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Testing a Precise Null Hypothesis:

The Case of Lindley’s Paradox
Jan Sprenger*y
Testing a point null hypothesis is a classical but controversial issue in statistical meth-
odology. A prominent illustration is Lindley’s Paradox, which emerges in hypothesis
tests with large sample size and exposes a salient divergence between Bayesian and fre-
quentist inference. A close analysis of the paradox reveals that both Bayesians and fre-
quentists fail to satisfactorily resolve it. As an alternative, I suggest Bernardo’s Bayesian
Reference Criterion: ðiÞ it targets the predictive performance of the null hypothesis in
future experiments; ðiiÞ it provides a proper decision-theoretic model for testing a point
null hypothesis; ðiiiÞ it convincingly addresses Lindley’s Paradox.

1. Introduction: Lindley’s Paradox. Lindley’s Paradox exposes a salient
divergence between subjective Bayesian and frequentist reasoning when a
parametric point null hypothesis H0 : v5 v0 is tested against an unspecified
alternative H1 : v ≠ v0. Since the paradox has repercussions for the interpre-
tation of statistical tests in general, it is of high philosophical interest.

To illustrate the paradox, we give an example from parapsychological
research ðJahn, Dunne, and Nelson 1987Þ. The case at hand involved the test
of a subject’s claim to affect a series of randomly generated zeros and ones
ðv0 5 0:5Þ by means of extrasensory capacities ðESPÞ. The subject claimed
that his ESP would make the sample mean differ significantly from 0.5.

A very large data set ðN 5 104; 490; 000Þ was collected to test this hy-
pothesis. The sequence of zeros and ones, X1; : : : ; XN , was described by a
binomial model Bðv;NÞ. The null hypothesis asserted that the results were
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generated by a machine operating with a chance of H0 : v5 v0 5 1=2,
whereas the alternative was the unspecified hypothesis H1 : v ≠ 1=2.

Jahn et al. ð1987Þ report that in 104,490,000 trials, 52,263,471 ones and
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52,226,529 zeros were observed. Frequentists would now calculate the z-
statistic, which is

zðxÞ :5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N

v0ð12 v0Þ

s
1

N o
N

i51

xi 2 v0

� �
≈ 3:61;

and reject the null hypothesis on the grounds of the very low p-value it
induces:

p :5 PH0
ð zðX Þ ≥ zðxÞ Þ ≪ 0:01:jjjj

Thus, the data would be interpreted as strong evidence for the presence of
ESP.

Compare this to the result of a Bayesian analysis. Jefferys ð1990Þ assigns
a conventional positive probability pðH0Þ5 ε > 0 to the null hypothesis, a
uniform prior over the alternative, and calculates a Bayesian measure of
evidence in favor of the null, namely, the Bayes factor. The evidence x
provides for H0 vis-à-vis H1 is written as B01 and defined as the ratio of prior
and posterior odds:

B01ðxÞ :5 pðH0 j xÞ
pðH1 j xÞ

� pðH1Þ
pðH0Þ ≈ 12:

Hence, the data clearly favor the null over the alternative and do not provide
evidence for the presence of ESP.

This divergence between Bayesians and frequentists has, since the sem-
inal paper of Lindley ð1957Þ, been known as Lindley’s Paradox. In Lindley’s
original formulation, the paradox is stated as follows: assume that we com-
pare observation sets of different sample size N, all of which attain, in fre-
quentist terms, the same p-value ðe.g., the highly significant value of .01Þ. In
that case, asN increases, theBayesian evaluation of the datawill become ever
more inclined toward the null hypothesis. Thus, a result that seems to refute
the null from a frequentist point of view can strongly support it from a
Bayesian perspective. Put formally ðfor the case of Gaussian modelsÞ:

Lindley’s Paradox: In a Gaussian model Nðv; j2Þ with known vari-
ance j2, H0 : v5 v0, H1 : v ≠ v0, assume pðH0Þ > 0 and any regular

proper prior distribution on fv ≠ v g. Then, for any testing level
0

a ∈ ½0; 1�, we can find a sample size NðaÞ and independent, identically
distributed data x5 ðx1; : : : ; xNÞ such that
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1. The sample mean �x is significantly different from v0 at level a;
2. pðH0 j xÞ, that is, the posterior probability that v5 v0, is at least as

big as 12 a ðcf. Lindley 1957, 187Þ.
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As the ESP example makes clear, Lindley’s Paradox actually extends be-
yond Gaussian models with known variance. It exposes a general diver-
gence between Bayesians and frequentists in hypothesis tests with large
sample size.

In this article, I consider the following questions: First, which statisti-
cal analysis of the ESP example, and Lindley’s Paradox in general, is most
adequate? Second, which implications does Lindley’s Paradox have for the
methodological debates between Bayesians and frequentists? Third, does
our analysis have ramifications for the interpretation of point null hypothe-
sis tests? I will argue that both the subjective Bayesian and the standard
frequentist ways to conceive of Lindley’s Paradox are unsatisfactory and
that alternatives have to be explored. In particular, I believe that José Ber-
nardo’s approach ðthe Bayesian Reference Criterion, or BRCÞ holds con-
siderable promise as a decision model of hypothesis testing, both in terms of
the implied utility structure and as a reply to Lindley’s Paradox.

2. Testing a Precise Null Hypothesis: Frequentist versus Bayesian
Accounts. Lindley’s Paradox deals with tests of a precise null hypothesis
H0 : v5 v0 against an unspecified alternative H1 : v ≠ v0 for large sample
sizes. But why are we actually testing a precise null hypothesis if we know
in advance that this hypothesis is, in practice, never exactly true? For in-
stance, in tests for the efficacy of a medical drug, it can be safely assumed
that even the most unassuming placebo will have some minimal effect, pos-
itive or negative.

The answer is that precise null hypotheses often give us a useful ideal-
ization of reality. This is rooted in Popperian philosophy of science: “only
a highly testable or improbable theory is worth testing and is actually ðand
not only potentiallyÞ satisfactory if it withstands severe tests” ðPopper 1963,
219–20Þ. Accepting such a theory is not understood as endorsing the the-
ory’s truth but as choosing it as a guide for future predictions and theoret-
ical developments.

Frequentists have taken the baton from Popper and explicated the idea of
severe testing by means of statistical hypothesis tests. Their mathematical
rationale is that if the discrepancy between data and null hypothesis is large
enough, we can infer the presence of a significant effect and reject the null
hypothesis. For measuring the discrepancy in the data x :5 ðx1; : : : ; xNÞ
with respect to the postulated mean value v0 of a normal model, one ca-
nonically uses the statistic
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that we have already encountered above. Higher values of z denote a
higher divergence from the null, and vice versa. Since the distribution of
z usually varies with the sample size, some kind of standardization is
required. Many practitioners use the p-value or significance level, that is,
the “tail area” of the null hypothesis under the observed data, namely, p :5
PH0

ð zðX Þ ≥ zðxÞ Þjjjj .
On that reading, a low p-value indicates evidence against the null: the

chance that z takes a value at least as high as zðxÞ would be very small if
the null were indeed true. Conventionally, p < :05 means significant evi-
dence against the null and p < :01 very significant evidence. In the context
of hypothesis testing, it is then common to say that the null hypothesis is
rejected at the .05 level, and so on.

Subjective Bayesians choose a completely different approach to hypoth-
esis testing. For them, scientific inference obeys the rules of probabilistic
calculus. Probabilities represent honest, subjective degrees of belief, which
are updated by means of Bayesian Conditionalization. A Bayesian inference
about a null hypothesis is based on the posterior probability pðH0 j xÞ, the
synthesis of data x and prior pðH0Þ. Bayes’s theorem can be used to calcu-
late the posterior on the basis of the prior and the likelihood of the data.

If we investigate the source of Lindley’s Paradox, one might conjecture
that an “impartial” but unrealistically high prior for H0 ðe.g., pðH0Þ5 1=2Þ
is the culprit for the high posterior probability of the null. However, Lindley’s
findings persist if the analysis is conducted in terms of Bayes factors, like in
the ESP example. These measures of evidence are independent of the par-
ticular prior of H0. For instance, if the prior over the alternatives to the null
follows an Nðv0; ~j2Þ distribution, then the Bayes factor in favor of the null
can be computed as

B01ðxÞ5 pðH0 j xÞ
pðH1 j xÞ

� pðH1Þ
pðH0Þ 5

pðx j H0Þ
pðx j H1Þ

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11

N~j2

j2

r
e

2NzðxÞ2
2N12j2=~j2

;

which converges, for increasing N, to infinity as the second factor is bounded
ðBernardo 1999, 102Þ. This demonstrates that the precise value of pðH0Þ is
immaterial for the outcome of the subjective Bayesian analysis.

Why is it that this result diverges so remarkably from the frequentist
finding of significant evidence against the null? If the p-value, and conse-
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quently the value of zðX Þ5 c, remains constant for increasing N, we can
make use of the central limit theorem: zðX Þ converges, for all underlying
distributions with bounded second moments, in distribution against Nð0; 1Þ.
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Thus, as N → `, we obtain that cj ≈
ffiffiffiffi
N

p ð �X 2 v0Þ, and �X → v0. In other
words, the sample mean gets ever closer to v0, favoring the null over
the alternatives. For, the deviance between the variance-corrected sample
mean z and H0 will be relatively small compared to the deviance between
z and all those hypotheses in H1 that are remote from v0. By contrast, sig-
nificance tests do not consider the probability of the data under these al-
ternatives.

In other words, as soon as we take our priors over H1 seriously, as an
expression of our uncertainty about which alternatives to H0 are more likely
than others, we will, in the long run, end up with results that favor v0 over
an unspecified alternative. Bayesians read this as the fatal blow for frequent-
ist inference since an ever smaller deviance of the sample mean �x from the
parameter value v0 will suffice for a highly significant result. Obviously, this
makes no scientific sense. Small, uncontrollable biases will be present in any
record of data, and frequentist hypothesis tests are unable to distinguish
between statistical significance ðp < :05Þ and scientific significance ða real
effect is presentÞ. A Bayesian analysis, however, accounts for this insight: as
�X → v0, an ever greater chunk of the alternative H1 will be far away from �X ,
favoring the null hypothesis.

These phenomena exemplify more general and foundational criticisms of
frequentist inference, in particular the objection that p-values grossly over-
state evidence against the null ðCohen 1994; Royall 1997; Goodman 1999Þ.
For instance, even the minimum of pðH0 j xÞ under a large class of priors is
typically much higher than the observed p-value ðBerger and Sellke 1987Þ.

Still, also the subjective Bayesian stance on hypothesis tests is not en-
tirely satisfactory. Assigning a strictly positive degree of belief pðH0Þ > 0
to a precise hypothesis v5 v0 is a misleading and inaccurate representation
of our subjective uncertainty. In terms of degrees of belief, v0 is not that
different from any value v0 6 ε in its neighborhood. Standardly, we would
assign a continuous prior over the real line, and there is no reason why a
set of ðLebesgueÞ measure zero, namely, fv5 v0g, should have a strictly
positive probability. But if we set pðH0Þ5 0, then for most priors ðe.g.,
an improper uniform priorÞ the posterior probability distribution will not
peak at the null value but somewhere else. Thus, the apparently innocuous
assumption pðH0Þ > 0 has a marked impact on the result of the Bayesian
analysis.

A natural reply to this objection contends that H0 is actually an ideali-
zation of the hypothesis v2 v0 < εjj , for some small ε, rather than a precise
hypothesis v5 v0. Then, it would make sense to use strictly positive priors.
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Indeed, it has been shown that point null hypothesis tests approximate, in
terms of Bayes factors, a test of whether a small interval around the null
contains the true parameter value ðtheorem 1 in Berger and Delampady
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1987Þ. Seen that way, it does make sense to assign a strictly positive prior to
H0.

Unfortunately, this will not help us in the situation of Lindley’s Paradox:
whenN→ ,̀ the convergence results break down, and testing a point null is
no longer analogous to testing whether a narrow interval contains v ðBer-
nardo 1999, 102Þ. In the asymptotic limit, the Bayesian cannot justify the
strictly positive probability of H0 as an approximation to testing the hy-
pothesis that the parameter value is close to v0—which is the hypothesis of
real scientific interest.

This may be the toughest challenge posed by Lindley’s Paradox. In the
debate with frequentists, Bayesians like to appeal to “foundations,” but as-
signing a strictly positive probability to a precise hypothesis is hard to jus-
tify as a foundationally sound representation of subjective uncertainty.

Moreover, the Bayesian analysis fails to explain why hypothesis tests
have such an appeal to scientific practitioners, even to those that are sta-
tistically well educated. Why should we bother testing a hypothesis if only
posterior probabilities are relevant? Why even consider a precise hypothe-
sis if it is known to be wrong? The next section will highlight these ques-
tions and briefly discuss the function of hypothesis tests in scientific inquiry.

3. Intermezzo: A Note on Precise Hypotheses. Since both Bayesians and
frequentists struggle to deliver satisfactory responses to Lindley’s Paradox,
one may conjecture that the real problem is with testing a precise hypothesis
as such. For instance, if we constructed a 95% confidence interval for v in
the ESP case, it would not include v0. But it would be close enough to v0 as
to avoid the impression that the null was grossly mistaken.1 Hence, Lind-
ley’s Paradox seems to vanish into thin air if we only adopt a different fre-
quentist perspective.

However, this proposal is not satisfactory either. Confidence intervals do
not state which hypotheses are credible—they only list the hypotheses that
are consistent with the data, in the sense that these hypotheses would not be
rejected in a significance test. Therefore, confidence intervals are intimately
connected to significance tests and share a lot of their foundational prob-

1. A similar point can be made in the error-statistical framework ðMayo 1996Þ: only a
small discrepancy from the null hypothesis would be warranted with a high degree of

severity. Mayo speaks about acceptances and rejections, too, but in fact she is interested
in severely warranted discrepancies from the null, not in decisions to accept or to reject a
point null hypothesis.
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lems ðcf. Seidenfeld 1981; Sprenger 2013Þ. Second, confidence intervals do
not involve a decision-theoretic component; they are interval estimators. In
particular, they do not explain why tests of a precise null have any role in
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scientific methodology. Since any proper resolution of Lindley’s Paradox
should address this question, a confidence interval approach evades rather
than solves the paradox.

On this note, one ought to realize that tests of a precise null usually serve
two purposes: to find out whether an intervention has a significant effect
and, since any intervention will have some minute effect, to decide whether
the null hypothesis can be used as a proxy for the more general model. The
point null is usually much easier to test and to handle than any composite
hypothesis, so we have positive reasons to “accept” it, as long as the di-
vergence to the data is not too large.

This view of scientific inference is hardly compatible with an orthodox
Bayesian approach. For instance, the assumption pðH0Þ > 0 neglects that
hypothesis tests ask, in the first place, whether H0 is a reasonable simpli-
fication of a more general model—and not whether we entertain a high de-
gree of belief in a precise value of v. Also, point null hypothesis tests are by
definition asymmetric, but a subjective Bayesian analysis in terms of Bayes
factors or posterior probabilities is essentially symmetric.

In total, subjective Bayesians have a hard time explaining why infor-
mative and precise but improbable hypotheses should sometimes be pre-
ferred over more general alternatives. The challenge for the Bayesian con-
sists in modeling that we may be less interested in the truth of H0 than in
its usefulness. The next section presents an answer to this effect developed
by José Miguel Bernardo ð1999, 2012Þ.

4. The BRC Approach to Hypothesis Testing. This section presents a full
Bayesian decision model for point null hypothesis testing that addresses
Lindley’s Paradox: José Bernardo’s BRC ð1999, 2012Þ. The point consists
in shifting the focus from the truth of H0 to its predictive value and in
stipulating a specific utility structure. While classical Bayesian accounts of
hypothesis testing involve simple exogenous utilities ðe.g., a loss of zero for
correct decisions and one for wrong decisionsÞ and use the posterior
probability as the only criterion for accepting or rejecting the null, Ber-
nardo’s approach is based on endogenous, prediction-based utilities. In the
remainder, I sketch a simplified version of Bernardo’s BRC in order to
elaborate the main ideas of philosophical interest.

Since the work of R. A. Fisher, the replication of previously observed
effects has been recognized as a main goal of experimental research in sci-
ence and as a main motivation for significance tests ðcf. Schmidt and Hun-
ter 1997Þ. Therefore, a central component of Bernardo’s decision model
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focuses on the expected predictive accuracy of the null for future data.
Hence, we need a function that evaluates the predictive score of a hypothe-
sis, given some data y. The canonical approach consists in the logarithmic
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score log pðy j vÞ ðGood 1952Þ: if an event considered to be likely occurs,
then the score is high; if an unlikely event occurs, the score is low. This is a
natural way of rewarding good and punishing bad predictions.

A generalization of this scoring rule describes the score of data y under
parameter value v as qðv; yÞ5 a logpðy j vÞ1 bðyÞ, where a is a scaling
term, and bðyÞ is a function that depends on the data only. Informally
speaking, qð�; �Þ is decomposed into a prediction term and a term that de-
pends on the desirability of an outcome, where the latter will eventually turn
out to be irrelevant. This is a useful generalization of the logarithmic score.
Consequently, if v is the true parameter value, the utility of taking H0 as a
proxy for the more general model H1 is

Eqðv0; Y ÞdPY jv 5 aElog pðy j v0Þ pðy j vÞdy
1 EbðyÞpðy j vÞdy:

The overall utility U of a decision, however, should depend not only on the
predictive score, as captured in q, but also on the cost cj of selecting a
specific hypothesis Hj. As explained above, H0 should be preferred to H1

ceteris paribus because it is more informative, simpler, and less prone to the
risk of overfitting ðin case there are nuisance parametersÞ. Therefore, it is
fair to set c1 > c0. Writing Uð�; vÞ5 ∫qð�; Y ÞdPY jv 2 cj, we obtain

UðH0; vÞ5 aElog pðy j v0Þpðy j vÞdy1 EbðyÞpðy j vÞdy2 c0

UðH1; vÞ5 aElog pðy j vÞpðy j vÞdy1 EbðyÞpðy j vÞdy2 c1:

Note that the utility of accepting H0 is evaluated against the true parameter
value v and that the alternative is not represented by a probabilistic average
ðe.g., the posterior meanÞ but by its best unknown element, v. Much better
than subjective Bayesianism, this approach represents the essential asym-
metry in testing a point null hypothesis. Consequently, the difference in
expected utility, conditional on the posterior density of v, can be written as
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E
v∈V

UðH1; vÞ2 UðH0; vÞð Þpðv j xÞdv
 !
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5 aE
v∈V
Elog pðy j vÞ

pðy j v0Þ pðy j vÞ pðv j xÞdy dv1 EbðyÞpðy j vÞdy
2 EbðyÞpðy j vÞdy1 c0 2 c1

5 aE
v∈V
Elog pðy j vÞ

pðy j v0Þ pðy j vÞdy
 !

pðv j xÞdv1 c0 2 c1:

This means that the expected utility difference between inferring to the null
hypothesis and keeping the general model is essentially a function of the
expected log-likelihood ratio between the null hypothesis and the truemodel,
calibrated against a “utility constant” d*ða; c02 c1Þ. For the latter, Bernardo
suggests a conventional choice that recovers the well-probed scientific
practice of regarding 5 standard deviations as compelling evidence against
the null.2 The exact value of d* depends, of course, on the context—on how
much divergence is required to balance the advantages of working with a
simpler, more informative, and more accessible model ðBernardo 1999,
108Þ.

Wrapping up all this, we will reject the null if and only if Ev½UðH1; vÞ�
> Ev½UðH0; vÞ�, which amounts to the

Bayesian Reference Criterion: Data x are incompatible with the null
hypothesis H0 : v5 v0, assuming that they have been generated from the

probability model ðpð� j vÞ; v ∈ VÞ, if and only if

This
testin
mary

ger a
E
v∈V

pðv j xÞ Elog pðy j vÞ
pðy j v0Þ pðy j vÞdy

 !
dv > d*ða; c0 2 c1Þ: ð1Þ

approach has a variety of remarkable features. First, it puts hypothesis
g on firm decision-theoretic grounds, with predictive value being the pri-
criterion. This foundational soundness distinguishes BRC vis-à-vis fre-
quentist procedures.

2. This evidential standard was also used in the recent discovery of the Higgs particle.
For Bayesian justifications of this practice, see Berger and Delampady ð1987Þ and Ber-
nd Sellke ð1987Þ.
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Second, accepting the null, that is, using v0 as a proxy for v, amounts to
claiming that the difference in expected predictive success of v0 and the
true parameter value v will be offset by the fact that H is more elegant,

742 JAN SPRENGER
0

more informative, and easier to test. Hence, BRC does not only establish a
trade-off between different epistemic virtues: it is also in notable agreement
with Popper’s view that “science does not aim, primarily, at high probabili-
ties. It aims at high informative content, well backed by experience” ð1934/
1959, 399Þ. In marked difference to the orthodox Bayesian approach, ac-
cepting H0 no longer involves commitment to the truth or likelihood of H0.

Third, the approach is better equipped than subjective Bayesianism to
account for frequentist intuitions since under some conditions, the results of
BRC agree with the results of a frequentist analysis, as we shall see below.
Fourth, it is invariant of the particular parametrization; that is, the final in-
ference does not depend on whether we work with v or a 1:1 transformation
gðvÞ. Fifth, it is neutral with respect to the kind of prior probabilities that
are fed into the analysis.

5. Revisiting Lindley’s Paradox. We now investigate how Bernardo’s
approach deals with Lindley’s Paradox and return to the ESP example from
the introduction. It turns out that the BRC quantifies the expected loss from
using v0 as a proxy for the true value v as substantial. Using a bð1=2; 1=2Þ
reference prior for v ðBernardo 1979Þ, the expected loss under the null
hypothesis is calculated as dðv5 1=2Þ ≈ log1;400 ≈ 7:24. This establishes
that “under the accepted conditions, the precise value v0 5 1=2 is rather
incompatible with the data” ðBernardo 2012, 18Þ. In other words, the pre-
dictive loss from taking the null as a proxy for the posterior-corrected al-
ternative will be substantial.

Of course, the rejection of the null hypothesis does not prove the ESP of our
subject; a much more plausible explanation is a small bias in the random
generator. This is actually substantiated by looking at the posterior distribu-
tion of v: due to the huge sample size, we find that for any nonextreme prior
probability function, we obtain the posterior v ∼ Nð0:50018; 0:000049Þ,
which shows that most of the posterior mass is concentrated in a narrow
interval that does not contain the null. In this sense, we are justified to re-
ject the null without having to infer to a substantial discrepancy between
v and v0.

Although BRC has a sound basis in Bayesian decision theory, the results
of a BRC analysis disagree with Jeffrey’s subjective Bayesian analysis.
Why is this the case? First, the conventional utility structure is substantially
changed in BRC, and the final decision is no longer a simple function of
the posterior probability of H0. Second, a Bayes factor comparison effec-
tively compares the likelihood of the data under H0 to the averaged likeli-
hood of the data under H1. However, this quantity is strongly influenced by
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whether there are some extreme hypotheses in H1 that fit the data poorly.
Compared to the huge amount of data that we have just collected, the impact
of these hypotheses ðmediated via the conventional uniform priorÞ should
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be minute. These arguments explain why most people would tend to judge
the data as incompatible with the precise null but fail to see a scientifically
interesting effect. Thus, BRC indeed gives a convincing account of Lind-
ley’s Paradox in the ESP example.

6. Conclusion and Outlook. We have demonstrated how Lindley’s Para-
dox—the extreme divergence of Bayesian and frequentist inference in tests
of a precise null hypothesis with large sample size—challenges the standard
methods of both Bayesian and frequentist inference. Neither a classical fre-
quentist nor a subjective Bayesian analysis provides a convincing account
of the problem. Therefore, I have presented Bernardo’s BRC as a full Bayes-
ian model of testing point null hypotheses. It turns out that BRC gives a
sensible Bayesian treatment of Lindley’s Paradox, due to its focus on pre-
dictive performance and likely replication of the effect. Although BRC has
sound foundations in subjective expected utility theory, it preserves testing
a precise hypothesis as a distinct form of statistical inference and can be
motivated from a broadly Popperian perspective.

Of course, the BRC approach is not immune to objections ðsee the dis-
cussion pieces in Bernardo ½2012�Þ. However, BRC definitely underlines
that Bayesian inference in science need not necessarily infer to highly prob-
able models—a misconception that is perpetuated in post-Carnapian prim-
ers on Bayesian inference and that has attracted understandable criticism.
For instance, Earman ð1992, 33Þ takes, in his exposition of Bayesian rea-
soning, the liberty of announcing that “issues in Bayesian decision theory
will be ignored.”Contrary to Earman, I claim that Bayesian reasoning cannot
dispense with the decision-theoretic dimension if it aims at scientific rele-
vance. A purely epistemic approach to theory choice, as exemplified inmuch
of Bayesian confirmation theory, falls short of an appropriate model of sci-
entific reasoning. Therefore, this article is not only a contribution to statisti-
cal methodology: it highlights the need to appreciate the subtle interplay of
probabilities and ðpredictiveÞ utilities in Bayesian inference and to change our
perspective on the use of Bayesian reasoning in science.
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