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Abstract

This paper examines a series of Schelling-like models of residential

segregation, in which agents prefer to be in the minority. We demon-

strate that as long as agents care about the characteristics of their

wider community, they tend to end up in a segregated state. We then

investigate the process that causes this, and conclude that the result

hinges on the similarity of informational states amongst agents of the

same type. This is quite different from Schelling-like behavior, and sug-

gests (in his terms) that segregation is an instance of macro behavior

which can arise from a wide variety of micro motives.

Weak, individually-held preferences can be significantly amplified when

aggregated in a population. This fact is exemplified in simple agent-based

models of segregation, that show how weak preferences to have like indi-

viduals as neighbors leads to far greater segregation than any individual

desires.

In his landmark studies of this phenomenon1, Thomas Schelling repre-

sented a neighborhood as a grid with two types of agents placed randomly

on it. Each agent was allowed to move to nearby unoccupied cells in order

to satisfy its preference to be like at least thirty percent of its neighbors.

Despite the relatively low preference for having neighbors of the same type,

these models exhibit significant segregation and clustering of the agents.

This phenomenon has become known as the Schelling result or Schelling

segregation.

1Schelling (1971)
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Subsequent theoretical work has investigated a wide range of neighbor-

hood definitions and agent utility functions. In every case that we are aware

of, researchers have found Schelling-like models to exhibit segregation. Since

the segregation result is extremely robust against changes to utility function

and neighborhood definition, we investigated whether segregation could sur-

vive an even more strenuous perturbation: agents who explicitly aim to be

in the smallest minority. We will show that when model-individuals know

about their communities in addition to their neighborhood and strictly pre-

fer to be in the minority in their communities, widespread segregation can

develop.

Our investigation employs a series of Schelling-like models where indi-

viduals placed randomly on a toroidal grid assess their utility on the basis of

how many similar individuals are in a viewable radius. The utility functions

and radii vary in the models, with the result that even agents who prefer to

be in the smallest minority end up highly segregated when their viewable

radii are of intermediate size relative the grid. These results demonstrate

the extreme fragility of integrated populations because they show that even

when individuals try as hard as possible to be in the minority, imperfect

information about their environment actually leads them to segregate.

1 Schelling’s Models of Segregation

Thomas Schelling famously asked “what leads a neighborhood to segregate?”

He showed that racial segregation can occur even when no explicit racism

is present by constructing a physical agent-based model of a population. In

this model, dimes and nickels represented two types of individuals, A and

B, and the squares on a chess board represented spatial location. Each

individual prefers that 30% of its neighbors be of the same type. So the As

want 30% of their neighbors to be As and likewise for the Bs. Schelling’s

neighborhoods were defined as standard Moore neighborhoods, a set of nine

adjacent grid elements. An agent standing on some grid element e can have

anywhere from zero to eight neighbors in the adjoining elements.

Although Schelling didn’t explicitly provide a utility function, the pref-
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erence described above is usually interpreted to mean that each agent is

indifferent between having 30-100% of her neighbors be alike, but finds hav-

ing fewer than 30% of her neighbors be alike unacceptable. Because of the

constraints of a grid’s geometry, in the case of a full neighborhood, the pref-

erence boils down to wanting to have at least three of one’s eight neighbors

be alike and to equally prefer 3–8 like neighbors.

The dynamics of Schelling’s model involve agents sequentially choosing

to remain in place or move to a new location. When it is an agent’s turn

to make a decision, it determines whether there is a sufficient ratio of alike

agents amongst its neighbors. If this condition is met, the agent is satisfied

and remains where it is. If it is not, the agent then moves to the nearest

empty location. This sequence of decisions continues until all of the agents

are happy where they are, and do not try to move.

What one notices from watching this model unfold is that there is a

contagion effect: agents that were originally satisfied can become disgruntled

as soon as a neighbor leaves or a new one moves in. It is in this way that the

decision of a single agent can dramatically affect the decisions made by the

entire population. A small patch of dissatisfaction can result in widespread

movement, and ultimately, segregation of the “city.” Although there are

a few possible grid configurations which are fully integrated and in which

every agent is happy, these are rare, and nearly impossible to arise from agent

movement. The dominant equilibrium state of the model is segregation.

Schelling concluded that small preferences for similarity can lead to mas-

sive segregation. This conclusion is quite robust across many changes to the

model including different utility functions2, different rules for updating3,

differing neighborhood sizes, and different spatial configurations4. These

studies show that it is extremely hard to avoid segregation when agents

have some preference for like neighbors. However, earlier studies have not

investigated what happens when agents are committed to living in a fully in-

tegrated neighborhood. What happens when agents have maximally hetero-

2Bruch and Mare (2006); Pancs and Vriend (2007); Zhang (2004)
3Bruch and Mare (2006)
4Fossett and Dietrich (2009)

3



geneous preferences? What happens when they want the maximum possible

diversity among their neighbors?

This paper takes up these questions. We will investigate them by in-

troducing a new class of Schelling-like models. But before turning to these

models, let us consider how the situation might play out in a real population.

Consider a neighborhood of immigrants where the primary characteristic is

spoken language. All the agents begin by determining how many Spanish,

Mandarin, Japanese, Lithuanian, and English speakers are in the neighbor-

hood. They then determine if their own language is the smallest minority,

part of a tie for the smallest minority, or exactly tied with all of the others.

If in a given period of time, any of these conditions are met for an individual,

then that individual is happy and remains in place. If not, the individual

tries to rectify the situation immediately by moving to a new neighborhood.

We will try to capture this situation in a set of models called maximally

heterogeneous preference models (MHP models).

The general description of MHP models given above leaves considerable

latitude about how neighborhoods are defined. While it is possible to use

the nine-neighbor Moore neighborhood like Schelling, we will allow for vary-

ing neighborhood sizes because in almost all real cases, individuals interact

with more than just their immediate neighbors. To take just one example,

cities are often broken down into several communities, often with a number

of different ethnic enclaves, and can gain reputations of having their own

particular character that may be distinct from the city at large.

By using a more inclusive notion of community, we can also more real-

istically capture the factors individuals use in deciding to choose where to

live. Individuals looking for housing do not typically consider single city

blocks in isolation of everything else when looking for housing. They care

about the larger area, whether it is safe, and what its amenities might be.

It is very often the case that individuals first pick which community they’d

like to live in, and then go about looking for suitable neighborhoods within

that community.
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2 MHP Models

Our investigation of the MHP utility function was conducted with a spatially

explicit agent based model. This approach is very close to Schelling’s original

model and will allow for direct comparison. The model begins with a grid

corresponding to the largest spatial area under investigation, which we will

call a virtual city. This virtual city is composed of cells which we can think

of as addresses. In our models, there are 1,225 cells arranged on a 35 x 35

grid. This grid is wrapped around a torus to prevent edge effects. On to

this grid, we randomly place 498 agents. In cases where two agents occupied

the same positions, we reoriented one of the overlapping agents, by having

it find a new location at random.

Each agent has some fixed property p which, following Schelling, we

can think of as race, first language, or some other (unchanging) observable

property. The simulations reported here all consider cases where agents have

one of three possible values of this property, designated as types 1, 2, and 3.

In all simulations, these types are evenly distributed among the 498 agents,

yielding 166 agents of each type.

In addition to their intrinsic properties, each agent also has a radius of

vision, r, within which other agents can be seen. The value of r defines

the agent’s perceived community, which may range in size from the agent’s

closest neighbors (r = 1) all the way up to the entire grid (r = 17
√

2 which

is approximately 24). To keep the analysis simple, every agent is given the

same value for r in each simulation. This corresponds to 498 overlapping

communities, each with radius r.

Given that this is an agent-based model, each agent implements a move-

ment strategy based on an individual utility function. If Na
p denotes the

number of agents of type p in agent a’s community and if (i, j, k) denotes

some permutation of (1, 2, 3), then the MHP utility function, Ua
i for each
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agent a of type i is defined to be a satisficing utility5 of the following form:

Ua
i =

{
1 if Na

i < (Na
i +Na

j +Na
k )/3

0 otherwise
(1)

Hence an agent a of type i will move to new position whenever Ua
i = 0.

The basic structure of our iterative simulation model is that at the

beginning of each model iteration we determine the current value of Ua
i for

every agent a of type i = 1, 2, 3. If Ua
i = 1, then agent a does not move. If

Ua
i = 0, then agent a moves according to the following rules:

1. Choose a random heading

2. Walk forward n steps, where n is a random number between 1 and 10.

3. Determine whether any agent occupies the new grid cell. If so, return

to step 1.

4. If not, occupy the center of the new grid cell.

In Schelling’s own models, the movement order was decided either by

starting from the center and working outwards, or by starting from the up-

per left corned and sweeping right and down.6 In our models, we simulate

a parallel process by randomizing the order of moves on each round. Also,

Schelling had his agents move to the nearest empty square while our proce-

dure does not always guarantee this. The model itself is iterated repeatedly

until either an equilibrium state is reached (where every agent has achieved

an MHP utility of one) or else a time limit of 1000 model iterations had

elapsed.

For the analysis presented here, we consider instantiations of the model

with community sizes ranging from r = 1 to r = 24.5 in increments of 0.5.

5Such utilities, first introduced by Simon (1971), distinguish only between acceptable
and unacceptable alternatives.

6Schelling (1971, p.148)
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This covers the range from just under the size of the Moore neighborhoods7

in Schelling’s model to just over the size of the entire virtual city. For

each community size, we ran 100 repetitions, each starting from a different

random configuration of the 498 agents on the grid. We also constructed a

comparison set of 100 random benchmark configurations, each generated by

a random initialization of our model without running the decision procedure.

For the purposes of later analysis, a coordinate file was recorded for

each simulation that gives the location of each agent and its type. In all

the analyses discussed in subsequent sections, we arbitrarily chose a single

type of agent for analysis, and studied the extent to which this agent type

exhibited either attraction to or segregation from the other two types.

3 Analysis of Segregation

Based on these simulations, our main finding is that, starting from random

configurations, the equilibrium outcomes for most parameter values exhibit

spatial segregation between agent types. The degree of segregation, how-

ever, depends crucially on the radius of vision r. When r is below 4.5, the

size of segregated clusters are extremely small, and only exist as transients,

not equilibrium states. Once we move to larger values of r, agents segregate

themselves into increasingly larger clusters. It is only when r encompasses

almost the whole population for each agent that segregation start to de-

crease, and eventually disappears when all agents are visible to each other.

This suggests that in the present model, segregation is driven by agents

having some, but not full, information about the wider community beyond

their immediate neighborhood.

7To be more precise, a radius of r = 1 corresponds to a rook neighborhood (analogous
to rook moves in chess) consisting of a cell together with the four cells sharing one of its
faces. In these terms a Moore neighborhood is also called a queen neighborhood, since it
includes the additional four cells sharing sharing corners with the given cell.
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3.1 A Scale-Sensitive Test of Segregation versus Attraction

Given the assumed symmetry among agent types, our analysis of segrega-

tion focuses only on a single type (Type 1), now designated as the target

population of agents (labeled 1). Types 2 and 3 are then combined into a

single reference population (labeled 0).8 In this context, the most widely

used test of attraction versus repulsion (segregation) between such spatial

point populations is based on cross K-function statistics9, which formed the

natural starting point for our analysis. For each given community size, r, the

cross K-function value, K(d; r), denotes the expected number of reference

individuals (per unit area) within distance d of a randomly selected target

individual. These statistics are designed to detect either attraction or repul-

sion (segregation) between the target and reference populations. Roughly

speaking, an unusually small (large) value of K(d; r) is taken to indicate

significant segregation (attraction) between these populations at scale d.

However, while tests based on cross K-function values did indicate the

presence of significant segregation over a range of spatial scales, visual com-

parisons between typical equilibrium patterns and test results showed that

these statistics sometimes failed to detect segregation that was readily ap-

parent (especially for extreme values of r). Further analysis suggested that

the main reason for this is that values, K(d; r), focus only on the numbers

of reference agents within distance d of a given target agent, and ignore

the presence or absence of other target agents. Hence segregated clusters of

similar agents were often missed.

This led us to consider a modified test statistic that incorporates counts

of both types of agents. The particular form of this statistic (which is tai-

lored to our present simulation model) is based on the observation that if the

8Note that since the MHP utility function U1
a for each agent, a , in the target population

depends only on the total size, (Na
2 + Na

3 ), of the reference population in a’s current
community, there is no need to distinguish between agent types within this reference
population.

9K-functions were first developed for univariate spatial point processes by Ripley
(1976), and later generalized to cross K-functions for multivariate (marked) point pro-
cesses by Hanisch and Stoyan (1979). Subsequent extensions include the influential paper
by Lotwick and Silverman (1982), and are summarized in section 8.6 of Cressie (1993).
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three identical populations of agents were randomly distributed throughout

the virtual city, then in any given subregion, one would expect to find about

the same numbers of each agent type. Hence, if we now let Na
0 (d) denote the

number ofreference agents within distance d of given target agent, a, and let

Na
1 (d) denote the number other target agents within distance d of a, then

under complete randomness one would expect Na
0 (d) to be about twice as

large as Na
1 (d). Thus our test statistic is designed to estimate the expected

difference, E[Na
0 (d)− 2 Na

1 (d)], which should be about zero under complete

randomness. However, to be precise, one must consider the conditional ex-

pectation, E[Na
0 (d)−2 Na

1 (d) | a], given the inclusion of target agent a. Here

it is shown in the Appendix that if nd denotes the number of distinct cells

within distance d of any given cell, i.e. the d-neighborhood of this cell (which

must be the same for all cells by our torus construction), then a correction

term, nd/612, is required in order to insure zero expectation with respect

to every d-neighborhood (given our specific population sizes of each agent

type). With this correction, the desired modification of cross K-functions

for our present purposes is based on the conditional expected local differences

defined for each agent, a, and distance, d, by10

δa(d) = E[Na
0 (d)− 2 Na

1 (d)− nd/612 | a] (2)

= E[Na
0 (d)− 2 Na

1 (d) | a]− nd/612

It is shown in the Appendix that under the null hypothesis of randomly

located agents, δa(d) = 0 for all d-neighborhoods.11 Hence in each d-

neighborhood of agent a, positive (resp., negative) values of δa(d) are as-

sociated with larger (resp., smaller) numbers of reference agents relative to

10As with cross K-functions, population counts in these local differences should in prin-
ciple be normalized by population densities. But since such densities are constant, they
have no effect on the tests developed, and are thus ignored for simplicity.

11Technically, exact satisfaction of this zero-expectation property requires the addi-
tional simplifying assumption of binomially (rather than hypergeometrically) distributed
population counts, as detailed in the Appendix. But for the present sample sizes, this
approximation is very good. It should also be empahsized that this zero-expectation
property is only for purposes of interpretation. As will be clear from the difference form
of the final test statistic (8) to be used, the constant correction term, nd/612, cancels out
and has no influence on the tests to be conducted.
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target agents than would be expected under randomness.

Observe next, from the identity of MHP utility functions for all agents

and the complete symmetry of all cell locations on the torus, that this con-

ditional expectation must be the same for all target agents. Hence the

specification of a particular agent, a, in (2) could in principle be dropped.

But for expositional purposes, it is most convenient to eliminate dependency

on a by averaging. Thus we now focus on the expected local difference across

all target agents, a = 1, .., n1(= 166), at scale d, as defined by:

δ(d) =
1

n1

n1∑
a=1

δa(d) (3)

As a parallel to cross K-functions, these expected local differences can equiv-

alently be interpreted as values of (2) for a randomly sampled target agent.

Before developing tests based on these indices, it should be noted that

for d equal to the community size, r, there is a close relation between δa(r)

in (2) and the values of a’s MHP utility in (1). In particular, since Na
0 (d)−

2 Na
1 (d) > 0 for each agent, a, in equilibrium, and since the correction term

(nd/612) tends to be relatively small by comparison,12 one can expect to find

positive values of δ(r) in equilibrium. So at equilibrium, one should not be

surprised to find a substantial degree of attraction at the community scale,

r, which is of course precisely what individual agents are trying to achieve.

Thus our main interest focuses on the consequences of this behavior for

segregation or attraction at scales, d 6= r.

With these definitions and informal observations, we can now formal-

ize our testing procedure as follows. If at each community size, r, we let

δ(d; r) denote the expected local difference in (3) for MHP processes under

community size, r, [with corresponding conditional forms, δa(d; r), in (2)],

and similarly, let δ(d; rand), denote the expected local difference in (3) for

the random benchmark process defined above, then our testing procedure

focuses on the difference between these mean values,

12Since nd ≤ 352 − 1 = 1224, it follows by definition that 0 ≤ nd/612 ≤ 2. This in turn
implies that E[Na

0 (d) − 2 Na
1 (d) | a] ≤ δa(d) ≤ E[Na

0 (d) − 2 [Na
1 (d) + 1 | a], and hence

that the effect of this correction is small relative to the expected counts involved.
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∆(d; r) = δ(d; r)− δ(d; rand) (4)

at each scale, d, and community size, r. Given the above interpretation of

expected local differences, positive (resp., negative) values of ∆(d; r) can also

be taken to imply more attraction (resp., segregation) between agent types

at scale d than would be expected under the random benchmark process. A

test of the statistical significance of these ∆-values can thus be implemented

in terms of a standard difference-between-means test.

To carry out such a test, we performed N = 100 simulations of the MHP

process under each community size, r. If for each simulation, s = 1, .., N we

let na0(d; r, s) and na1(d; r, s) denote the observed values of Na
0 (d) and Na

1 (d)

in that simulation, and let

δ̂(s)a (d; r) = na0(d; r, s)− 2 na1(d; r, s)− nd/612 (5)

denote the corresponding (one-sample) estimate of δa(d; r), then the result-

ing estimate of δ(d; r) under community size r is given by

δ̂(s)(d; r) =
1

n1

n1∑
a=1

δ̂(s)a (d; r) (6)

Similarly, for N parallel simulations of the random benchmark process, one

can construct corresponding estimates

δ̂(s)(d; rand) =
1

n1

n1∑
a=1

δ̂(s)a (d; rand) (7)

At this point it should be noted that the individual estimates, δ̂
(s)
a (d; r)

[resp., δ̂
(s)
a (d; rand)] are not independent within a given simulation (since

d-neighborhoods can overlap one another). However, the estimates δ̂(s)(d; r)

[resp., δ̂(s)(d; rand)] for separate simulations, s, are independent by con-

struction. Hence these can be regarded as N independent random samples

of mean estimates from both the MHP process and random benchmark pro-

cess.
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Given this independence property, it follows that if the resulting sample

estimate of ∆(d; r) for each simulation, s, is denoted by

∆̂(s)(h; r) = δ̂(s)(d; r)− δ̂(s)(d; rand) (8)

then the grand mean across all simulations, i.e.,

∆̂(d; r) =
1

N

N∑
s=1

∆̂(s)(h; r) (9)

=
1

N

N∑
s=1

δ̂(s)(d; r)− 1

N

N∑
s=1

δ̂(s)(d; rand) (10)

≡ δ̂(d; r)− δ̂(d; rand) (11)

yields an appropriate test statistic for discriminating between the MHP and

random benchmark processes. In particular, this statistic satisfies the con-

ditions for Welch-Satterthwaite (WS) difference-between-means test 13 that

allows for possibly different variances between these two statistical popula-

tions.

To carry out this test, we first calculated the sample means for the MHP

process in (6) and the random benchmark process in (7) for each simulation.

This was accomplished with a program (written in Matlab by one of the

authors) that calculates δ̂(s)(d; r) and δ̂(s)(d; rand) at each scale, d, in each

simulation, s. Here it should be noted that while community sizes, r, are

allowed to range up to the maximum torus distance of approximately r = 24,

we restrict the scale values, d, to lie in the range, d = 1, .., 15. The reason

for this is that our torus approximation of d-neighborhoods on large planar

grids breaks down for distances greater than half the width of the original

(35×35) square, i.e., for d ≥ 17.4.14. These computed sample means formed

13In addition to independence, this test requires that the two sample populations be
normally distributed. While individual difference statistics, δ̂

(s)
a (d; r), are generally not

normal, their sample means, δ̂(s)(d; r), were confirmed (by Shapiro-Wilks tests) to be
sufficiently normal for testing purposes. Normality in this case can also be justified on
theoretical grounds from the well-known asymptotic normality properties of sample means
for locally dependent data.

14In particular, d-neighborhoods larger than this are seen to overlap themselves on the
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the basic inputs for the WS test conducted at each scale, d = 1, .., 15, and

community size, r = 1, .., 24.

The test results were determined by calculating the t-values for ∆̂(d; r)

and applying the WS approximate t-distributions for two-sided tests of the

null hypotheses, ∆(d; r) = 0 for each choice of r and d. For all practical

purposes none of these t-distributions were distinguishable from the normal

distribution at the given sample sizes (of N = 100 for each populution).

So our formal rule was basically to conclude significant attraction for t-

values above 1.96 and significant segregation for t-values below −1.96. But

since the computed t-values ranged so far outside this interval, it proved to

be more informative to plot these t-values directly, and simply indicate the

critical interval [−1.96, 1.96] on the graphs. This is the convention employed

in Figures 2 and 3 below.

3.2 Test Results

To summarize our test results, we begin by observing that for all community

sizes, 5 ≤ r ≤ 24, the simulations always settled to an equilibrium state.

The only exception is the extreme full-visibility case of r = 24.5, where

by definition no equilibrium is possible (since no agent can be in a strict

minority). Moreover, the test results showed that these equilibrium states

for community sizes 5 ≤ r ≤ 24 always involve significant segregation below

a certain critical scale, dr, depending on r. So even though agents are

maximizing their MHP utilities (i.e., are in minorities less than one third of

their current community populations), they nevertheless find themselves in

segregated neighborhoods at all scales not exceeding the critical scale, dr,

for their radius of vision, r. This is illustrated in the right hand panel (b) of

Figure 1 below for a community size of r = 8, with critical scale, d8 ≈ 5.5.

Here the black dots denote locations of target agents (Type 1) and the

locations of reference agents (Type 2 and Type 3) are denoted respectively

by circles and triangles. (The large circles in the figure will be discussed

below.) Here it is visually evident that each agent type exhibits clustering

torus, so that some cells start to appear more than once in the same neighborhood.
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Figure 1. Example Equilibrium Pattern (r = 8) 
Figure 1: Example equilibrium pattern (r=8).

that results in segregation at certain scales, as will be verified by the test

results below. For purposes of comparison, the left panel (a) of Figure 1

shows the initial realization of the random benchmark process leading to

equilibrium pattern (b).

Turning now to the test results themselves, it is again useful to illus-

trate these findings for the case of community size, r = 8, in Figure 1(b)

above. The full plot of t-values for all relevant scales, d = 1, .., 15, is shown

for this case in Figure 2 below. Here the relatively narrow width of the

critical interval, [−1.96, 1.96] (indicated by the horizontal dashed lines in

the figure)15 shows that there is a strong degree of statistical significance

in both the regions of attraction and segregation in the figure. As for the

shape of this plot, notice first that as predicted above (in the discussion of

expected local differences), there is a peak of very significant attraction at

precisely scale d = 8 = r, reflecting the MHP utility-maximizing behavior

of all agents.16 More important for our present purposes is the lower end of

the graph, where there is seen to be significant segregation between agent

types at all scales, d ≤ d8 ≈ 5.5. (This will be illustrated more fully in Fig-

15As mentioned above the critical intervals for each of these 15 t -distributions are
slightly different. But all are so close to the normal distribution, that such differences are
imperceptible.

16As for the actual significance level in this case, the calculated t-value is seen from
the figure to be more than 20 standard deviations from the mean. Thus the associated
p-value is virtually zero, and indicates why t-value plots are more meaningful here.
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Figure 2: Plot of t-Values for Community Size 8

ure 4 below.) Here segregation appears to be most significant at a scale of

about d = 3. Visually this corresponds to circular neighborhoods of radius

3 about each cell, as illustrated by the solid circle near the center of Figure

1(b). This particular neighborhood is seen to be just large enough to cover

the cluster of target agents (black dots) shown in the figure. More generally,

the most significant scales of segregation (below the critical scale, dr) for

each community size, r ≥ 5, tend to reflect the cluster sizes of agent types

seen in typical equilibrium patterns for that community size. (An alterna-

tive representation of such cluster-size relations is given in Figure 5 below.)

Thus, while Figure 1(b) shows only one instance of a simulated equilibrium

pattern for community size, r = 8, it helps to illustrate the broader statisti-

cal results summarized in Figure 2. Note finally that beyond the attraction

peak at d = 8 = r, there appears to be a second peak of significant segre-

gation at about d = 13. But further analysis shows that secondary peak

is essentially a reflection of the regularly space clusters of agents at smaller

scales. For example, the dashed circular neighborhood of radius 13 that

is concentric with the smaller circle in Figure 1(b) is seen to be just large

enough to include the second wave of target-agent clusters adjacent to the

central cluster shown. Hence the concentration of target agents at this scale
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is a consequence of similar concentration at smaller scales.

To analyze further properties of these statistical results, it is useful to

distinguish three ranges of community sizes, r. The first is the minimal

range, involving community sizes 1 ≤ r < 5, in which equilibria do not

always occur. Second is the intermediate range, 5 ≤ r ≤ 20, which covers the

most interesting cases for our purposes, and third is the maximal range, r >

20, which exhibits behavior somewhat different from that of the intermediate

range. Here we begin with the most important intermediate range, and then

consider each of the extreme ranges in turn.

3.2.1 Intermediate Community Sizes

The key feature of the intermediate range, 5 ≤ r ≤ 20, is the relation

between each community size, r, and its associated critical scale, dr. Specif-

ically, as the radius of vision increases, the critical scale for segregation also

increases. This is illustrated in Figure 3, where the t-values are plotted for

selected values of intermediate radii, (5, 8, 10, 12, 17, 20),17 and where each

curve is numbered by its associated community size.

For sake of visual clarity, only the most relevant portion of each curve is

shown, specifically the t-values at all scales, d ≤ r + 1, for each community

size, r. For example, the curve shown for community size, r = 8 , is seen to

be the lower portion of the same t-value curve in Figure 2. By definition, the

critical scale, dr, for each community size, r, is seen to be the scale at which

the associated t-value curve first intersects the critical interval from below

(shown by a black dot on each curve). So on curve r = 8, the black dot

is seen to be at scale, d8 ≈ 5.5. Hence the steady increase in these critical

scale values is easily seen by the progression of these intersection points.

Estimating the Number of Agent Clusters To obtain further statisti-

cal insight into this segregation phenomena, we constructed a program that

attempts to identify the number of spatial clusters in the target population.

This program involves two stages. First, the equilibrium configuration of

17These specific values were chosen in order to achieve a relatively even spacing between
t-value curves.
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n individual target agents was successively grouped into smaller numbers

of clusters by continually adding closest clusters (where distance between

clusters was measured as the distance between their closest points). This

hierarchical clustering procedure was continued until the n points corre-

sponding to the target population were reduced to a specified cutoff number

of clusters (which was set sufficiently low to include all clustering levels of

potential interest).18

With a cluster hierarchy in hand, the second step was to determine the

best number of clusters with which to group the target population. This

number was not always obvious on visual inspection and exhibited substan-

tial variation between simulations (with different initial random configura-

tions of agents). After considerable experimentation, it was found that two

criteria seemed to place reasonable bounds on the number clusters observed

visually. The first criterion (which focuses on achieving compact group-

18This stage of the program was implemented using the Matlab package, clusterdata.m,
with the ‘single linkage’ (or ‘nearest neighbor’) criterion for joining clusters.
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ings within each cluster) is to find the cluster configuration that minimizes

the mean squared distance of points to their respective cluster centroids.19

Since this criterion value, C1, for each cluster partition is always decreasing

in the number of clusters, it was decided to compare observed values with

those expected under random configurations. Here cluster hierarchies for

1000 random configurations were constructed and used to estimate the sam-

pling distribution of C1 under randomness. When observed criterion values,

C1, are replaced with their z -scores, Z1, under this distribution, the cluster

number with minimum Z1 value can be interpreted as that for which C1 is

most significantly lower than would be expected under randomess. The sec-

ond criterion (which focuses on achieving good separation between clusters)

starts by computing for each cluster the shortest distance between points in

the cluster and points outside, and then finds the cluster configuration that

maximizes the mean of these shortest distances for each cluster. Since these

values, C2, are also monotone decreasing in the number of clusters, the same

random cluster hierarchies were used to construct a sampling distribution

of C2 under randomness. When observed values C2 are replaced by their

z -scores, Z2, the cluster number with maximum Z2 value can be interpreted

as that for which C2 is most significantly higher than would be expected

under randomness. As stated above, the optimal cluster numbers, N1 and

N2, produced by these two criteria tended to place reasonable bounds on

the number of clusters observed visually over a wide range of examples.

Hence our final representative cluster number, N was obtained by taking

the average, N = (N1 +N2)/2, of these two optima.

To analyze these cluster numbers, we simulated 1000 equilibria for each

possible community size, r = 5, .., 24, and constructed corresponding cluster

numbers, Nir for each simulation i = 1, .., 1000. But in order to interpret

these results, it is important to note that cluster numbers by themselves are

only meaningful relative to the particular size of the torus approximation

used. Hence it was deemed to be more appropriate to convert each cluster

number, Nir, to a corresponding average cluster size , Sir = 166/Nir, in

19This is the implicit objective function employed in k-means clustering.
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terms of target agents per cluster.20 In particular, the average size of these

clusters relates more directly to the degree of segregation exhibited by the

agents. In Figure 4 the median of these cluster sizes, (Sir : i = 1, .., 1000)

is plotted for each community size, r = 5, .., 24. The step function nature

of the plot is a consequence the underlying discreteness of possible cluster

numbers. But even with this lack of smoothness, the regularity of its overall

pattern is evident.21 In particular, median cluster size (degree of segrega-

tion) first increases with community size up to a radius of about r = 16,

and then decreases with all larger community sizes (as emphasized by the

simple quadratic fit shown as a dashed curve). This is in rough agreement

20For example, if the present torus grid together with a given equilibrium cluster con-
figuration were expanded to a square panel of nine identical copies, then by our torus
construction, this would automatically constitute a larger equilibrium configuration for 9
x 498 agents. But while the number of target-agent clusters would increase nine fold, the
average cluster size in terms of target agents would remain the same.

21While a plot of mean (rather than median) values tends to yield somewhat smoother
results, the inherent step-function nature of this data is much clearer with medians.
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with the segregation results above (in terms of critical scales), except for

the slight decrease in cluster size from r = 17 to r = 20. But even here

it should be borne in mind that this decrease from about 33 agents to 30

agents per cluster corresponds to the smallest possible increase in median

cluster numbers from 5 to 5.5.22 So substantial decreases in cluster sizes are

only seen to occur beyond r = 20.

It should also be noted that the cluster identification procedure underly-

ing this plot is far less precise that the statistical significance results above.

But in spite of its lack of precision, this procedure served to identify one

additional feature of these equilibrium patterns that was entirely missed by

our difference-between-means tests.

A Secondary Equilibrium Mode The histograms of cluster numbers

identified at each community size revealed that there are actually two modes

of equilibria: a primary mode and a secondary mode. In Figure 4 we have

displayed these histograms for four community sizes, r = 5, 10, 15, 20, that

are typical of the full range of sizes. Here the primary mode (small numbers

of clusters) corresponds to the segregated equilibria that are the focus of

this paper, and the secondary mode (large numbers of clusters) corresponds

22Recall from the averaging definition of cluster numbers, N = (N1 + N2)/2, that the
closest value above 5 is (5 + 6)/2 = 5.5.
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to equilibria in which essentially no segregration is evident.23 One should

hasten to add that, except for the most extreme community sizes (close

to either r = 5 or r = 24), the primary mode involves about 75% of all

equilibria. But nonetheless, this secondary mode is of some interest.

First of all, while it is not difficult to construct rather uniform equilib-

rium configurations in which all agents are maximizing MHP utility, it was

not clear to us that such equilibria could be even locally stable. However,

these results show that many are. Moreover, the presence of such equilibria

suggests that unless the initial random configuration involves some minimal

degree of clustering (as generally seems to be the case), segregation may fail

to emerge in equilibrium.24 It is also of interest to note that unlike the pri-

mary mode, these non-segregated patterns appear to be very insensitive to

community size. As shown by the dashed line in Figure 5, this mode always

ranges between about 10 and 16 clusters with mean around 12.5. Hence,

these dispersed patterns appear to exhibit roughly the same degree of agent

heterogeneity at all scales.

Finally, in view of the non-segregated nature of this secondary mode,

it is important to ask whether the inclusion of this mode might distort

the relation of cluster sizes to community sizes occurring within the more

important primary mode. This can be checked by including only cluster

numbers, Nir, within in the primary mode (i.e., Nir < 10) and constructing a

median plot paralleling Figure 4. Given the invariant shape of this secondary

mode across community sizes, it is perhaps not surprising to find that the

primary-mode plot is qualitatively almost exactly the same. Hence the only

effect of this secondary mode is to inflate the level of median cluster numbers

obtained. But since the ultimate effect of this inflation is to yield lower (more

conservative) estimates of the degree of segregation present, we have chosen

to show only the combined plot.

23In fact, examples show that most of the clusters identified in this secondary mode are
essentially an artifact of our clustering algorithm (which always identifies some number of
clusters, even for very dispersed patterns).

24The identification of such clustering thresholds is left for future research.
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3.2.2 Minimal and Maximal Community Sizes

When agents’ community size is very small (r < 5), the model fails to

reach an equilibrium state in which all agents have maximal MHP utility.

Nevertheless, the underlying dynamics of the model continue to exhibit non-

random spatial structure that we set out to investigate.

We began with 498 agents of three types distributed randomly over our

toroidal grid. Like the procedure used to study medium neighborhood sizes,

we investigated 100 simulations for each neighborhood size corresponding to

a different initial distribution of agents. Since the simulations never reach

equilibria, we chose to sample the pattern reached after 1000 iterations of

the model. This set of 100 samples was then compared to a set of 100 ran-

domly generated distributions of agents on the grid using precisely the same

procedure as above. In particular, we computed the appropriate δ̂(s)values

in (6) and (7) above for each simulation, s = 1, .., 100, and then tested for

significant differences between them.

For these small neighborhoods, we found patterns that correspond to the

secondary equilibria discussed above. Visually, this appears as very small

clusters - more structured than completely random, but not statistically

significant. These clusters are unstable, as the agents in them all have low

utility and will continue to move seeking higher utility. Nevertheless, they

persistently reappear as the model is iterated.

Finally, for large community sizes (r > 20) we found that equilibria

continued to emerge all the way up to the maximal community size of r =

24.5 (in which no equilibrium is possible). However, the critical scales, dr, for

significant segregation in such equilibria began to diminish. This is also seen

in Figure 4 above, where median cluster sizes diminish rapidly for r > 20. A

possible explanation for this diminishing effect is given in the next section.

4 Discussion

Schelling’s original result was striking, but perhaps not altogether surpris-

ing. While the degree of segregation observed in his model is far higher
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than any individual’s preference for homogeneity, agents still desired some

degree of homogeneity in their neighborhoods. In our model, agents want

to be surrounded by agents that are different from themselves. So why does

segregation still arise in the model?

We believe that the result can be explained by careful consideration

of the micro-dynamics of MHP models. Consider a model like ours with

only two types of agents, and start with a population of only two agents (a

and b) of the same type in close proximity. Because they have maximally

heterogeneous preferences, these agents will be repelled from one another

until they move outside one another’s community. This repulsion, however,

begins to be modified as additional agents are added to the model.

For example, suppose now that three new agents (c, d, and e) of the

opposite type are placed in close proximity to the original two. Agents a

and b will still repel one another, but will also both be attracted to c, d, and

e because they are different in type. This means that a might now tolerate

being close to b, because there is a chance to be in a strict minority relative

to c, d, and e.

A more formal way of thinking about these dynamics is to consider the

informational state of the agents as they make decisions. As each agent relies

on exactly the same decision rule and utility function, only two factors can

cause agents to make different movement decisions: their agent-type and

their information about the locations and types of other agents, which we

call the agent’s information set.

Consider how these two factors interact. Each agent’s information about

their surroundings is strictly defined by their radius of vision. As such,

this information set is position-dependent. A consequence of this position-

dependence is that as two agents move closer together, their information sets

become increasingly correlated. When they are adjacent, their information

sets are very nearly identical. For two agents that are of different types, this

near-identity of information sets will not necessarily lead to identical behav-

ior, because their types will lead them to have different interests. However,

for two agents that are of the same type, we should expect that their move-

ment decisions to be highly correlated. Thus, correlations in information
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sets will correspond to correlations in decisions about where agents want

to move. As the relocation process continues, local groups of target agents

will tend to move toward similar positions. This will in turn lead to further

information convergence about the agents in their respective neighborhoods.

In this way, similarity of information sets becomes its own attractor.

This attractive power of informational similarity is possible in our model

because of the focus on communities rather than neighborhoods. Neighbor-

hoods are fairly small, and can contain relatively few agents. However,

depending on their radius of vision, the communities relevant for agents can

be much larger geographically, and hence can contain many more agents.

For example, in our present model suppose we let Sr denote the set of cells

within distance r of any given cell, and consider vision radius, r = 8 (as

discussed in Section 3.2 above). Then it is readily verified that the rele-

vant community, S8, for any target agent, a, can contain as many as 197

agents. In this context, if we consider a neighborhood, S4, of radius 4 about

agent a (which less than the critical scale of d8 = 5.5), then it can also be

verified that S4 can contain at most 49 agents. Hence even if all agents in

neighborhood, S4, are also target agents, it is still quite possible that this

population is a strict minority in a’s community, C8. Moreover, as vision

radius r increases, the maximum-population size of Cr grows in proportion

to r2.25

More generally, considerations of both (i) neighborhoods versus commu-

nities and (ii) the overlap between agents’ information sets offer possible

explanations of the systematic changes in critical scales and median cluster

sizes as vision radius changes. First for small radii, r, since the communi-

ties of agents are not much larger than their immediate neighborhoods, no

equilibrium is possible in which target agents have even a few other target

agents as neighbors. It is only when r becomes sufficiently large relative

to local neighborhoods that sizable clusters of target agents are possible in

25Here it is worth noting that this dominating influence of community over neighbor-
hood will remain true even if the agents discount their interest in other agents based on
distance separation — so long as discounting is not too severe. For example, if agents at
distance r are discounted in a manner proportional to r−α, then the “effective” community
population will continure to grow with r as long a α < 2.

24



equilibrium. Moreover, as r increases, the overlap between the communities

(information sets) of adjacent agents must also increase, so that adjacent

agents are more likely to share minority positions in their similar communi-

ties. These two factors together thus help to account for the initial growth in

both critical scale values and median cluster sizes as r increases from small

values.

At the other extreme, recall that when r is maximal and all agents are

visible to each other, no agent can be in a strict minority. In this extreme

case target agents will be equally dissatisfied at all locations. In particular

locations near target agents will be no more attractive than other locations.

But as r decreases from this extreme, information sets will differ between

locations, and in particular, will now be more correlated at locations close

to one another. So as the system approaches equilibrium, with many target

agents already satisfied, it is more likely that locations close them will also

yield satisfaction for relocating target agents. So again one can expect to

see larger clusters of target agents appearing in equilibrium as r decreases

from its maximal value.

5 Conclusions

We set out to investigate the robustness of Schelling’s famous segregation

result, subjecting it to the most stringent test that we know. Our model

shows that MHP utility functions, where agents want to be in the smallest

minority, can themselves create segregated clusters. So long as agents have

only partial information about their entire city, and consider their commu-

nity to be a few blocks in size, we find robust segregation in equilibrium.

This result, combined with those previously established, show the over-

whelming prevalence of segregation when agents base their decisions on

racial preferences. So long as agents all base their decisions on the same

property, regardless of their attitudes towards it, we will tend to find seg-

regation in a population. In this model, we aimed to provide the strongest

possible test of this hypothesis, by having agents actively seek out those

that are different than themselves. However, by adding the very weak, re-
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alistic assumption that people care about their community rather than just

their immediate neighbors, we find that individuals still typically end up in

a segregated state.

This result tells us two things: First, it tells us that Schelling’s original

model is extremely robust to various kinds of perturbation. Second, that

because of this robustness, we have a single macrobehavior that could be

supported by a wide variety of underlying micromotives. Let us consider

each in turn.

The robustness of Schelling’s original model can be best explained by

the fact that the underlying dynamic relies only on a tipping phenomenon.

So long as all the agents have the same structure to their preferences, initial

innocuous movements will quickly cascade across the entire population, and

we have segregation as an absorbing state of the model. In our model, we

saw that informational similarities were sufficient for this cascade to occur.

Informational similarities result in highly correlated movement decisions,

and as agents move more toward each other, their information sets become

increasingly similar. This is a rather different dynamic from the standard

Schelling model. In the original model, we get cascades of movement be-

cause agents were weakly repelled by agents of a different type, and once

enough of their fellows have moved out of their neighborhood, their thresh-

old for happiness is no longer met, and they move themselves. This creates

a separating equilibrium, in which each type is most easily satisfied by being

amongst its own. Nothing in that model relies on informational similarities.

But in each model, a cascade of segregation occurs and quickly takes over

the population.

This robustness reveals why Schelling’s initial insight is so essential. We

cannot argue from the observation of a macrobehavior to an understand-

ing its micro-foundations without a great deal of additional investigation.

While determining whether a model’s results are robust or not is an essen-

tial component to most model validation, robust models can pose their own

unique scientific challenges. When we have a model with very fragile results,

where the phenomenon under study only manifests itself under quite limited

conditions, we can often be in a superior epistemic position. If the fragile
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model’s assumptions are appropriately realistic and calibrated against em-

pirical information, then we have a much better chance of having captured

the precise underlying dynamics for the macrophenomenon in question. This

suggests that intervention strategies can be more easily studied and imple-

mented. However, with robust modeling results the same phenomenon can

be overdetermined by competing explanations. As such, we learn less about

the empirical phenomenon than we do in the fragile cases; we cannot identify

what micro-dynamic is correct without further study.

Although segregation is extremely robust in the family of Schelling-like

models, not all cities are massively segregated and perhaps some cities are

well-integrated. This leads to the unsurprising observation that these models

do not capture the precise population dynamics unfolding in cities, which is

unsurprising given their simplicity. However, they remain important tools

both for fundamental understanding of population dynamics, but also for

thinking about the effects of potential policy interventions.

Segregation’s robustness suggests that most policy interventions are likely

to fail to prevent one of the many possible micro-dynamics from taking over

and continuing to drive segregation. But this prediction is testable. If we

can find and study full or partially integrated communities, then we would

discover that the Schelling model and its variations fail to capture some

feature of the real world that is essential for a proper understanding of the

segregation phenomenon. So while we have seen that the original Schelling

model is quite robust, it is possible that it is too robust. Given its strong

predictions of the near-certainty of segregation, this robustness makes it easy

to mount challenges to the completeness of the model.
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Appendix

In this Appendix we derive the normalization term required for the zero-
expectation condition that δa(d) = 0 hold for all d-neighborhoods. In par-
ticular, we calculate the conditional expectations of both Na

0 (d) and Na
1 (d)

given the presence of agent, a, and use these to normalize the expected dif-
ference, Na

0 (d) − 2 Na
1 (d). To do so, we begin by observing that the null

hypothesis of random assignments of each agent type to distinct cells on
the torus grid of 1225 (= 352) cells yields a standard “urn sampling” prob-
lem with associated hypergeometric distributions for the random variables,
Na

0 (d) and Na
1 (d). But given the population sizes of 166 agents of each type,

these distributions are well approximated by binomial distributions (which
technically involves sampling with replacement, where more than one agent
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can in principle occupy the same cell). Given this approximation, and re-
calling from the text that nd denotes the number of distinct cells within
distance d of the cell occupied by agent a (which is the same for all cells),
the condional expectation of Na

0 (d) given the presence of a is simply

E[Na
0 (d)|a] = nd p0

where p0 = (2 · 166)/(352 − 1) = 332/1224 is the probability that any given
cell other than a’s cell is occupied by a reference (type 0) agent. Similarly
the condional expectation of Na

1 (d) given the presence of a is of the form

E[Na
1 (d)|a] = nd p1

where p1 = (165)/(352 − 1) = 165/1224 is the probability that any given
cell other than a’s cell is occupied by one of the other 165 target (type 1)
agents. Thus it follows at once that

E[Na
0 (d)− 2 Na

1 (d)|a] = nd p0 − 2nd p1

= nd (p0 − 2p1)

= nd (332− 2 · 165)/1224

= nd/612

and hence from (3) that for all d,

δa(d) = E[Na
0 (d)− 2 Na

1 (d)|a]− nd/612 = 0

must hold under these assumptions.
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