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Wemake two points about dualities in string theory. The first point is that the conception
of duality, which we will discuss, meshes with two dual theories being ‘gauge related’ in
the general philosophical sense of being physically equivalent. The second point is a re-
sult about gauge/gravity duality that shows its relation to gauge symmetries to be subtler
than one might expect: each of a certain class of gauge symmetries in the gravity theory,
that is, diffeomorphisms, is related to a position-dependent symmetry of the gauge theory.
1. Introduction. In this article, wemake twomain points about how duality
and gauge symmetry are connected. Both points are about dualities in string
theory, and both have the ‘flavor’ that two dual theories are ‘closer in content’
than you might think. For both points, we adopt a simple conception of a du-
ality as an ‘isomorphism’ between theories. In section 3, we take a theory to
be given by a triple comprising a set of states, a set of quantities, and a dy-
namics, so that a duality is an appropriate ‘structure-preserving’map between
such triples. This discussion will be enough to establish our first point, namely,
dual theories can indeed ‘say the same thing in differentwords’—which is rem-
iniscent of gauge symmetries.

Our second point (secs. 4 and 5) is much more specific. We give a result
about a specific (complex and fascinating) duality in string theory, gauge/
gravity duality, which we introduce in section 4, using section 3’s concep-
tion of duality. We state this result in section 5. (More details are in De Haro,
Teh, and Butterfield [2016], and the proof is in De Haro [2016b].) It says,
roughly speaking, that each of an important class of gauge symmetries in
one of the dual theories (a gravity theory defined on a bulk volume) is mapped
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by the duality to a gauge symmetry of the other theory (a conformal field the-
ory defined on the boundary of the bulk volume). This is worth stressing
since some discussions suggest that all the gauge symmetries in the bulk the-
ory will not map across to the boundary theory but instead be ‘invisible’ to it.
To set the stage for these points, section 2 describes the basic similarity be-
tween the ideas of duality and gauge symmetry: that they both concern ‘say-
ing the same thing in different words’.

2. Saying the Same Thing in Different Words. We use the general term
‘duality’ to denote the formal equivalence between two theories, that is, a bi-
jection between the sets of mathematical ‘states’ and ‘quantities’ of a formal
theory, without further specifying the physical interpretation of those states
and quantities, such as unitary equivalence for quantum theories. At the other
extreme, one might be using the duality to describe the “universe” (as in
quantum gravity): on an ‘internal interpretation’ (cf. Dieks, van Dongen,
and de Haro 2015) the equivalence is then not merely formal or schematic
but also empirical and physical. As to gauge symmetry, it has (i) a general
philosophical meaning and (ii) a specific physical meaning, as do cognate
terms like ‘gauge-dependent’, and so on, as follows:

i) (Redundant) If a physical theory’s formulation is redundant (i.e.,
roughly, it uses more variables than the number of degrees of freedom
of the system being described), one can often think of this in terms of
an equivalence relation, ‘physical equivalence’, on its states, so that
gauge symmetries are maps leaving each class (called a ‘gauge orbit’)
invariant. Leibniz’s criticism of Newtonian mechanics provides a pu-
tative example: he believed that shifting the entire material contents of
the universe by one meter must be regarded as changing only its de-
scription and not its physical state.

ii) (Local) If a physical theoryhas a symmetry (i.e., roughly, a transforma-
tion of its variables that preserves its Lagrangian) that transforms some
variables in away dependent on space-time position (and is thus ‘local’),
then this symmetry is called ‘gauge’. In the context of Yang-Mills the-
ory, these variables are ‘internal’, whereas in the context of general rel-
ativity, they are space-time variables—both types of examples will occur
in sections 4 and 5. Although Local is often a special case of Redun-
dant, it will be important to us that this is not always so. For we will be
concerned with Local gauge symmetries (specifically diffeomorphisms)
that do not tend to the identity at space-like infinity and that can thus
change the state of a system relative to its environment.1
1. Compare the discussion in Greaves and Wallace (2014) and Teh (2016).
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DUALITIES AND GAUGE SYMMETRIES 1061
These sketches are enough to suggest that duality and gauge symmetry
are likely to be related. The obvious suggestion tomake is that the differences
between two dual theories will be like the differences between two formula-
tions of a gauge theory: they ‘say the same thing, despite their differences’.
Indeed, for several notable dualities—including some string theory dualities
(and our case of gauge/gravity duality) in which the dual theories are strik-
ingly disparate—this is the consensus among physicists. Besides, several phil-
osophical commentators endorse this consensus (e.g., Rickles 2011, secs. 2.3,
5.3; 2015; Dieks et al. 2015, sec. 3.3.2; De Haro 2016a, sec. 2.4; Huggett
2016, secs. 2.1, 2.2). But beware of a false impression: roughly, that dualities
between gauge theories must ignore Local gauge structure. To see how this
impression arises, assume for the moment (falsely) that all Local gauge sym-
metries exemplify Redundant. Then given a duality between two theories’
gauge-invariant structures, it would be surprising if the duality also mapped
their gauge-dependent structures (gauge symmetries and gauge-dependent
quantities) into each other. For, think of the everyday analogy in which (i) a
duality is like a translation scheme between languages, and so (ii) gauge struc-
ture, a theory allowing several gauges, is like a language having several syn-
onyms for one concept. (Indeed, this analogy is entrenched in physics: phys-
icists call the definition of the duality transformation the ‘dictionary’, etc.)
Onewould not expect a translation scheme to match the languages’ synonym
structures, that is, to translate each of a set of synonyms in language L1 by just
one of the corresponding (synonymous) set of synonyms in L2 and vice versa.
Analogously, it seems that for a duality between gauge theories, the gauge-
dependent structures on the two sides will not be related by the duality. Each
such structure, on one side, will be ‘invisible’ to the other side—at least, ‘in-
visible’ if you are using just the duality map ‘to look through’.

Thus, the impression is tempting. Indeed we think the impression is wide-
spread because of this line of thought: as we will see, no lesser authors than
Horowitz and Polchinski seem to endorse it.

It is this impression that we will rebut. We of course admit that in general,
Local gauge-dependent structures may be ‘invisible from the other side’. But
surprisingly, for the case of gauge/gravity duality, some Local gauge struc-
ture is visible. This is our result in section 5: roughly, that each of a certain
class of Local gauge symmetries of the gravity/bulk theory is mapped by the
duality to Redundant gauge symmetries of its dual, that is, the position-
dependent conformal symmetries of the boundary conformal field theory.

3. Duality as a Symmetry between Theories. In this section, we propose
schematic definitions of a physical theory and of a duality. The definitions
will be general enough to apply to both classical and quantum physics, al-
though we of course have quantum physics, especially quantum field theory
and string theory, mostly in mind.
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The idea of the definitions is that duality is a symmetry between theories.
But while symmetry is a matter of sameness between distinct situations, ac-
cording to a theory, duality is amatter of sameness between theories. So a du-
ality is, roughly, an ‘isomorphism’ between two theories or from a theory to
itself. To make these ideas more precise, we define, first, theories (sec. 3.1)
and, then, duality maps (sec. 3.2).

3.1. The Definition of ‘Theory’. We take a theory as a triple T 5
hS,Q,Di of state-space S, set of quantities Q, and dynamics D. States
and quantities are assignments of values to each other. So there is a natural
pairing, and we write hQ; si for the value of Q in s. In classical physics, we
think of this as the system’s intrinsic possessed value for Q, when in s; in
quantum physics, we think of it as the (orthodox, Born-rule) expectation
value ofQ, for the system in s. As to the dynamics, D, this can here be taken
as the deterministic time evolution of states.

Our construal of theory allows us to recognize that usually there are many
token systems of the type treated by a theory in our sense. This prompts an
important point: we of course recognize (as everyone must) that there can be
cases of two disjoint parts of reality—in Hume’s phrase, two ‘distinct exis-
tences’—whose formal or schematic structure matches exactly, ‘are isomor-
phic’, in the taxonomy used by some theory but are otherwise different, that
is, distinct and known to be distinct. This point has an obvious corollary for
what in section 1 we announced as our first main point: that dual theories
‘can say the same thing’. For it is natural to take ‘saying the same thing’
to mean saying (i) the same assertions about (ii) the same objects. Then
we must beware that a definition of dual theories as ‘isomorphic’ (as in
sec. 3.2 below) will cue in only to i, and the possibility of ‘distinct but iso-
morphic existences’ implies that this does not secure ii. This leads in to a fi-
nal point.

There is one scientific context in which the idea of distinct but isomorphic
existences falls by the wayside, namely, when we aim to write down a cos-
mology, that is, a theory of the whole universe. For such a theory, there will
be, ex hypothesi, only one token of its type of system, that is, the universe.
Agreed, this scientific context is very special and very ambitious: we rarely
aim to write down a cosmology. But of course, it is the context of much work
in string theory and quantum gravity more generally. So it will apply when
we turn, in section 4, to string theory and gauge/gravity duality.2
2. In this context, one might go further than setting aside the possibility of distinct but
isomorphic existences. One might also hold that the interpretation of our words, i.e., of
the symbols in the cosmological theory, must be fixed from within the theory: this view
is endorsed, under the label ‘internal point of view’, in Dieks et al. (2015, sec. 3.3.2) and
De Haro (2016a, sec. 2.4). We should note, however, that a lot of work on gauge/gravity
duality concerns systems that are much smaller than the universe. For gauge/gravity ideas

This content downloaded from 131.111.184.102 on February 07, 2017 03:31:16 AM
se subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



DUALITIES AND GAUGE SYMMETRIES 1063
3.2. The Definition of ‘Duality’. We now define a duality as a ‘meshing’
map between two theories: T1 5 hS1,Q1,D1i is dual to T2 5 hS2,Q2,D2i if
and only if there are bijections ds : S1 → S2, dq :Q1 →Q2 (d for ‘duality’)
that give matching values of quantities on states in the following sense:3

hQ1; s1i1 5 hdq(Q1); ds(s1)i2, 8 Q1 ∈ Q1, 8 s1 ∈ S1: (1)

This definition of ‘duality’ is obvious and simple, given our conception of
‘theory’. One could strengthen the definition in various ways, for example,
to require that ds be a symplectomorphism for Hamiltonian theories, unitary
for quantum theories. And there is a whole tradition of results relating the
requirement of matching values (eq. [1]) to such strengthenings. But we
do not need to pursue such strengthenings. It is not just that a simple defini-
tion is clearer and can be weakened and qualified, as needed. Also, with this
definition, we immediately establish our first main point: that two dual the-
ories can be gauge related, in section 2’s general philosophical sense of be-
ing physically equivalent. More precisely, the point follows immediately,
when we bear in mind our preceding discussion and the “can be” in ‘can
be gauge related’ (i.e., sec. 3.1’s allowance of distinct but isomorphic ‘exis-
tences’) and how this allowance falls by the wayside for a cosmology, that is,
theory of the whole universe. And more important, we will see in section 4
that this definition of duality is indeed instantiated, albeit formally, by gauge/
gravity duality and using maps ds, dQ that are (formally) unitary.

4. Gauge/Gravity Duality. We first (sec. 4.1) give a brief introduction to
the original and most studied case of gauge/gravity duality: AdS/CFT, the
duality between a gravity theory on anti–de Sitter space-time (AdS) and a
conformal field theory (CFT) on its boundary. Then in section 4.2, we argue
that section 3.2’s simple definition of duality is indeed instantiated, albeit
formally, by AdS/CFT. For a philosophically informed introduction to gauge/
gravity dualities, see De Haro, Mayerson, and Butterfield (2016).

4.1. Introducing AdS/CFT. The general idea of gauge/gravity duality is
that some gauge quantum field theories (QFTs) in d space-time dimensions
are dual to some quantum theories of gravity in a (d1 1)-dimensional space-
3. We also require the dynamics to mesh in the obvious sense: i.e., ds commutes with (is
equivariant for) the two theories’ dynamics. In sec. 4.2 we add a stronger condition, i.e.,
that the values of the quantities on any pair of states match: hQ1; s1, s2 i1 5 h dq(Q1);
ds(s1), ds(s2) i2, 8 s1, s2 ∈ S1. For quantum theories, this strengthening of this section’s
simple approach is natural because it amounts to unitary equivalence.

turn out to be very useful for understanding strongly coupled microscopic systems, like a
quark-gluon plasma as explored by instruments like the Relativistic Heavy Ion Collider;
cf. McGreevy (2010).
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time that has the d-dimensional manifold of the QFTas its conformal bound-
ary. Pictorially, AdSd11 is a family of copies of a d-dimensional Minkowski
space-time of varying sizes. The family is parameterized by the coordinate r.
The boundary is the locus r → 0.

The original case (Maldacena 1999) takes the QFT to be a strong cou-
pling regime of a supersymmetric gauge theory (SYM, for ‘super Yang-
Mills’) in four space-time dimensions (d 5 4), with gauge group SU(N).
To display the AdS/CFT correspondence in a simple case, take the path in-
tegral for the scalar field, in Euclidean signature, as a function of the bound-
ary conditions:4

Z½f(0)� ≔
ð
f(r,x)jbdy5f(0)(x)

Df exp 2Sbulk½f�ð Þ: (2)

The AdS/CFT correspondence now states that this is the generating func-
tional in the CFT:

Z½f(0)� 5 hexp 2

ð
d4xf(0)(x)O(x)

� �
i, (3)

where f(0)(x) is a ‘source’ that couples to a certain gauge-invariant operator
O(x), whose scaling dimension D is determined by the mass of the bulk sca-
lar field (in a CFT, the scaling dimension uniquely determines a gauge-
invariant, scalar operator). The exponential is evaluated in the vacuum state
of the theory.

In the CFT, the vacuum correlation functions hO(x1)⋯O(xn)i are cal-
culated from the generating functional Z½f(0)�: one takes functional deriva-
tives of the right-hand side of (3) with respect to the source and sets the
source to zero.

But according to the correspondence (eqq. [2] and [3]), the correlation
functions can also be calculated using the bulk theory. For instance, to cal-
culate the two-point function, one can use the leading classical approxima-
tion to (2), which is just the classical action evaluated on solutions that sat-
isfy the prescribed boundary conditions. Up to normalization, the result is

hO(x)O(y)i 5 1

jx 2 yj2D , (4)

where D is the scaling dimension of the operator, and Fx 2 yF the distance
between the two boundary points. This result matches the CFT result pre-
cisely.
4. For simplicity, we are now taking the metric to be fixed, and we are suppressing it in
the notation.
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DUALITIES AND GAUGE SYMMETRIES 1065
4.2. AdS/CFT Exemplifies the Definition of Duality. We now turn to
how (3) instantiates our definition of duality (i.e., eq. [1]). We begin with
the boundary, CFT, side.

In a CFT, the quantities one is interested in are the correlation functions:

hs O(x1)⋯O(xn)j js0i, (5)

of products of gauge-invariant operators, in some states s, s0. In section 4.1
we showed how to calculate the two-point function in the vacuum state,
leading to (4). Thus, the gauge theory side of the duality is, by construction,
framed in the language of states and quantities that was used in section 3.1
to define a theory. We admit that in the absence of proper nonperturbative
methods for rigorously defining higher-dimensional theories such as SYM,
one should be wary of expressions such as (5). To assume that SYM makes
sense nonperturbatively is to assume that expressions such as (5) make
sense. Similar remarks hold for the path-integral expressions (2) used in
the bulk. In the present state of knowledge, one simply assumes that these
formal structures will some day be defined with rigorous mathematics: de-
fining these expressions nonperturbatively would amount to proving AdS/
CFT. This is why the AdS/CFT correspondence still has the status of a con-
jecture.

So in order to substantiate our claim—that section 3.2’s simple definition
of duality is instantiated by AdS/CFT—we need to argue that the bulk side
in (2) can be written in the language of states and operators. Accepting the
comments in the previous paragraph, the point follows readily from the cor-
respondence between path integral quantization and the Hilbert space de-
scription of states and operators, provided one can adapt that correspon-
dence to take into account the fact that (2) contains boundary, rather than
bulk, sources. This can in fact be done: for details, compare De Haro,
Mayerson, and Butterfield (2016, secs. 5, 6.1) and De Haro, Teh, and But-
terfield (2016, sec. 4.2).

So to sum up, the bulk side of the duality gives rise to the theory Tbulk 5
hH1,Q1i, whereas the boundary dual gives rise to Tbdy 5 hH2,Q2i, where
Hi is a Hilbert space,Qi is some algebra of operators, and unitary dynamics
is implicit. The above remarks show that (3) yields the duality maps ds and
dq, which are isomorphisms of Hilbert spaces and operators, respectively,
satisfying (1).

5. A Pandora’s Box for Gauge Invariance

5.1. Gauge Invariance and Duality in AdS/CFT. Let us now turn to
the topic of gauge invariance in AdS/CFT. One typically identifies Local
gauge symmetry at the level of the classical Lagrangian, which enters into
the path integral formulas of (3). In the bulk theory, the main Local gauge
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symmetry is diffeomorphism symmetries. Furthermore, as mentioned at the
end of section 4.1, one can add U(1) (Yang-Mills type) gauge symmetry by
coupling a U(1) gauge field to the bulk metric. In the boundary CFT, how-
ever, one has an SU(N) gauge symmetry acting on the gauge fields.

What about gauge invariance at the quantum level? Were we dealing (al-
beit perturbatively) with a simple case of gauge theory (e.g., QED), we
would obtain the quantum state space by constructing a nilpotent Hermitian
(BRST) operator Q and defining the physical (gauge-invariant) states as
those annihilated by Q: cohomology then ensures that each state represents
only a gauge orbit.5 Thus, for two such quantum theories T1 and T2, there
can be no question about whether a duality map relates their classical gauge
symmetries: these symmetries are simply not represented to begin with.

In contrast, one cannot proceed in this way for the gauge theories in-
volved in AdS/CFT (and many other dualities) because each side of the du-
ality typically contains a nonperturbative sector, for which we cannot directly
construct the quantum state space. It is precisely here that the duality rela-
tion (3) is strikingly useful; for example, by exchanging the nonperturbative
sector of Tbdy with the perturbative sector of Tbulk (i.e., semiclassical super-
gravity), it allows us to indirectly construct the quantum state space of Tbdy

by means of Tbulk.
But this also opens up a Pandora’s box for gauge invariance. For, prima

facie, it allows that the Local gauge symmetries of Tbulk might be related to
the symmetries of Tbdy. As we will now explain, Horowitz and Polchinski
have argued against this possibility, that is, for what section 2 called ‘invis-
ibility’.

Recall that (naively) a duality is a bijection between the gauge-invariant
content (states and quantities) of two theories T1 and T2. Now suppose one is
skeptical that a duality would match elements of a gauge orbit G1(G1 ⊂ S1)
in theory T1 with elements of the dual gauge orbit G2 ≔ ds(G1) in T2. That is,
in terms of section 2’s everyday analogy with translations between languages,
one doubts that a translation will match each synonym in a set of synonyms
in T1 with a synonymous member of an equinumerous set of synonyms in T2.
Then one would naturally expect that the duality mapping (e.g., as given for
AdS by eq. [3]) secures
5. Fa
woul

se sub
(Invisibility) Each gauge symmetry of T1, that is, permutation of S1 that
leaves each gauge orbit invariant (in the analogy, permutation of T1’s words
that leaves each synonymy equivalence class invariant) carries over to only
the identity permutation on S2 and vice versa. In this sense, the duality
only relates the gauge orbits of T1 and T2.
iling to perform this move, i.e., naively quantizing the gauge fields of the theory,
d lead to an indefinite Fock space (i.e., a space containing states with negative norm).
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DUALITIES AND GAUGE SYMMETRIES 1067
This is indeed the definition of ‘invisibility’ that Horowitz and Polchinski
(2006, sec. 1.3.2) use. Polchinski (2016, secs. 2.3 and 2.4) demonstrates this
property for the duality between p-form gauge theories, and Horowitz and
Polchinski (2006, sec. 1.3.2) claim that in AdS/CFT, even the Local gauge
symmetry of bulk, that is, diffeomorphism symmetry, displays such ‘invis-
ibility’, thus showing that diffeomorphism symmetry (and relatedly, space-
time) is an ‘emergent’ property: “the gauge variables of AdS/CFT are triv-
ially invariant under the bulk diffeomorphisms, which are entirely invisible
in the gauge theory” (12).

Is this latter claim correct? To be sure, there exist simple examples of ‘in-
visibility’ in AdS/CFT, from both the bulk and the boundary perspective.
For example, from the bulk: Since all correlation functions defined by (3)
are invariant under boundary Local gauge symmetry, this symmetry is not
seen in the bulk.

Thus, one might expect that the fundamental Local gauge symmetry of
the bulk theory, that is, diffeomorphism symmetry, is also invisible in the
boundary theory. In the next section, we argue that not all the diffeomor-
phisms of the bulk theory are invisible, and we sketch criteria to distinguish
visible from invisible diffeomorphisms. Furthermore, there is a sense in which
the duality map (3) maps Local gauge symmetries in the bulk to position-
dependent Redundant symmetries in the boundary.

5.2. AdS/CFT’s Visible and Invisible Diffeomorphisms. As mentioned in
section 5.1, we will scrutinize the statement that all the bulk diffeomorphisms
are invisible to the boundary theory. We construe the notion of ‘visible’ dif-
feomorphism, along the lines of Horowitz and Polchinski’s own examples,
as one that does not restrict to the identity map on the boundary, whereas
‘invisible’ means that it does restrict to the identity. First, consider the class
of diffeomorphisms that satisfy the following three conditions:

i) (Fixed) Leave the form of the bulk metric fixed;
ii) (Invisibility) Are equal to the identity, at the boundary;
iii) (Existence) Are nontrivial (i.e., not the identity map) in the bulk.

One can show that if the boundary dimension d is odd, then there are no
such diffeomorphisms.6 More precisely, there are no diffeomorphisms that
are equal to the identity at infinity and extend nontrivially to the bulk. The
desiderata i–iii cannot all be met.
6. In the case of even d, diffeomorphism invariance is broken by the presence of the
conformal anomaly. For a discussion, see De Haro, Mayerson, and Butterfield (2016,
sec. 6.2) and De Haro, Teh, and Butterfield (2016, secs. 4.2.1 and 5.2.2).
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We sketch the argument for this in a moment. But to do so, we need to
consider relaxing the above conditions because this will allow us to identify
the relevant visible diffeomorphisms. And this relaxation will also lead in to
our final point about Local diffeomorphisms that are Redundant.

We thus replace Invisibility by the weaker

ii0) (Invariance) Leave all the boundary quantities (in particular, the
metric) invariant; that is, the bulk diffeomorphisms can be nonvan-
ishing (hence, visible) on the boundary but must leave all the CFT
quantities invariant.

A sketch of the argument that shows the incompatibility of i–iii is as fol-
lows. Let the bulk metric be that of an Einstein space (i.e., a solution of gen-
eral relativity’s field equations with a negative cosmological constant), so
that an arbitrary metric is induced at the boundary. Requiring that the infin-
itesimal diffeomorphisms leave the asymptotic form of the metric fixed, one
finds the following condition for them:

∇iyj(x) 1 ∇jyi(x) 2
2

d
gij(x) ∇

k yk(x) 5 0: (6)

Here, yi is a reparameterization of the boundary coordinates x (a d-dimensional
vector). There are two important points about this equation, which is the math-
ematical representation of Invariance:

a) This equation is the condition for an infinitesimal boundary coordi-
nate transformation yi to give a local scale transformation: thus, the
yi generate the boundary conformal group.

b) As a consequence of a, when one requires in addition to Invariance
also Invisibility, that is, that the boundary coordinate transformations
vanish (i.e., yi 5 0), then one can subsequently show that the diffeo-
morphism in fact is the identity map throughout the bulk. Requiring
Invisibility of the diffeomorphism thus deprives it of Existence.

But, Invariance is compatible with Existence, that is, allowing yi to be non-
zero. In this case, the bulk diffeomorphism has two parts: (1) a nontrivial bound-
ary coordinate transformation (of a special kind: a conformal transformation)
and (2) a compensating reparameterization of the bulk coordinate r, so that
the overall boundary metric is invariant, yet the diffeomorphism nontrivial.

The above is exactly what one expects: we have identified the ‘residual’
diffeomorphisms, that is, the ones that preserve the bulk form of the metric
(as per Fixed) and preserve the boundary metric (as per Invariance) as the
boundary conformal group. Thus, the CFT’s group of invariances arises in
this way explicitly from bulk diffeomorphisms.
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DUALITIES AND GAUGE SYMMETRIES 1069
This technical discussion returns us to our distinction between Local and
Redundant and the ‘internal point of view’ mentioned in footnote 2. Thus,
the boundary coordinate transformations yi considered here are Local: they
are position-dependent coordinate transformations, but they represent over-
all transformations of the correlation functions (5) derived from either (2) or
(3). The correlation functions are indeed covariant under such coordinate
transformations.7 Therefore, on the ‘internal point of view’ mentioned in
footnote 2, two states of the universe related by such transformations are
physically equivalent: the transformations count as Redundant gauge symme-
tries. But, the contrary ‘external point of view’ interprets (3) as coupled to an
already interpreted physical background, represented by f(0)(x), and in that
case, the diffeomorphisms would not be Redundant but would become phys-
ical. When we describe Galileo’s ship relative to the quay, its state of motion
is indeed physically meaningful.
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