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A Formal Framework for
Representing Mechanisms?
Alexander Gebharter*y

In this article I tackle the question of how the hierarchical order of mechanisms can be
representedwithin a causal graph framework. I illustrate an answer to this questionproposed
by Casini, Illari, Russo, andWilliamson and provide an example that their formalism does
not support two important features of nested mechanisms: ðiÞ a mechanism’s submecha-
nisms are typically causally interacting with other parts of said mechanism, and ðiiÞ inter-
vening in some of a mechanism’s parts should have some influence on the phenomena the
mechanism brings about. Finally, I sketch an alternative approach taking ðiÞ and ðiiÞ into
account.

1. Introduction. In many scientific fields phenomena are explained or pre-
dicted by pointing at their underlying mechanisms. Such mechanisms are
thought of as concrete entities located at specific regions in space-time that
produce the respective phenomena. They are characterized by formulations
like this: “A mechanism underlying a behavior is a complex system which
produces that behavior by the interaction of a number of parts according to
direct causal laws” ðGlennan 1996, 52Þ. For alternative formulations, see, for
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FORMAL FRAMEWORK FOR MECHANISMS? 139
example,Machamer, Darden, and Craver ð2000, 3Þ, Bechtel andAbrahamsen
ð2005, 423Þ, and Illari and Williamson ð2012, 120Þ.

According to mechanists, mechanisms are dynamic causal systems; they
are wholes consisting of several spatiotemporally arranged and interacting
parts producing certain behavior. Besides having these properties, mecha-
nisms are oftentimes ðbut not alwaysÞ self-regulating systems including a lot
of feedback loops. Typically ðbut not necessarilyÞ, they are also hierarchi-
cally organized ði.e., they consist of several interacting submechanisms that
may themselves be built up of submechanisms, etc.Þ. The more is known
about the structure of these submechanisms, the more accurate the predic-
tions of the phenomena these mechanisms bring about will typically be.

Although characterizations, like the one formulated by Glennan ð1996Þ
above, are intuitively quite clear, they are not as helpful as one may hope
for when it comes to quantitatively precise explanations/predictions of phe-
nomena of interest. This deficit can easily be seen by means of the following
example: the question of why a car speeds up when the gas pedal is pressed
can be answered by pointing at/describing the underlying mechanism ði.e.,
the motor and how it is connected to the gas pedal, the wheels, the gas tank,
etc.Þ, but questions including numerical details like why the acceleration of
the car is awhen the gas pedal is pressed with pressure p cannot be answered
that easily. The answer to a question like the latter requires a formalism ca-
pable of capturing/computing the numerical details/effects of specific ma-
nipulations of said mechanism.

Such a formalism must be able to represent the above-mentioned char-
acteristic properties of mechanisms in an adequate way. Casini et al. ð2011Þ
propose to model mechanisms on the basis of so-called recursive Bayesian
networks, which were originally developed by Williamson and Gabbay
ð2005Þ to model nested causal relationships. In doing so they focus on an
adequate representation of the hierarchical structure of mechanisms and
represent submechanisms by means of a recursive Bayesian network’s ver-
tices. I will briefly introduce the formal preliminaries needed to take a closer
look at their approach and explain their account on a very simple exemplary
toy mechanism in section 2. In section 3 I will highlight two problems with
Casini et al.’s approach: their approach ðiÞ does not allow for a graphical
representation of how a mechanism’s macrovariables are causally connected
to the mechanism’s causal microstructure, which is essential when it comes
to mechanistic explanation, and it ðiiÞ leads to the fatal consequence that a
mechanism’s macrovariables’ values cannot be changed by any intervention
on the mechanism’s microstructure whatsoever and, thus, contradicts the fact
that scientists regularly perform so-called bottom-up experiments to investi-
gate which are the mechanism’s constitutively relevant parts. In section 4
I present an alternative approach for modeling nested mechanisms: sub-
mechanisms should not be represented by means of a causal graph’s verti-
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ces, like in Casini et al.’s approach, but rather by means of a causal graph’s
edges. I finally demonstrate using the above-mentioned exemplary mecha-
nism that this approach does not fall prey to problems ðiÞ and ðiiÞ.

2. Bayesian Networks, Recursive Bayesian Networks, and the Recursive
Bayesian Network Approach. ABayesian network ðBNÞ is a triple hV;E; Pi
that satisfies the so-called Markov condition ðMCÞ. Graph G5 hV;Ei is a
graph whose vertices ði.e., the elements of V Þ are random variables that may
take a number of different values, while E is a binary relation on V ðE ⊆
V � V Þ. Relation E’s elements hX; Y i are called edges and can be graphi-
cally represented via different kinds of lines or arrows in G. A BN’s asso-
ciated graph is always a directed acyclic graph ðDAGÞ, that is, a graph whose
edges are arrows ðX → Y Þ and that does not contain a substructure of the
form X → : : :→ X . And P is a joint probability distribution over the ran-
dom variables in V.
1. CM
corre
cause
cause

se sub
DEFINITION 1. hV;E;Pi satisfies the Markov condition if and only if INDEP
ðX ;V 2 DesðX ÞjParðX ÞÞ holds for all X ∈ V . ðSpirtes, Glymour, and
Scheines 2000, 11Þ
In this definition ‘DesðX Þ’ stands for the descendants ði.e., the successorsÞ
of X in graph G5 hV; Ei, ‘ParðX Þ’ for the parents ði.e., the direct pre-
decessorsÞ of X in graphG5 hV; Ei, and ‘INDEPðX ; Y jZÞ’ for probabilistic
independence of X and Y conditional on Z ði.e., Pðxjy; zÞ5 PðxjzÞ for all X-,
Y-, and Z-values x, y, and z, respectively, provided Pð y; zÞ > 0Þ. BNs can be
causally interpreted; that is, they can be understood as a certain type of
causal model. When doing so, a BN’s associated graph G represents the
system of interest’s causal structure: ‘X → Y ’ in such a causal graph G
stands for ‘X is a direct cause of Y in G’, and a chain of ðone or moreÞ
arrows ði.e., a directed pathÞ going from X to Y stands for ‘X is a ðdirect/
indirectÞ cause of Y inG’. A structure of the form X ← : : :← Z → : : :→ Y
is called a common cause path between X and Y.

When one uses BNs for causal modeling, MC is causally interpreted
also. Under its causal interpretation, MC becomes the so-called causal
Markov condition ðCMCÞ that is satisfied by a causal model hV; E; Pi if
and only if every X ∈ V is probabilistically independent of all its non-
effects conditional on its direct causes ðcf. Spirtes et al. 2000, 29Þ.1
C is the generalization of an idea that can be traced back to Reichenbach ð1956Þ:
lated effects are screened off each other by conditionalizing on their common
s; effects are screened off their indirect causes by conditionalizing on their direct
s.
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FORMAL FRAMEWORK FOR MECHANISMS? 141
The graph G5 hV; Ei of a BN satisfying MC/CMC determines the
following Markov factorization:2

Pðx1; : : : ; xnÞ5P
i

PðxijparðXiÞÞ: ð1Þ

A recursive Bayesian network ðRBNÞ is a BN in which the values of var-
iables in V can be BNs themselves. Such variables are called network var-
iables, while variables that do not have BNs as values are called simple
variables. Casini et al. ð2011Þ suggest to represent a mechanism by an RBN
hV; E; Pi and a submechanism by a network variable X ∈ V whose values
are BNs representing the possible states of this submechanism. They pro-
pose, in addition to the causal interpretation of MC, an additional modeling
assumption, the recursive causal Markov condition ðRCMCÞ:
2. No
on th

3. Th
fhu; v

All 
DEFINITION 2. hV; E; Pi satisfies the recursive causal Markov condition if
and only if INDEPðX ;NIDðX ÞjDSupðX Þ [ ParðX ÞÞ holds for all X ∈ V.
ðCasini et al. 2011, 11Þ
Set NIDðX Þ is the set of noninferiors or descendants of X, that is, the set
of random variables that are neither inferiors nor descendants of X. The
inferiors of X are the variables of a lower-level BN representing states of
the submechanism described by X at the higher level, the variables of the
lower-level BNs representing states of submechanisms of this submech-
anism, and so on. Set DSupðX Þ is the set of direct superiors of X and con-
tains those variables of the next-level-up BN representing a submechanism
whose states are described by lower-level BNs including X. ðFor an illus-
tration of these notions, see the water dispenser example introduced below.Þ
Casini et al. ð2011, sec. 4Þ suggest interpreting the inferiority/superiority re-
lation as constitutive relevance in the sense of Craver ð2007a, 2007bÞ.

Let me now briefly explain how probabilistic interlevel explanation/pre-
diction works in Casini et al.’s ð2011Þ RBN approach. One therefore needs
to define V 5 fX1; : : : ; Xmg as the RBN hV; E; Pi’s variable set V under
the transitive closure of the inferiority relation.3 Let N 5 fXj1; : : : ; Xjkg
be the set of network variables in V. Then for every instantiation n5
xj1; : : : ; xjk of network variables in N , a simple BN can be constructed:
the flattening of the RBN with regard to n ðn↓Þ. The nodes of this new
BN n↓ are the simple variables in V together with the instantiations n5
te that ‘parðXiÞ’ stands for the instantiation of Xi’s parents to their values x1; : : : ; xn
e left-hand side of the equation.

e transitive closure R* of a binary relation R can be defined as R* 5
i :∃ w1; : : : ; ∃ wnðhu;w1i ∈ R ∧ : : : ∧ hwn; vi ∈ RÞg.
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xj1; : : : ; xjk of the network variables in N . BN n↓’s set of edges contains
an arrow pointing from X to Y if and only if X is a parent or direct superior
of Y in the RBN, and n↓’s probability distribution is determined by the
following equation:

PðxijparðXiÞ; dsupðXiÞÞ5 PxjlðxijparðXiÞÞ; ð2Þ

where Xjl are the direct superiors of Xi.
The flattenings n↓ of an RBN determine a unique probability distribu-

tion over V 5 fX1; : : : ; Xmg that allows for quantitative reasoning across
the diverse levels of the mechanism represented by the RBN:4

Pðx1; : : : ; xmÞ5P
i

PðxijparðXiÞ; dsupðXiÞÞ: ð3Þ

Let me now briefly illustrate how the modeling approach proposed by
Casini et al. ð2011Þ works on a very simple toy example, that is, the water
dispenser mechanism. This device normally dispenses cold water and wa-
ter close to the room temperature when its tempering button is pressed. The
water dispenser can be represented by an RBN whose top-level graph is
depicted in figure 1.

Variable T represents the room temperature, B5 1=0 stands for whether
the tempering button is pressed or not, W stands for the temperature of the
water dispensed, and D is a network variable that represents a submech-
anism, that is, the water dispenser’s water temperature regulation unit. This
regulation unit consists of two lower-level parts: a temperature sensor ðSÞ
and a heater ðH Þ. Variable D has two possible values: BN1 ðwater temper-
ature is regulated, and thus, one gets water close to the room temperatureÞ
and BN0 ðwater temperature is not regulated, and cold water is dispensed as
4. The probabilities PðxijparðXiÞ; dsupðXiÞÞ on the right-hand side of this equation are
determined by the flattening induced by x1; : : : ; xm.
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a resultÞ. Values BN1 and BN0 are two BNs with the same topological struc-
ture ðdepicted in fig. 2Þ but with different associated probability distributions.
If D5 BN1, then the heater is working on a level corresponding to the input
of the temperature sensor. If D5 BN0, then H is probabilistically insensitive
to S. Note that the singleton of D is the set of direct superiors of S and H
ðfDg5 DSupðSÞ5 DSupðHÞÞ in our exemplary mechanism, while fS;Hg
is the set of inferiors of DðfS;Hg5 InfðDÞÞ.

When one wants to use the RBN approach for probabilistic predictions
across the levels of a mechanism, one first has to construct the RBN’s
flattenings as described above. Figure 3 shows the flattening of the RBN
with regard to D5 BN1. Note that the two interlevel arrows from D to S
and from D to H stand for the direct superiority/inferiority relation and
should not be causally interpreted:5 S and H are not effects of D; they rather
stand for constitutively relevant parts of the submechanism represented by
D. To indicate this fact, the arrows are dashed in figure 3.

According to equation ð2Þ, the conditional probability distribution of
this flattening is PðTÞ, PðBÞ, PðD5 BN1Þ5 1, PðW jD5 BN1Þ, PðSÞ5
PD5BN1

ðSÞ, PðHÞ5 PD5BN1
ðH jSÞ. The conditional probability distribution

of the flattening of the RBN with regard to D5 BN0 is PðTÞ, PðBÞ, PðD5
BN0Þ5 1, PðW jD5 BN0Þ, PðSÞ5 PD5BN0

ðSÞ, PðHÞ5 PD5BN0
ðH jSÞ. Ac-

cording to equation ð3Þ, the two flattenings of the RBN determine a joint prob-
ability distribution over V 5 fT; B; D;W; S; Hg; that is, PðT;B;D;W; S;HÞ
5 PðTÞPðBÞPðDjT;BÞPðW jDÞPðSjDÞPðH jS;DÞ, where the probabilities on
the right-hand side of the equation are determined by the flattening induced
by T, B,D,W, S,H. This probability distribution can be used for quantitative
prediction across the two levels of our exemplary mechanism.

3. Two Problems with the RBN Approach. Let me now expose the two
deficits of the RBN approach announced in section 1. Problem ðiÞ: while
RBNs clearly allow for quantitative reasoning across the diverse levels of
mechanisms, they do not tell us how exactly submechanisms are causally
connected to their mechanisms. In case of the water dispenser example, for
instance, the RBN’s graph tells us neither how T and B causally influence S
5. If such an interlevel arrow is pointing from a variable X to a variable Y, then X is a
direct superior of Y, and Y is a direct inferior of X in the RBN. If a directed path of such
interlevel arrows is going from X to Y, then X is a ðdirect or indirectÞ superior of Y, and Y
is a ðdirect or indirectÞ inferior of X.
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and H nor how S and H are causally relevant for W; that is, there are no
arrows between those variables in the RBN’s graph, and it is unclear over
which causal paths probabilistic influence from T and B is propagated
through the mechanism’s microstructure to W. But is the graphical repre-
sentation of such causal information required at all? Is it not sufficient that
the RBN captures the probabilistic dependencies between the variables in
V 5 fT;B;D;W; S;Hg? The answer to the latter question is no. One of
the reasons for this is simply that mechanistic explanation requires infor-
mation about how exactly ði.e., over which causal pathwaysÞ certain inputs
to the system influence the mechanism’s microstructure and how changes
in this microstructure bring about the phenomenon ðor phenomenaÞ of in-
terest at the macrolevel ðcf., e.g., Bechtel 2007, sec. 3Þ.6 In causal models
this information is typically provided by the model’s associated probabil-
ity distribution together with its graph’s topology. Illustrated in our exam-
ple: if our RBN model adequately represents the water dispenser mecha-
nism, then the information that the tempering button is not pressed ðB5 0Þ
will screen W off from T. ðThe room temperature is only relevant for the
temperature of the water dispensed when the tempering button is pressed.Þ
The RBN’s associated probability distribution may give us the correct prob-
abilistic dependencies/independencies, but its graph does not provide the
6. There is an analogy in the discussion on scientific explanation: for, explaining an event
e2 by referring to an earlier event e1, knowing that e1 increases e2’s probability, is not
enough. What one has to know additionally is that e1 is causally relevant to e2—one has to
provide a model that shows how e1 causes e2 ðcf. Salmon 1984; Woodward 2011, sec. 4Þ.
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FORMAL FRAMEWORK FOR MECHANISMS? 145
causal information to mechanistically explain this probabilistic behavior. So
the model does not tell us that the probabilistic influence of T on W breaks
down because B5 0 fixes the value of H and because H lies on the only
directed causal path from T to W.

The representation of such causal information in the model’s graph is
important not only for mechanistic explanation but also when it comes to
questions of manipulation and control. ðPurely probabilistic models cannot
distinguish between observation andmanipulation; cf. Pearl 2009, sec. 1.3.1.Þ
So how, for example, could we intervene on the mechanism’s microstruc-
ture in such a way that we can amplify or decrease certain external influ-
ences? If we want, for instance, to increase or decrease T’s causal effect on
W in our exemplary mechanism, then the information ðwhich is not captured
by the RBN’s graphÞ that S lies on a causal path from T toW is crucial. Such
knowledge tells us that we can increase/decrease T’s effect on W by manip-
ulating S in certain ways, for example, by putting an additional heat source
to the sensor S or by cooling S.7

Let me now illustrate problem ðiiÞ, which is presumably the more striking
one of the two problems for the RBN approach: recall that the probability
distribution that allows for probabilistic reasoning across all levels of a mech-
anism is constructed via the flattenings of the RBN ðsee sec. 2Þ. For our exem-
plary mechanism this probability distribution would be PðT;B;D;W; S;HÞ
5 PðTÞPðBÞPðDjT;BÞPðW jDÞPðSjDÞPðH jS;DÞ, where the probabilities on
the right-hand side of the equation are determined by the flattening induced
by T, B,D,W, S,H. This probability distribution can be captured by a BNwith
a graph like the one depicted in the box in figure 4. ðAgain, the continuous
lines could, while the dashed ones should not, be causally interpreted.Þ Now
assume that one would, for example, intervene on S by means of an inter-
vention variable IS. Such an intervention on Swould—and this can directly be
read off the BN’s associated graph’s topology ðdepicted in fig. 4Þ—not have
any probabilistic influence on any macrovariable at all.

So, according to the RBN approach, intervening on a mechanism’s mi-
crovariables does not have any probabilistic influence on any one of the
macrovariables whatsoever. This does not only contradict what we observe
when looking at the ðbottom-upÞ experiments scientists perform. It is also
inconsistent with one of the core features of mechanisms: a mechanism’s
macro- and its constitutively relevant microbehaviors should be mutually
7. Note that such amplification or decrease of a certain variable’s influence on another
one is not possible by means of so-called surgical or ideal interventions in the sense of
Woodward ð2003Þ or Pearl ð2009Þ, but it is by means of soft interventions ðcf. Eberhardt
and Scheines 2007Þ.
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manipulable ðcf. Craver 2007a, 2007bÞ. Note that the inferiority relation is
explicitly intended to represent constitutive relevance within the RBN ap-
proach ðcf. Casini et al. 2011, sec. 4Þ.

4. An Alternative. Let me now propose an alternative to Casini et al.’s
ð2011Þ method for representing nested mechanisms. Instead of BNs I use
causal models hV; E; Pi whose graphs G5 hV; Ei are not restricted like
those of BNs. In particular, the causal graphs G5 hV; Ei I use can con-
tain two kinds of edges: X → Y, which means that X is a direct cause of Y
in the graph, and X ↔ Y, which means that X and Y are effects of a latent
common cause, that is, a cause of X and Y not represented within the
graph’s variable set V.8 Contrary to Casini et al., I suggest to represent
mechanisms not by means of variables but by means of causal arrows. So
the simplest representation of a mechanism’s top level would be a causal
model hV; E; Pi with graphical structure X → Y or X ↔ Y. In the first
case, X would be the mechanism’s input, Y its output, and the arrow ‘→’
would stand for the ðnot further specifiedÞ mechanism at work. In the latter
case, X and Y would both represent different outputs produced by one or
more not-further-specified ðand maybe yet unknownÞ common causes. Also
here, ‘↔’ would stand for the mechanism at work.

To represent the mechanism’s causal microstructure, one can now assign
a second causal model to the top-level causal model hV; E; Pi that specifies
how exactly probabilistic influence between X and Y is propagated through
8. Note that the graph of a causal model that contains bidirected arrows no longer de-
termines the Markov factorization ðeq. ½1�Þ. Causal models containing bidirected arrows
will typically violate the Markov condition as well as its causal interpretation, i.e., the
causal Markov condition.
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FORMAL FRAMEWORK FOR MECHANISMS? 147
the mechanism’s causal microstructure. Both causal models must fit to-
gether with respect to the causal information contained in their associated
graphs as well as with respect to the probabilistic information stored in
their associated probability distributions. This is guaranteed by the follow-
ing notion of a restriction of a causal model. This notion is basically a
slightly modified version of Steel’s ð2005, 11Þ notion of a restricted graph
complemented by conditions for bidirected arrows:
9. W

10. V
of the
an ar

All 
DEFINITION 3. hV; E; Pi is a restriction of hV *; E*; P*i if and only if

aÞ V ⊂ V *, and

bÞ P*↑V 5 P,9 and
cÞ for all X; Y ∈ V :

1. If there is a directed path from X to Y in hV *; E*i and no vertex
on this path different from X and Y is in V, then X → Y in hV; Ei,
and

2. if X and Y are connected by a common cause path p in hV *; E*i
or by a path p free of colliders containing a bidirected edge in
hV *; E*i,10 and no vertex on this path p different from X and Y is
in V, then X ↔ Y in hV;Ei, and
dÞ no path not implied by c is in hV; Ei.

Definition 3 determines for every causal model hV *; E*; P*i and for every
proper subset V of V * a unique restriction hV; E; Pi. This restriction is
called hV *; E*; P*i’s restriction to V. The introduced notion of a restriction
allows for marginalizing out variables in such a way that the causal as well
as the probabilistic information captured by the restricted model is pre-
served: hV; Ei can be interpreted as a higher- and hV *; E*i as a lower-level
mechanism’s causal structure in definition 3. Condition a guarantees that
the higher-level structure contains fewer variables than the lower-level one,
b ensures that hV; E; Pi’s and hV *; E*; P*i’s probability distributions fit to-
gether, and c that also their associated causal structures do. Thanks to c1
all components of a mechanism represented at both levels are directly caus-
ally connected at the higher level whenever they are directly causally con-
nected at the lower level, so no direct causal connection between two varia-
bles represented at both levels gets lost when going from the lower to the
higher level. In addition it guarantees that there is a direct causal connection
for every directed causal path in the lower-level structure whose interme-
here P*↑V is the restriction of probability distribution P* to variable set V.

ariable Zl is called a collider on a causal path p if and only if p contains a subpath
form Zk@→ Zl ←@Zm, where ‘@’ is a metasymbol standing for an arrowhead or

row’s tail. So ‘X@→ Y ’, e.g., stands for ‘X → Y or X ↔ Y ’.
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diate components are not represented at the higher-level model’s associated
graph. Condition c2 tells us when we have to draw a bidirected edge ð↔Þ
between two variables X and Y in the higher-level model’s graph: draw such
a bidirected edge whenever there also is one at the lower level, if all varia-
bles on a common cause path of X and Y are marginalized out when going
from the lower- to the higher-level structure or when all variables lying on
a path at the lower level that indicates a latent common cause of X and Y are
marginalized out.11 Condition d prevents causal connections at the higher
level that do not have a counterpart at the lower level. Figure 5 illustrates
howmarginalizing out variables functions according to definition 3, by show-
ing an exemplary causal structure and some of its possible restrictions.

Let me now further develop the above-mentioned idea of representing
nested mechanisms by edges instead of vertices. For this purpose I intro-
duce the following notion of a multilevel causal model ðMLCMÞ that is
based on the definition of a restriction ðdefinition 3Þ. I propose MLCMs
as adequate means for representing the hierarchical organization of mech-
anisms ðbelow I will demonstrate that MLCMs do not fall prey to the two
problems of the RBN approach discussed in sec. 3Þ:
11. H
a late
out Z
this p

se sub
DEFINITION 4. hM1 5 hV1; E1; P1i; : : : ; Mn 5 hVn; En; Pnii is a multilevel
causal model if and only if
aÞ M1; : : : ;Mn are causal models, and

bÞ every Mi with 1 < i ≤ n is a restriction of M1, and

cÞ M1 satisfies CMC.

According to definition 4, an MLCM is an n-tuple consisting of several
causal models ðcondition aÞ that are intended to represent causal structures
at different levels. According to b, every causal model Mi in the ordering
different from M1 is a restriction of the first causal model M1, so M1 stands
for the mechanism’s lowest level, while every Mi different from M1 repre-
sents one of its higher levels. Condition c captures a basic assumption of the
causal nets approach; that is, that every robust probability distribution is pro-
duced ðand, thus, can be explainedÞ by some underlying causal model satis-
fying CMC ðcf. Spirtes et al. 2000, 124–25Þ. So an MLCM of a mechanism
is complete only when all probabilistic dependencies of any higher-level
model can be explained by a lowest-level causal modelM1 that satisfies CMC.

Definition 4 does not directly tell us much about the hierarchical orga-
nization of the mechanism and its submechanisms represented by the
ere is an example of such a path: Z1 ↔ Z2 in structure X ← Z1 ↔ Z2 → Y indicates
nt common cause of Z1 and Z 2 and, thus, also of X and Y. When marginalizing
1 and Z 2, one has to draw a bidirected arrow between X and Y ðX ↔ Y Þ to prevent
iece of causal information.
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Figure 5. According to definition 3, the graph of the restriction of a causal model
with the graph depicted above would be X ↔ Y ← Z ↔W, if one chooses to
marginalize out U. It would be X ↔ Y ← U →W, if marginalizing out Z, and
X ↔ Y ↔W , if marginalizing out Z and U. When one restricts the original model
to V 5 fX; Z; U; Wg, the resulting structure would be X Z ← U →W ðwithout
an edge between X and ZÞ.
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MLCM’s causal models; it just tells us that M1 stands for the lowest level.
Fortunately, a unique level graph G5 hV; Ei can be constructed for every
MLCM. Such a level graph is a kind of metagraph that provides exactly
the information requested above: information about the hierarchical rela-
tion of nested mechanisms represented by the MLCM:
All 
DEFINITION 5. A graph G5 hV; Ei is called an MLCM hM1 5 hV1;E1;
P1i; : : : ;Mn 5 hVn; En; Pnii’s level graph if and only if
aÞ V 5 fM1; : : : ;Mng, and

bÞ for all Mi 5 hVi;Ei;Pii and Mj 5 hVj;Ej;Pji in V, Mi →Mj in G if

and only if Vi ⊂ Vj and there is no Mk 5 hVk;Ek;Pki in V such that
Vi ⊂ Vk ⊂ Vj holds.

According to a, a level graph G5 hV;Ei is a graph over the causal models
M1 5 hV1; E1; P1i; : : : ;Mn 5 hVn; En; Pni of an MLCM. Condition b in-
structs one to draw a directed edge from one of these Mi 5 hVi; Ei; Pii to
another Mj 5 hVj; Ej; Pji whenever Vi is a proper subset of Vj and there is
no Mk 5 hVk; Ek; Pki in V such that Vk is a proper subset of Vj and a proper
superset of Vi. So the directed paths in a level graph correspond to the set-
theoretical proper subset relation ði.e., Mi → : : :→Mj in G if and only if
Vi ⊂ VjÞ. Because every causal model Mi 5 hVi; Ei; Pii of the MLCM dif-
ferent from M1 5 hV1; E1; P1i is a restriction of M1, the vertex set Vi of
every such modelMi is a proper subset of V1. So the level graph G will be a
DAG containing only one vertex with no exiting arrows ði.e., M1 5
hV1; E1; P1iÞ, while there will be a directed path from every Mi different
from M1 to M1.

Now some information about the hierarchical organization of causal
models of an MLCM can be read off this MLCM’s level graph G: when-
ever there is a directed path from Mi to Mj in the level graph G, then Mi

represents a higher-level causal structure than Mj does. And whenever a
causal model Mk 5 hVk; Ek; Pki lies on such a directed path from Mi to
Mj, then Mk represents a causal structure on a level between Mi and Mj. So
what we basically get by drawing a level graph is a strict order among
causal models of an MLCM.
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Let me now illustrate the MLCM approach for modeling mechanisms by
an abstract example. Figure 6 shows the causal structures of the causal
models of an MLCM plus the MLCM’s level graph that connects these
models and provides information about the hierarchical order of the mech-
anism’s levels the MLCM represents. The lowest-level causal model M1’s
graph is X ↔ Y ← Z ← U →W . One gets the higher-level model M2

with graph X Z ← U →W by marginalizing out Y, and the higher-level
model M3 with graph Y ← Z ↔W by marginalizing out X and U. Note
that the MLCM’s level graph does not provide any information about
whether these two models ði.e., M2 and M3Þ represent structures at the
same or at different levels of organization. By marginalizing out U fromM2,
one arrives at the higher-level causal model M4 with structure X Z ↔W .
Note that the formalism again does not provide any information about
whether M4 represents a mechanism at the same level as the one repre-
sented by M3. One can further restrict M3 and M4 to M5, with causal graph
Z ↔W . Model M5 describes the represented mechanism at the top level.
Note that the MLCM’s level graph tells us that causal models M2, M3, and
M4 describe the mechanism’s causal structure on levels between the mech-
anism’s top and its lowest level represented by M5 and M1, respectively.

As a last step, I will demonstrate using our exemplary mechanism in-
troduced in section 2 ði.e., the water dispenserÞ that MLCMs do not share
problems ðiÞ and ðiiÞ, which Casini et al.’s ð2011Þ RBN approach has to
face, and that MLCMs nicely capture another important feature of nested
mechanisms: as long as the details of a mechanism are not considered, the
same input should lead to the same output on all of the mechanism’s levels.

The water dispenser mechanism can be represented by an MLCM hM1 5
hV1; E1;P1i; M2 5 hV2;E2;P2ii, where the graph in the upper box in fig-
ure 7 shows M2’s and the one in the lower box shows M1’s causal struc-
Figure 6. Boxed graphs are the associated causal graphs of an MLCM’s causal mod-
elsM1; : : : ;M5. Dashed lines are the edges of this MLCM’s level graph.
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Figure 7. Water dispenser mechanism by means of a two-stage MLCM ðcausal
modelsM1 andM2Þ. Graphwith the dashed edge connecting theMLCM’s two causal
models M1 and M2 is the MLCM’s level graph.
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ture. Model M1 represents the water dispenser’s submechanism, that is, the
water temperature regulation unit, and how it is causally connected to the
mechanism’s macrovariables. Note that this submechanism is not repre-
sented by a variable like in Casini et al.’s ð2011Þ RBN approach but byM2’s
graph T →W ← B at the higher level. Variables T and B are this sub-
mechanism’s input variables; W is its output variable. The MLCM hM1 5
hV1;E1;P1i;M2 5 hV2;E2; P2ii’s level graph isM2 →M1. When we go from
M2 to M1, we zoom into the microstructure of the submechanism rep-
resented by T →W ← B at the top level. Since M2 is a restriction of M1 in
the MLCM, it follows from definition 3b that P1ðwjt; bÞ5 P2ðwjt; bÞ holds
for arbitrarily chosen W-, T-, and B-values w, t, and b, respectively. So as
long as only the variables contained in both causal models’ variable sets
are considered, the same input will lead to the same output at both levels, and
thus, MLCM captures the aforementioned feature of nested mechanisms.

Since the causal arrows in M1 tell us exactly how the submechanism’s
components S and H are causally connected to the rest of the mechanism
ði.e., T, B, and WÞ, the MLCM representation captures property ðiÞ: the
MLCM can graphically represent the causal connections between the rep-
resented mechanism’s macro- and microvariables. This gives us causal in-
formation that is crucial for questions concerning explanation, manipulation,
and control. It tells us why certain inputs ði.e., conditionalizing on certain
T- and B-valuesÞ bring about ðor explainÞ certain outputs ði.e., probabilities
of certain W-valuesÞ: T is directly causally relevant for S, B and S are direct
causes of H, and H is the only direct cause ofW in our toy mechanism. This
causal information does tell us, for example, why T’s probabilistic influence
on W breaks down when B5 0. It is because the only productive causal
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path from T to W goes through H. Variable B5 0 fixes H’s value and, thus,
probability propagation between T andWalong this path is blocked whenH’s
value is fixed. It also tells us that T’s influence on W can be amplified or
decreased by manipulating S or H by means of soft interventions, while B’s
effect on W can only be modified by changing H’s behavior. The MLCM
can also capture property ðiiÞ: intervening on the mechanism’s microstructure
ði.e., on S or HÞ will typically have a probabilistic influence on the mech-
anism’s macrobehavior ði.e., on certainW-valuesÞ.

Like Casini et al.’s ð2011Þ RBN approach, the MLCM representation
provides a unique probability distribution over the set of all variables ap-
pearing in the causal models of the MLCM. Since the first causal model
M1 5 hV1;E1;P1i in an MLCM’s ordering M1; : : : ;Mn also contains all
variables of the causal modelsMi appearing later in that particular ordering,
said unique probability distribution is M1’s probability distribution P1.
When it comes to quantitative prediction, one can, thanks to the fact that
every causal model appearing later in the ordering M1; : : : ; Mn is a re-
striction of M1, just choose one of the causal models in the MLCM that
contains all the variables of interest and then compute the probabilities for
the phenomena of interest accordingly.

5. Conclusion. In this article I tackled the question of how mechanisms,
and especially their hierarchical organization, can be represented within a
causal graph framework. In section 2 I discussed an approach for modeling
such nested mechanisms proposed by Casini et al. ð2011Þ. I introduced
Bayesian networks and recursive Bayesian networks and explained how
they can be used for causal modeling. I then illustrated Casini et al.’s RBN
approach,which suggests representing submechanisms by network variables
of an RBN, by means of a very simple toy example, that is, the water dis-
penser mechanism. In section 3 I illustrated two problems with the RBN
approach by means of the exemplary mechanism introduced in section 2:
ðiÞ an RBN does not graphically encode information about how a mecha-
nism’s submechanisms are causally connected to the rest of this mecha-
nism. Such information is, however, relevant when it comes to questions of
mechanistic explanation, manipulation, and control. ðiiÞ It follows from the
RBN approach that intervening on some of a mechanism’s microvariables
cannot have any probabilistic influence on some of this mechanism’s mac-
robehavior whatsoever. This consequence stands in stark contrast to scien-
tific practice; scientists typically carry out so-called bottom-up experi-
ments to distinguish between a mechanism’s constitutively relevant and its
irrelevant parts. In section 4 I developed an alternative modeling approach
for nested mechanism: the MLCM approach. This approach represents sub-
mechanisms not by means of a causal model’s variables but by the edges
of its associated graph. I finally demonstrated, again using the exemplary
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mechanism of the water dispenser, that the MLCM approach does not fall
prey to problems ðiÞ and ðiiÞ, which Casini et al.’s RBN approach has to face.
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