V and enter the realm of good classes of positive grade, we take all sets with
us in our haver sack.

It is important to realise what does and what does not follow from the Lévy-Vaught
Theorem in conjunction with our Theorem for Good Classes. We can make the usual
constructions of the power-, union- and pair-class, and by implication ordered pairs and
Cartesian product-classes, but only with good classes of equal grade, not with a different
grade (∗). This has not (yet) been proved.19 If we were to extend ARC with the Power and
the Union Axiom for classes generally, for which there is a valid logicist motivation, we
would by implication be able to make polytuples, unions and Cartesian product-classes of
good classes. But then the proofs for Power and Union for sets would become redundant.
Therefore we deem it better (and more challenging) not to adopt such an additional axiom
for classes generally. In that case, i.e. when holding on to ARC, a simple, technical method
is needed to circumvent the problem (∗), which is to be found in Muller [1998, pp. 514-
516] (it essentially boils down to re-defining what a polytuple is). From the Lévy-Vaught
Theorem we then have a theorem which is of importance for Bourbaki’s conception of
structure, namely a theorem that asserts the existence of arbitrary polytuples of good
classes. This means we can make good polytuples and good Cartesian product-classes
out of good classes of arbitrary grade; in particular we can make structure polytuples
and classes of them.

5 Conclusions and Reflections

5.1 Neo-Bourbakistan

We examine whether ARC fulfils all requirements for a founding theory of mathematics
we listed in advance in §3.2.

(A) Class Reductionism. When ARC is our founding theory, then every mathemati-
cal object is ultimately reduced to some class because the domain of discourse of ARC

19Such a proof was not known to Prof. A. Lévy, private E-mail communication (1997). Yours truly has
failed so far to prove it. If it turns out to be provable after all, then what follows will be obsolete (all the
better for us).
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is inhabited by classes and nothing but classes. Further, for all kinds of variables, viz.
ordinal-variables, cardinal-variables, group structure-variables, relation-variables, object-
and arrow-variables in a given category, etc., ZFC fails to provide a set-range over which
they run. In fact the ranges needed for all kinds of variables employed by category-
theoreticians lie almost all beyond the deductive reach of ZFC, and of CVN for that matter.
The Lévy-Vaught Theorem and our Axiom Schema of Class Separation are together the
key to found category-theory: ARC possesses ranges of most of the category-theoretical
variables, as we shall argue under (D).

(B) Sets and Classes. In AR the Principle of Full Comprehension sits on the throne in
the Axiom Schema of ClsEx, exactly as required by the logicist’s concept of a class as the
extension of a predicate. In AR we set one step forward by giving ourselves permission to
grab by means of predicates where A′R was forbidden to grab: in non-set classes, with-
out restrictions such as grabbing only predicatively. The distinction between sets and
classes is honoured: for classes nothing further is assumed than that they can be exten-
sions of predicates that apply to the members of some given class (ClsSep) and that they
are determined by their members only (Extensionality). For sets a few additional axioms
are assumed (Completeness, Regularity, Choice), motivated by Ackermann’s Limitation
of Sharpness Doctrine; these axioms guarantee that V comes out as the class of all and
only Cantor-sets. Although all sets are classes, sets are by meta-mathematical necessity
not reducible to classes, which is essentially the content of Grewe’s undefinability result
of V (mentioned in §4.1). This is arguably the most fascinating feature of ARC: it suc-
ceeds in having the logicist classes as the general notion and the combinatorial set as a
special kind of class which one demonstrably cannot define ‘away’ in terms of classes.
A more superior vindication of the distinction between sets and classes is hardly con-
ceivable. It is as though the primitive concepts of a class-extension and the concomitant
class-membership-relation do not suffice to found mathematics, as the logicists would
have it (pace Frege and above all Russell), but that in addition some extra-logicist concept
needs to be added: the good old combinatorial set (salute Cantor).

We thus conclude that the conceptual distinction between the combinatorial set and
the logical class is satisfactorily codified in ARC (Claim III).

(C) Cantor’s Paradise. See (B). Von Neumann’s theory of ordinality and cardinality,
which is the spline of the cumulative hierarchy Ψ[Ω] and the governor of the size of the
sets it creates can be erected inside the confines of V. Classes outside V that are not
members of V then neither have cardinal numbers nor ordinal numbers, which is good
because outside V we are beyond Cantorian thought and in the sphere of logicist thought.
Further, Ψ does not rage on outside V so as to exhaust the entire domain of discourse of
ARC, as is the case with ZFC: it halts at the frontier of the Cantor-class.

(D) Categoristan. The definitions in L∈ of arrow, category, functor and functor-category
we presented in §2.1 carry over to Lsc by replacing sets with classes everywhere. On the
basis of the theorems of ARC we mentioned in §4.4, we see that all categories whose ob-
jects are good classes are themselves good classes, as are all ensuing functor-categories
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and all natural transformations. In this fashion every single entity studied by category-
theoreticians obtains a class-reduct. Formally speaking, the last-mentioned assertion
needs to be fully proved. We have however not climbed the mountain, which is to say we
have not performed the formal exercise to translated L↑ into Lsc and proved the axioms
of category-theory formally. But we have rigourously devised a route to the top bereft of
all known dangers.

Unlike all set theories with inaccessible cardinal i1, such as all founding set-theories
of §2.3, ARC does not fall prey to the objection of Insufficiency. When the category-
theoretician asks for the category Set of all sets, he obtains it with V, because the sets
living outside V, notably in all good classes, also live inside V. Outside V we generally
do not find more of the same as inside V (sets), but a conceptually distinct entity (non-
set classes); we have provided an account of their conceptual difference, we have wit-
nessed how this difference is codified axiomatically and how the attempt to do away with
the difference is a meta-mathematical impossibility according to Grewe’s undefinability-
theorem (B). Whether Lawvere’s awesome category CAT of all categories is within the
deductive reach of ARC is strictly speaking an open question. However, when we take
‘all’ to mean ‘all categories studied by working mathematicians’, then we can answer in
the affirmative: CAT exists because we can certainly separate it from a sufficiently large
separation class, say ℘pV, where p ∈ N is Googolplex, say (10100 exponentiated to 100
again).

If the category-theoretician now suddenly wants to have some category of all classes
( 6= Cls), in the sense of ARC, then we have to kiss her goodbye, for there is no such
thing available in ARC. There is however no reason to desire this, because Set and Cls
are available as the categories with ‘the least structured objects’, i.e. plain sets or classes
of sets as objects and plain functions as arrows.

The domain of discourse of ARC is not Superabundant either, for in comparison with
ZFC, which only allows for the existence of good classes of grade 0, and with CVN, which
also allows for the existence of sets of grade 1, ARC allows for classes of arbitrary grade
n ∈ N according to the Lévy-Vaught Theorem, but ARC does not commit one to the
gigantic domain of discourse that the inaccessibles erect — to their own destruction, by
Insufficiency.

We conclude that, as promised, ARC does not fall prey to the objections of Insuffi-
ciency and Superabundance (Claim V).

(E) Bourbakistan. Bourbaki’s entire theory of structure, including his seminal concept
of a set-structure, carries over to ARC when we replace ‘set’ with ‘class’ everywhere.
Bourbaki’s Structural View of mathematics as the study of set-structures, is now adjusted
to assert that mathematics is the study of class-structures. Many of these will be the familiar
set-structures. The ensuing Neo-Bourbakistan is evidently more encompassing than old
Bourbakistan.

According to Bourbaki there are three mother structures, which are the species of con-
nective posets, magmas and topological spaces. They are the structures with the least
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number of ‘axioms’ and putatively give birth to every structure in mathematics by com-
posing them. We propose to amend and to extend them. We list four basic species of
class-structures of mathematics:

subset structure S ≡
〈

S , F (S)
〉

order structure O ≡
〈

V , C
〉

algebraic structure (magma) A ≡
〈

A, �
〉

category structure C ≡
〈

B, A(B), ◦
〉

(19)

These are the four structural pillars that carry the edifice of mathematical knowledge.
For the sake of generality we have replaced Bourbaki’s connective poset and topological
space as mother structures with the more encompassing order structure 〈V , C〉 (where
C ∈ ℘Vn), and subset structure 〈S ,F (S)〉 (where F (S) ⊆ ℘S), respectively. Category-
structures are inaugurated among the new mother structures. If classes are the elemen-
tary particles of mathematics, then the mother class-structures are ‘the fermions of math-
ematics’: all mathematical ‘matter’ is ultimately composed of these structures, and the
morphisms are ‘the bosons of mathematics’: they are the means by which structures in-
teract.

Notice that we can even characterise Cantor’s Paradise V within ARC, just like we can
characterise any other mathematical structure, as the unique Cantor-structure:

Cant ≡ 〈 V, ∈V 〉 , (20)

where the class-membership-relation (∈) is restricted to set-membership (∈V). The Cantor-
structure Cant is separated by means of ClsSep from the good class ℘V × (V × V). ZFC
is now treated on a par with every other mathematical theory: we make a grab at the
class-theoretical domain of discourse of ARC by means of a class-structure predicate and
obtain the subject-matter of this theory. With structure Cant (20) we haul in the cumula-
tive hierarchy of all sets. The theory of cardinality, which has flourished so overwhelm-
ingly in the XXth century, resides in Cant — and could be given a more specific structural
characterisation we gloss over.

(F) Practice. ARC has three comprehension schemas: one for sets of sets (AckSet), one
for classes of classes (ClsSep), from which one follows for classes of sets (ClsEx). We
already concluded that the mild restriction to safe predicates in AckSet does not hamper
the practice of mathematics in any way; notably the usual impredicative definitions which
are part & parcel of mathematics are permitted (we emphasise that neither ClsSep nor
ClsEx pose any restrictions).

We conclude that ARC satisfies our requirements for a founding theory; meeting re-
quirements (C)-(E) grounds Claim IV, and meeting requirement (E) grounds Claim V.
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5.2 Classes and Membership: Superfluous or Unavoidable?

There are two issues we arguably cannot evade; nonetheless we shall evade the first one
but not the second. The first is the lately much discussed issue of structuralism, which
is roughly the epistemic thesis that all we can possibly know is structure: the bearing
of category-theory on structuralism in the context of mathematics is an issue we evade
because it deserves a separate paper (cf. Muller [1998, pp. 530-550] and references therein).
The second issue concerns the status of classes and sets, or both, and of the membership
relation in the age of category-theory. We must and shall address it, right now.

Category-theoreticians have often expressed the desire for a theory, to quote Lawvere
once more (§1.1), “in which classes and membership in classes do not play any rôle.”
Category-theory is supposed to be that theory. This implies that theories of sets and
classes such as ARC are not wanted. Sets, classes and membership are superfluous; they
even hamper the practice of category-theory. We submit two responses: (i) a defensive
and (ii) an attacking one.

(i) The defensive response is that once you have presented, in Chapter 0 of your expo-
sition of some branch of category-theory, the definitions of an arrow, a category, a functor,
a topos, an allegory and what have you (§2.1), you can ‘forget’ about these definitions
and move on. For decades this was normal practice in books and monographs when set-
theory was generally considered to found mathematics. There is even the often utilised
possibility of not mentioning these definitions at all but only refer to where they are de-
fined.

Even during the set-theoretical era few mathematicians have continuously thought of
functions and mappings as sets of ordered pairs, but simply as rules sending one type of
mathematical object to another or the same type, exactly as had been done for centuries
before the advent of set-theory. But when it was now asked to them what a function
is, notably whether it is necessary to have an explicit ‘rule’, they could or would simply
present the set-theoretical definition or refer to some exposition of set-theory. Similarly,
few mathematicians have continuously thought of relations and orderings as sets of or-
der pairs, but as primitives; for every relation considered by mathematicians there was
some definition available. But when it was now asked to them what a relation gener-
ally is, they could or would simply present the set-theoretical definition. And similarly
for algebraic operations, equations, Etc. This author cannot think of a single reason why
category-theoreticians cannot proceed similarly, gladly granted that for some branches of
mathematics, such as algebraic topology and category-theory itself, L↑ is a far more ap-
propriate means of communication than bare L∈. In this context Feferman [1977, p. 153]
has aptly written:

I realise that workers in category-theory are so at home in their subject that they find
it more natural to think in category-theoretic rather than set-theoretical terms, but I
would liken this to not needing to hear once one has learned to compose music.

(ii) The attacking response is to confront the category-theoretician with his respon-
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sibilities as a founding-theoretician when he chooses to be one: to say precisely what
he means and to lay all mathematical notions employed on the table. When he speaks
of ‘all differentiable manifolds’, of ‘all Abelian groups’, of ‘all group-homomorphisms’,
etc., he is undeniably speaking of wholes of some kind. The recognition of these wholes
and the accompanying wholes of arrows, which together constitute a category (surely
another whole of some kind), is prior to the recognition of this as a category. Feferman
[1977, p. 150] concludes that category-theory cannot found mathematics because it leaves the
notion of a ‘whole’ unexamined, whereas it is evidently needed in order to understand what
a category is. Feferman accepts Tarski-interpretability of all branches of mathematics in
theory T as a necessary but not as a sufficient condition for T to be a founding theory
for the whole of mathematics. One must add that all concepts used in every mathemati-
cal theory have counterparts in their formalised versions before being translated into the
language of T, i.e. the formalisation must be faithful to the practice of mathematics. To
pursue this argument further, when the category-theoretician says to consider some ob-
ject M from category Man or some arrow f from Hom(Grp), he is undeniably supposing
that M and f bear some relation to Man and Hom(Grp), respectively. And he is undeniably
supposing that, conversely, Man and Hom(Grp) do not also bear that same relationship to
M and f , respectively. And he is further supposing that f does not bear that same relation-
ship to itself. What is that anti-symmetric, irreflexive relation? Is it something completely
different from what is usually understood by the membership-relation? Is this relation
not exactly ∈ as we know and love it? What do category-theoreticians mean when they
give the following definition: “a category consists of objects and arrows such that . . .”?

A theory such as ARC officially inaugurates the mentioned wholes as classes as well as
the relation that M and f bear to these classes, namely as class-membership, as well as what
‘consists of’ means. The battle-cry to do away with classes and the membership-relation
simply makes no sense in the light of how category-theoreticians talk. The adoption of
ARC means that the category-theoretician can speak forthright about classes and their
members and dispense with his gaudy turning-movements.

Furthermore, it is a general principle, motivated by clarity and propounded by the
likes of Cantor and Frege, that when some variable is introduced, we need to have a fixed
range of the values it may assume. Now, what else can such a fixed range be but a class?

We conclude that rather than hampering the practice of mathematics, ARC founds it,
the practice of category-theory included.
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