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The logical theory of branching space times, which provides a relativistic framework for
studying objective indeterminism, remains mostly disconnected from discussions of
space time theories in philosophy of physics. Earman has criticized the branching ap
proach and suggested “pruning some branches from branching space time.” This article
identifies the different order theoretic versus topological perspective of both discus
sions as a reason for certain misunderstandings and tries to remove them. Most impor
tant, we give a novel, topological criterion of modal consistency that usefully general
izes an earlier criterion, and we introduce a differential geometrical version of branching
space times as a non Hausdorff ðgeneralizedÞ manifold.

1. Introduction. Discussions of determinism and indeterminism play an
important role in many areas of philosophy. In philosophy of science, they
have acted as probes into the basic structure of many physical theories; in
philosophical logic, such discussions have triggered the development of a
number of different logical systems, some of which have found application
in computer science.

When it comes to defining indeterminism, one can discern two related
but technically different approaches. The basic idea behind indeterminism
is that given the way things are at one moment in time, more than one future
course of events is possible. One way to spell this out is to start with a class
of separate possible courses of events and the notion of a state at a moment.
If the same state occurs in at least two different courses of events that dis-
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agree about the future development after the respective occurrences, the
class is indeterministic. If that class is given via a scientific theory, that the-
ory is accordingly diagnosed to be indeterministic. As a way of classifying
scientific theories, this approach was pioneered by Montague ð1962Þ. After
several refinements ðsee, e.g., Earman 2006Þ, many of which were triggered
by specific issues of space-time theories, this approach grounds the gener-
ally accepted definition of indeterminism for scientific theories: “a theory is
deterministic if, and only if: for any two of its models, if they have instan-
taneous slices that are isomorphic, then the corresponding final segments
are also isomorphic” ðButterfield 2005Þ. A different way to model indeter-
minism is to start not with separate courses of events ðcalled “models” in the
above quote, but see sec. 2Þ to be matched via their states at moments but
with a unified structure of moments within which one can identify the pos-
sible courses of events—histories—as substructures. This approach is more
in line with an indexical understanding of branching future possibilities, ac-
cording to which different possible courses of events can literally share a past
segment. Such branching history structures were developed in Prior’s tense
logic ðPrior 1967Þ; an important early paper is Thomason ð1970Þ. In so-
called branching time ðBT; a somewhat misleading label, as time does not
branch, only temporal histories doÞ, a single history is pictured as a line-
arly ordered set of moments carved from a global partial ordering of mo-
ments. BT is used as a background for the “seeing to it that” logic of agency
ðBelnap, Perloff, and Xu 2001Þ and arguably corresponds well to the phe-
nomenology of an open future. However, the framework is nonrelativistic:
a moment ðan element of the orderingÞ has to represent all of space simul-
taneously.

Theories of branching space-times ðBSTÞ extend the branching histo-
ries idea by taking histories to be space-times rather than linearly ordered
chains of moments. Belnap’s version of BST ðBST92; Belnap 1992Þ pro-
vides a mathematically rigorous theory of objective indeterminism in a rel-
ativistic setting. BST92 retains BT’s underlying algebraic approach of start-
ing with a partially ordered set that can be called Our World as it represents
all events that are, were, or will be possible. The notion of modal consis-
tency, that is, possible co-occurrence within a single consistent course of
events, which in the case of BT comes down to order relatedness ðlinearityÞ,
has to be extended: in the case of BST92, consistency is taken to mean the
existence of a common upper bound ðtwo events are compatible if there is,
so to speak, a perspective from which both events have occurredÞ. Build-
ing on that definition, the histories in Our World are defined as maximally
modally consistent subsets. These histories represent the possible courses
of events in our world—complete space-times—that branch off from one an-
other at choice points whose future light cones differentiate the histories.
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Despite its relativistic soundness and some applications to physical theo-
ries ðe.g., Placek 2010Þ, BST has not been much referenced in discussions
of space-time theories, even when such discussions are concerned with ques-
tions of determinism and indeterminism. In fact, BST92 and some related
BST theories have received a fair share of critique on the basis of techni-
cal considerations of the space-time models of general relativity ðEarman
2008Þ. Some of that criticism does not apply to BST92 since it only points
out conceptual unclarities in relatives of that framework and not in BST92
itself, but there remains an important point of criticism in that BST92 cor-
responds poorly to general relativity’s background in differential geometry.
While some recent publications ðe.g., Placek and Belnap 2012Þ have begun
to address this worry, we agree that so far, no extant formal specification of
BST fully meets the critique.

This article spells out an overarching framework that is meant to do jus-
tice both to the logical aspects of BST and to the physical considerations
supporting general relativistic space-time theories. It will be proved that our
framework, which deviates from the mentioned theory of BST92 in some
technical details, is truly a theory of branching ðin the sense of logicÞ space-
times ðin the sense of general relativityÞ.

2. Terminology. When discussing formal models that incorporate modal-
ity, such as theories of branching histories, it is important to use terminol-
ogy that allows some necessary distinctions. Modal consistency ð“modal
flatness”Þ is usually a property of substructures and not of a full structure,
which incorporates different alternatives and is therefore meant to be mod-
ally inconsistent. We suggest distinguishing

• a logical theory, specified via a set of axioms in some formal lan-
guage,

• models of a logical theory, that is, structures fulfilling the axioms,
• a physical theory, which normally should not be identified with some
axiomatic framework,

• a solution to the equations of the theory, which is a mathematical
structure and can often be identified with a history ða complete pos-
sible course of eventsÞ, and

• the metaphysical notion of a world as something that is unified by
“suitable external relations” ðLewis 1986, 208Þ.

It is common to identify the notions of model, solution to the equations,
history, and ðpossibleÞ world. This identification is not mandatory, how-
ever, and in fact positively harmful when it comes to BST. A history ðpos-
sible course of eventsÞ indeed has to be “modally flat,” containing no mod-
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ally incompatible events. In the case of BST, models contain more than one
history, and each model ðin the logical senseÞ specifies a world ðin the given
metaphysical senseÞ. Following Belnap, we propose to call such a world
ða model of BSTÞ “Our World” rather than a “possible world,” since the no-
tion of a possible world tends to trigger the image of modal consistency
ðwhile, to repeat, this is not part of the definition of what a world isÞ.

3. An Overview of BST92. Here we give the axiomatic basis of BST92,
due to Belnap ð1992, 2003Þ. Later on we will deviate from this framework
in a small but substantial matter of topological detail, in order to move it
closer to general relativity.

A model of BST92 is a nonempty partial order W; ≤ ih ða nonempty set
W together with a transitive, antisymmetric relation ≤ Þ subject to the set
of constraints given below.1 Elements ofW are called possible point events,
or, briefly, events. Let H ⊆℘W be the set of maximal upward-directed sub-
sets of W. ðIn a partial order, a set is upward directed iff for any two of its
elements a and b, there is an element c such that a ≤ c and b ≤ c. We often
shorten this to “directed.”Þ Elements of H , that is, maximal directed subsets
h ⊆W , are called histories. A chain in W is a linear subset, that is, a subset
c ⊆W such that for any x; y ∈ c we have either x ≤ y or y < x.

The axioms of BST92 are as follows:

• W; ≤ ih is a nonempty, dense partial order without maxima.
• Each lower-bounded chainC ⊆W has an infimum in W , written infC.
• Each upper-bounded chain C ⊆W has a supremum in h ðsuphCÞ for
each history h ∈ H for which C ⊆ h.

• ðPrior choice principleÞ If C ∈ h2 h0 is a lower-bounded chain in h
none of whose elements is an element of h0, then there is a choice
point c ∈ h \ h0 such that c is maximal in h \ h0, and c < C ði.e., for
all e ∈ C, we have c < eÞ.

Note that by the given definition, histories are downward closed: if e ∈ h
and f ∈W such that f ≤ e, then also f ∈ h. Accordingly, if C is a lower-
bounded chain in history h, then infC ∈ h as well.

As a first link with space-time theories, we can give a generic definition
of the causal and the chronological past and future of events in a BST92
model, as follows:

Definition 1. Given a BST92 model W; ≤ ih , an event e ∈W lightlike pre
cedes f ∈W ðin symbols: e◁ f Þ iff e ≤ f and there is only a single max-

1. We will also use the relation symbol “< ,” which is defined in the usual way: x < y if
and only if ðiffÞ x ≤ y and x ≠ y.
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imal chain that has e as its first and f as its last point. Event e chronolog
ically precedes f ðin symbols: e ≪ f Þ iff e < f and it is not the case that
e◁ f .

On the basis of these notions, we can define the notions of the causal and
the chronological future ðand analogously, pastÞ of an event e ∈W , as usual:

Definition 2. Given a BST92 model W; ≤ ih and some e ∈W , the causal
future of e, J1ðeÞ, and the chronological future, I1ðeÞ, are defined as fol-
lows:

J1ðeÞ :5 f f ∈W j e ≤ f g; I1ðeÞ :5 f f ∈W j e ≪ f g:

The corresponding past notions are

J ðeÞ :5 f f ∈W j f ≤ eg; I ðeÞ :5 f f ∈W j f ≪ eg:

4. The Hausdorff Property in Space-Time Theories. A topological space
hX;Ri, where X is a nonempty set and the topology R ⊆ ℘X is the col-
lection of open sets, is Hausdorff if any two elements of X can be separated
by disjoint open sets.2 Hausdorffness forbids, intuitively speaking, the ex-
istence of “unseparably close points” or perhaps “doubled points” or “points
that occupy the same position.” The branching real line pictured in figure 1
is a simple example of a non-Hausdorff space. Following Hajicek ð1971Þ,
who credits Geroch for the notation, we will write xYy to indicate that the
points x and y violate the Hausdorff condition, that is, that x and y cannot
be separated by disjoint open sets. In figure 1 we have 01Y02. The notation
usefully suggests graphically that in such a case, x and y “branch off ” from
some common trunk, like the left part of the branching lines of figure 1. In
fact, in our examples below such x and y will always be different limits of
a single converging sequence.

As defined, BST92 does not come with a topology. One natural topology
has recently been discussed extensively by Placek and Belnap ð2012Þ. With
respect to this topology, the Hausdorff property generically fails in models
of BST92. Models of BST92 are not locally Euclidean, however, and thus
do not form ðgeneralizedÞ manifolds.3

2. For a simple introduction to relevant formal definitions and background, see, e.g.,
Mendelson ð1990Þ.
3. A manifold is, roughly, a topological space that is locally Euclidean and that, therefore,
locally “looks like” Euclidean space of a specific dimension. Malament ð2012Þ gives a
nice introduction to this and other notions from differential geometry. Normally, man
ifolds are required to be Hausdorff. A generalized manifold is allowed to be non
Hausdorff.
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Is non-Hausdorffness a good idea for grounding BST? The discussion of
this issue is somewhat tangled. Earman ð2008Þ in his overview of “indi-
vidual branching” for single space-times concludes that the only viable path
to individually branching space-times comes from non-Hausdorff models
because other approaches ðe.g., so-called trousers worldsÞ appear unfeasible.
While we follow Earman in this assessment, we want to stress that BST—at
least in the form of BST92 and in the form that we are trying to develop fur-
ther here—is not meant to give a picture of a single space-time that some-
how branches ðperhaps like an amoeba undergoing fissionÞ but to integrate
several histories within one logical model. The branching ðoverlappingÞ
histories are individually nonbranching and, in fact, Hausdorff space-times.
Still, it is useful to look at the physicists’ discussion of non-Hausdorffness
that Earman references.

Inmathematical physics, Hajicek ð1971Þ proves an important result about
solutions to the Einstein field equations whose maximal analytic extensions
are non-Hausdorff: roughly, a non-Hausdorff space-time either fails to be
strongly causal or admits bifurcating geodesics. Hajicek interprets this result
as showing that “all such ½i.e., non-Hausdorff � space-times must be weakly
acausal” ð75Þ, which would indeed be reason enough for a physicist to shun
non-Hausdorff space-times. It is interesting to see how Hajicek supports his
interpretation of his theorem. Commenting on bifurcating curves, he writes:
“It is easily seen that such curves can only exist in a non-Hausdorff space.
Then, if we have some system of ordinary differential equations which has
locally a unique solution . . . it is immediate that this system cannot have
two different solutions . . . unless these solutions form a bifurcate curve.
Therefore, in view of the classical causality conception coinciding with de-
terminism it is sensible to rule out the bifurcate curves” ð79Þ. The dialectics
is thus as follows: a result from mathematical physics ðHajicek’s theorem 4Þ
establishes ðroughlyÞ that in non-Hausdorff space-time models either there
is a violation of strong causality or there are bifurcating curves. An appeal

Figure 1. Branching real line as a simple non Hausdorff space. A basis for the
topology is given by the open intervals in both tracks, reaching into the common
part on the left.
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to determinism rules out the latter; considerations of physicality rule out the
former. This amounts to rejecting non-Hausdorff models.

We agree with this argument completely. If BST were to give models
of a single space-time, these models should not contain bifurcating curves,
and most probably they should not be weakly acausal either, so that non-
Hausdorffness would be ruled out. However, if one takes up the issue of
non-Hausdorff models in order to build formal models for indeterminism,
which is what drives the development of BST, then the above argument
obviously pulls no weight. The main challenge for bringing together BST
and general relativity, in our view, lies not in non-Hausdorffness but in the
failure of BST92 to provide generalized manifolds.4

5. Simple Branching: Generalized Minkowskian Manifolds. We move
on to the construction of simple branching models that provide a bridge
between the logical, order-theoretic point of view of BST ðhistories, i.e.,
single space-times, as directed setsÞ and the topological point of view of
general relativity ða single space-time as a differential manifoldÞ.5 The main
technical challenge is to define structures in which two or more space-times
are pasted together in such a way that the resulting object is locally Euclid-
ean and makes sense as a model of objective indeterminism. In this arti-
cle, we discuss the simplest case of such pasting, which is to paste together
m Minkowski space-times ðof dimension n > 1Þ at the origin, to arrive at
a structure Mn

m. There are various choices for this pasting, depending on
whether the m origins are represented by one or by m different points in the
resulting structure and on how the rim of the future light cone at the origin
is handled. BST92’s prior choice principle demands identifying the m or-
igins as one point but keeping separate the rim of the future light cones
above the origin. This is what breaks local Euclidicity: on such a structure,
one cannot define a locally Euclidean topology ðunless one gives up con-
nectedness, which is not an interesting optionÞ. Since we want to define
generalized manifolds, we have to ascertain local Euclidicity. This means
that we need to differ from BST92 in the pasting construction.

Our choice is to define structures of m-fold branching, n-dimensional
Minkowski space-time Mn

m as follows:6

4. We hereby follow Earman ð2008, 198 99Þ: “topological spaces that are not locally Eu
clidean cannot be assigned a differentiable structure, and such a structure is essential in
formulating the very notion of a Lorentzian metric and in formulating the Einstein field
equations.” Thus, if we want to remain close to general relativity, we had better arrive
at a generalized manifold.

5. For reasons of space, the following discussion is quite compressed. For a more de
tailed exposition, see Müller ð2011Þ.
6. For a similar construction in the context of BST92, which does not lead to general
ized manifolds, see, e.g., Wrónski and Placek ð2009Þ. An Mn

m like construction is given
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Definition3 ðMn
mÞ. Them-fold branching, n-dimensional Minkowski space-

time Mn
m is defined from the n-dimensional Minkowski space-time Mn ðfor

simplicity, we use Rn with the Minkowskian ordering ≤ MÞ by setting a to-
be-multiplied region V to be the future light cone of the origin, including the
rim of the light cone and the origin itself:

V :5 J1ð0Þ5 fx ∈Mn j 0 ≤ Mxg;
V :5Mn V ; Vi:5 V � fig;

defining m layers, for i5 1; : : : ; m, to be

Ln
i :5 ðV � f1gÞ [ Vi;

and pasting them via

Mn
m :5 ⋃m

i 1
Ln
i :

The ordering ≤ on Mn
m is the union of the usual Minkowskian orderings in

the layers, and the locally Euclidean topology R is given via the countable
basis of open balls with rational center coordinates x and rational radius r in
the finitely many layers i5 1; : : : ; m,

Biðx; rÞ :5 fh y; ji ∈ Ln
i j dðx; yÞ < r& j ∈ f1; igg:

Note that the layers themselves, each of which is homeomorphic to Rn, are
open sets in this topology and that for i ≠ j, Ln

i 2 Ln
j 5 Vi. Note also that

yVi 5 yJ1ð0Þ � fig.

in Visser ð1996, 251 55Þ; the book contains many pointers to relevant literature. Visser
calls his construction a “branched spacetime” ð252Þ, without making any connections
to the philosophical/logical discussions about BST, however. Penrose ð1979, 593Þ has
a suggestive drawing of a branching space time; while Penrose is not explicit about the
topology, and his figure 12.3a may suggest choice points à la BST92, he seems to have
our option in mind as well since he writes: “on each branch the wavefunction starts
out as a different eigenvector” ð594; italics mineÞ. Deutsch ð1991Þ refers to this discus
sion; his remarks about “a larger object which has yet to be given a proper geometrical
description” ð3207Þ may be read as pointing in the direction of something like our Mn

m

structures or their generalizations mentioned below. McCabe ð2005Þ reproduces Pen
rose’s figure. He remarks that such figures themselves are open to different interpreta
tions and do not need to be read as implying non Hausdorffness; this is in line with our
view that there are in fact multiple options for pasting. However, McCabe does not
discuss in much detail the price that has to be paid for dropping local Euclidicity in
avoiding non Hausdorffness, remarking that “it is a debate which has not been con
ducted in the literature” ð670Þ. We agree with Earman that local Euclidicity has to be
taken very seriously, and we will continue to hold on to it.
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6. Capturing Modal Consistency. Our structures Mn
m are still partial or-

ders, as in BST92, but we want to move from the order-theoretic to a gen-
eralizable, topological characterization of modal consistency. Intuitively
and by the pasting construction, the maximal modally consistent subsets of
Mn

m should be exactly the layers Ln
i , i5 1; : : : ; m. These cover the whole

of Mn
m without any gaps or holes, and they are also individually such that

in each layer, each space-time point of Minkowski space-time Mn occurs
exactly once. These layers are also the histories in the sense of the usual
order-theoretic definition of BST92: each layer is a maximal directed set
in Mn

m.
7 The question before us is how to capture this intuitive notion of

modal consistency in purely topological terms.
Hajicek ð1971Þ defines the useful notion of an H-submanifold of a Y-

manifold ðwhere the H stands for “Hausdorff,”Y graphically represents non-
Hausdorffness as branching, and a Y-manifold is a generalized manifoldÞ:

Definition 4 ðH-manifoldÞ. Given a Y-manifold M , a subset A ⊆M is an
H submanifold iff A is open, connected, Hausdorff, and maximal with re-
spect to these properties ði.e., every proper superset of A is not open, not
connected, or not Hausdorff Þ.

Hajicek ð1971Þ also suggests to write YL
M for the set of points in M that are

non-Hausdorff related to some point in L,

YL
M :5 fx ∈M j ∃y ∈ L xYyg:

On our way toward a useful generalized notion of modal consistency, we
note some facts about the points in Mn

m that are non-Hausdorff related to
some other point ðobviously there are no such points in case m5 1Þ:

Lemma 1. Let M :5Mn
m for some n ∈N and some m ≥ 2. Then for x

5 hx; ii; y5 hy; ji ∈ M we have

xYy iff x5 y; i ≠ j; and x ∈ yJ1ð0Þ:
Accordingly,

YM
M 5 fhx; ii j x ∈ yJ1ð0Þ& i ∈ f1; : : : ;mgg;

and for L :5 Ln
i a layer ði ∈ f1; : : : ; mgÞ, we have

7. Obviously the layers are directed sets, being order isomorphic to Mn, which is di
rected. For maximality, observe that any “new” element to be added to Ln

i has to come
from Vj with j ≠ i; by the definition of the ordering, the resulting superset of Ln

i is not
directed.
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YL
M 5 fhx; ji j x ∈ yJ1ð0Þ& j ∈ f1; : : : ; mg& j ≠ ig:

Using a further lemma, we can then prove that the layers of Mn
m are in fact

H-submanifolds:8

Lemma 2. Let M 5Mn
m for some n, m, and let L :5 Ln

i ⊆ M be a layer
ði ∈ f1; : : : ; mgÞ. Then L is an H-submanifold of M .

However, the notion of an H-submanifold is not sufficient as an analysis of
modal consistency, given that we also want the other direction of lemma 2:

Fact 1. M :5 M 2
2 has an H-submanifold that is not equal to one of the

layers Ln
i , i5 1; 2.

Proof by example. We divide the rim of the forward light cone of the ori-
gin into a left and a right part, which are allowed to overlap at the origin:

Jl :5 fht; xi ∈ J1ð0Þ j x ≤ 0g;
Jr :5 fht; xi ∈ J1ð0Þ j x ≥ 0g:

We have Jl [ Jr 5 J1ð0Þ and Jl \ Jr 5 f0g. Now consider the set

A :5 M ððJl � f1gÞ [ ðJr � f2gÞÞ;
that is, A is the whole of the pasted space M without half of the rim of the
forward light cone in each layer. Note that the origin in both layers is
removed in constructingA, which makes it intuitively weird. But as a fact,
A is an H-submanifold of M . This follows directly from Hajicek ð1971,
theorem 2Þ. So, we know that not every H-submanifold can be taken to be
a history.

By a more detailed consideration of this and other examples, we are finally
led to our official topological definition of a maximal consistent set, or a
history:9

Definition 5. Given M 5Mn
m for some n and m, a history in M is a subset

h ⊆M that is maximal with respect to the properties of being ðiÞ open,
ðiiÞ connected, ðiiiÞ Hausdorff, and ðivÞ for each subset C ⊆ h, if yC ≠ ∅,
then h \ yC ≠ ∅ as well.

8. For details, see Müller ð2011Þ.
9. For details, see again Müller ð2011Þ.
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As a test for the usefulness of this definition, we can now indeed prove
both directions of the analogue of lemma 2:

Lemma 3. Given M 5Mn
m for some n and m, a subset A ⊆M is a history

according to definition 5 iff A5 Ln
i for some i ∈ f1; : : : ; mg.

Definition 5 can be applied to any H-manifold; it is not limited to the
structures Mn

m with respect to which it was motivated. So we have arrived
at a general definition of modal consistency in BST.

7. Conclusion. In this article, we have given an overview of the main chal-
lenges facing the construction of explicit formal models for indeterminism
in a general relativistic setting. The best extant candidate framework for such
models is Belnap’s BST92. Some criticisms leveled against the project of con-
structing BST seem misplaced, as they rely on the idea that in BST, a single
space-time should somehow branch or bifurcate. We agree that this should
be avoided. The branching in BST is of a modal nature, and as single space-
times are modally consistent, they themselves do not branch. The BST ap-
proach, once it is followed with mathematical rigor and once a topology is
defined, does lead to non-Hausdorff models, however. Again, a fair share of
the criticism of non-Hausdorff models only applies to single space-times and
not to BST structures. There is one specific challenge that has not been met
so far, however: BST92 does not define generalized manifolds, and there-
fore the link with general relativity is not satisfactory. We believe that we
have met this challenge, at least for simple structures.

In this article, we have defined a method for pasting Minkowski space-
times in a locally Euclidean way, such that the resulting structures are gen-
eralized manifolds. We have also given a novel definition of modal consis-
tency, which is purely topological and which generalizes the order-theoretic
definition in terms of directedness on which BST92 is built.

A lot remains to be done. So far we have only investigated the simplest
structures: pasted Minkowski space-times. We propose that locally, any
useful BST should look like one of theMn

m we have defined here. The study
of global features of our BST models, however, has to be left for future
work.
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