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Abstract: The paper uses Schelling’s famous segregation model and a number of extensions to show how a
reconstruction of the theory behind these models along the lines of the ‘non-statement view’ on empirical sci-
ence can contribute to a better understanding of these models and a more straightforward implementation. A
short introduction to the procedure of reconstructing a theory is given, using an extremely simple theory from
mechanics. The same procedure is then applied to Schelling’s segregation theory. A number of extensions to
Schelling’s model are analysed that relax the original idealisations, such as adding di�erent tolerance levels
between the two subpopulations, assuming inhomogeneous subpopulations and heterogeneous experiences
of neighbourhoods, among others. Finally, it is argued that a ‘non-statement view’ reconstruction of a mental
model or a verbally expressed theory are relevant for a useful specification for a simulation model.
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Introduction

1.1 This paper is intended to show the similarities between simulation modelling in general and a method of for-
malising theories,whichwasdevelopedsome thirty years ago (Sneed 1979;Balzer et al. 1987) andhasbeenused
to reconstruct theories in sciences such as physics, but only rarely in sciences such as psychology (Westmeyer
1992), economics (Stegmüller et al. 1981; Alparslan & Zelewski 2004), sociology and political science (Druwe
1985; Troitzsch 1987, 2012b). Only in a few cases has the analogy between the ‘non-statement view’ of recon-
structing and formalising theories and the simulation of theory-derived models been shown: In sciences such
as physics, this is not necessary as many dynamic phenomena can be described with classical mathematics,
such as systems of ordinary, partial or stochastic di�erential equations, which lend themselves to a reformula-
tion in terms of this philosophy of science approach (to be described in paragraph 2.7). This also holds for the
neoclassic methodology in economics. However, in many cases where emergent phenomena on amacro level
resulting from interactions between elements of amicro level need to be described, even stochastic di�erential
equations might not be su�icient to explain the emergent phenomena. This is particularly the case when the
elements of the micro level are inhomogeneous, which is typical in systems which economics, sociology and
political science are interested in. Where the elements of social systems can be simplified as consisting of ho-
mogeneous elements, an approach with stochastic di�erential equations is sometimes su�icient, as has been
shown by Weidlich & Haag (1983), Helbing (1991/92) and, more recently, by Johansson et al. (2008) (for a more
detailed discussion see Troitzsch (2009, 2012a)). In the case of social science research that looks at systems
of inhomogeneous, interacting and interpreting human actors, only few papers have discussed the analogy
between simulation and ‘non-statement view’ reconstruction (Troitzsch 1992, 1994, 2012b; Balzer & Moulines
2015).

1.2 The paper is structured as follows. In the next section, the use of the terms ‘axiom’ and ‘axiomatisation’ will
be discussed, and a short description of theory reconstruction according to the ‘non-statement view’ will be
given. Section3will exemplify this reconstructionprocesswith the famoussegregationmodelofSchelling (1971)
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while Sections 4 and 5will apply this formalisationmethod to an extension of Schelling’smodel with structural
inhomogeneity and behaviour rules that change over time. It is worth noting that in these cases changes on the
macro level in turn change due to the individual changes, as described with the ‘boat’ or ‘bathtub’ metaphor
first coinedbyColeman (1990, p. 8). Finally, Section 6 tries to assess the advantages of the ‘non-statement view’
for computational social science at large against a slightly less formal agent-based simulation approach.

Axioms and Axiomatisation of a Theory

Axioms in the social sciences

2.1 Theword ‘axiom’ seems tohavebeenused for the first time in the context of Euclid’s geometrywhere it is under-
stood as a statement which need not and cannot be proven as “an established principle or a self-evident truth”
(Merriam-Webster, “axiom”) or a “maxim, that has found general acceptance or is thought worthy of common
acceptance whether by virtue of a claim to intrinsic merit or on the basis of an appeal to self-evidence” (Ency-
clopædia Britannica 2014, “axiom”).

2.2 In a talk given in June 1971, Suppes (1974, p. 472), a�er having talked mainly about axiomatisation approaches
in physics, stated:

Many problems of interest in the behavioral and social sciences have also been treated from an
axiomatic standpoint. Much of the contemporary work inmathematical economics satisfies a high
standard of axiomatization, andwhen not explicitly so stated, it can easily be put within a standard
set-theoretical framework without di�iculty. On the other hand, with the exception of some of the
problems of measurement I mentioned earlier, the impact of the theory of models as developed in
logic and the kindmetamathematical questions characteristic of that theory have not been widely
applied in the social sciences, and the relation of these sciences to fundamental questions of logic
has not had the history of examination characteristic of problems of long standing in physics.

2.3 In what followed in his talk, he gave an example of an axiomatisation of stimulus-response theory inspired by
previous work (Suppes 1969) andmentioned a number of similar attempts mainly in equilibrium economics —
which is favoured thanks to its high level ofmathematisation. This is alsowhy one of the early top Russian read-
ers in mathematics named only “political economy” as a social science subdiscipline apt for mathematisation
and axiomatisation:

Of course, in the study of such complicated phenomena as occur in biology and sociology, the
mathematical method cannot play the same role as, let us say, in physics. In all cases, but espe-
cially where the phenomena are most complicated, wemust bear in mind, if we are not to lose our
way in meaningless play with formulas, that the application of mathematics is significant only if
the concrete phenomena have already been made the subject of a profound theory. In one way
or another, mathematics is applied in almost every science, frommechanics to political economy.
(Aleksandrov 1999, p. 4)

2.4 Onemust, however, admit that (nearly) all those axiomatisations of theories in the social sciences at largewere
applied to caseswhere either only themacro level was considered (in economics) or where only themicro level
(psychology and sociology of small groups) was considered. Indeed, the problem of the interaction between
these two (and potentially even more) levels was only very rarely the object of axiomatisation attempts — at
least before the era of agent-based modelling and its predecessors in multilevel modelling. Economics used
as “one of the best examples ... the systems of equations of the mathematical theory of prices ... to describe
the general character of the order that will form itself” (Hayek 1967, p. 261) whereas sociology o�en used game
theory as in Coleman’s reconstruction of an experiment conducted by Mintz (1951) (Coleman 1990, p. 203–215),
to name just two extreme examples.

2.5 In the context of this paper, we use the word ‘axiom’ in the sense of a “condition . . . that ha[s] to be satisfied by
the basic notions of the theory in question” (Balzer et al. 1987, p. 24), such that it is not a statement that is held
to be true but the predicate that the theory makes about its intended applications.
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The ‘non-statement view’ and simulation

2.6 To introduce theprocedures of reconstructing a theory along the lines of the ‘non-statement’ view (“reconstruc-
tion procedures”, (Balzer et al. 1987, p. 23)1), we use a very simple theory from classical mechanics, namely
Hooke’s early theory of elasticity — Petroski (1996, p. 9–11) tells the story of Hooke’s discovery — which says
“that up to a limit, each object stretches in proportion to the force applied to it”. Hooke’s experiment consists
of a spring whose upper end is fixed andwhose lower end can be loadedwith one ormore small weights which
will extend the spring by a measurable amount. The law says that (within a certain range) the extension is pro-
portional to the number of the small weights hanging from the spring. Thus, this law can be describedwith just
two terms which are measurable without any knowledge of springs: the number N of identical weights and
the lengthL of the extension. Hooke found out that for any spring the two numerical values were proportional
with di�erent proportionality factors ks for di�erent springs s: N = ksL such that this law could be used for
weighing things with unknown weights.

2.7 A certain Hooke-like experiment can be understood as amodel2 of classical particle mechanics (CPM). In this
simplificationof thediscussion in (Balzer et al. 1987, p. 29–34), it is understood thatN andL are non-theoretical
termswith respect to CPM (or rather: with respect to Hooke’s spring lawHSL, as wewill call this extremely sim-
plified version from now on), given that counting identical weights and measuring the length of the extension
have nothing to dowith springs. On the other hand, the ‘device constant’ ks for spring s is not even conceivable
and hence unmeasurable without using HSL. Thus it has to be considered as a “theoretical term with respect
toHSL” as before stating Hooke’s law it is totally unclear whether ks also depends on the number of weightsN
appended to the spring. In terms of (Balzer et al. 1987) we can now formulate:
Mpp(HSL): x is apartial potentialmodelofHooke’s spring law (x ∈ Mpp(HSL)) i� there existS,W,N,L, k∗ such

that

1. x = 〈S,W,N,L, k〉
2. S is a finite set [of springs]
3. W is a finite set [of identical weights]
4. N : P(W)× S → N [N(w̄, s) yielding the number of identical weights loaded at the lower end of
the spring where w̄ ⊂W denotes the collection of weights hanging from spring s ∈ S]

5. L : P(W)×S → R+ [L(w̄, s) yielding the length of the extension produced by a subset of identical
weights at the lower end of the spring]

6. k∗ : P(W)× S → R+ [k∗(w̄, s) yielding the quotientN(w̄, s)/L(w̄, s) ]

2.8 In this definition, k∗ is not yet a device constant as it does not only depend on the spring but also on the col-
lection of weights hanging from the spring. Only when Hooke detected that at least for small extensions k only
depended on the spring, he could formulate:

Mp(HSL): x is a potential model of Hooke’s spring law (x ∈Mp(HSL)) i� there exist S,W,N,L, k such that

1. x = 〈S,W,N,L, k〉
2. S is a finite set [of springs]
3. W is a finite set [of identical weights]
4. N : P(W)× S → N [N(w̄, s) yielding the number of identical weights loaded at the lower end of
the spring]

5. L : P(W)×S → R+ [L(w̄, s)] yielding the lengthof the extensionproducedbya subset of identical
weights at the lower end of the spring]

6. k : S → R+ [k(s) yielding the quotientN(w̄, s)/L(w̄, s) where w̄ ⊂ W denotes the collection of
weights hanging from spring s ∈ S]

and finally

M(HSL): x is amodel of Hooke’s spring law (x ∈M(HSL)) i� there exist S,W,N,L, k such that

1. x = 〈S,W,N,L, k〉
2. x ∈Mp(HSL)
3. ∀w̄ ⊂W ∀L < L0 and ∀s ∈ S: k(s) = N(w̄, s)/L(w̄) is a constant which does not depend on w̄.

where 3 can be called the axiom of Hooke’s spring law as it postulates that the extension of the spring is pro-
portional to the weight at its lower end.
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Schelling’s Segregation Model Revisited

Schelling’s model reconstructed

3.1 The famous Schelling model (Schelling 1971) has been programmed very o�en but rarely has it been used to
analyse the dependency of the segregation index on input parameters such as density, group sizes and thresh-
old (exceptperhapswhenSquazzoni (2012, p. 90–92) compared the similarity indexdynamics for threedi�erent
threshold values denoting the “preferenceof like neighbors at 25, 33 and50%”—see also (Epstein&Axtell 1996,
p. 165–171)). Density, for instance, was typically set to 85 per cent (Bruch & Mare 2006, p. 674, footnote 13), and
group sizes were typically equal, also in the models using, for instance, three subpopulations (Muldoon et al.
2012, p. 42), but occasionally an “empirical race-ethnic composition”was used (Bruch&Mare 2006, p. 674, foot-
note 12) . Furthermore, it has never been used to analyse the behaviour of the model systematically when the
individuals do not have identical thresholds but thresholds following a certain distributionwhichmight also be
di�erent between groups (except (Gilbert 2002)). A mathematical analysis of the Schelling model and some of
its possible extensionwasgivenbyZhang (2004)who showed that segregation is “stochastically stable” (p. 148).

3.2 In this section, an attempt ismade to reconstruct Schelling’smodel in terms of the “non-statement view” intro-
duced above. The “reconstruction procedure” is quite similar to the one on in paragraph 2.7.

3.3 A run of a Schelling simulation model written in NetLogo (Wilensky 1997) can be understood as a model of
Schelling’s segregation theory (SST), where it is understood that in any real-world context:

• the individuals occupying houses or apartments or, more generally, city blocks in their world,

• their density,

• their individual ‘colours’ and

• the segregation indexwhichcanbeeasily calculated fromthedatadefiningwhichcityblocksareoccupied
by which individual agent(s)

are measurable without any theory of segregation whereas the individual tolerance levels are unobservable as
human beings are rarely in a position to give their individual tolerance levels (or, more generally speaking, any
kind of propensity or action probability) a numerical value.

3.4 Hence, a potential model of SST can be defined as

Mp(SST): x is a potential model of Hooke’s spring law (x ∈Mpp(SST)) i� there existW,W, P, `, T, θ, b, c, φ, δ, ς
such that

1. x = 〈W,W, P, `, T, θ, b, c, φ, δ, ς〉;
2. W is a set of pairs 〈W,P 〉 [each consisting of a city and its inhabitants or, in the simulation model,
the ‘world’ of a Netlogomodel interface together with the turtles on it];

3. W is a finite set [of city blocks or, in the simulation model, of patches, collecting all city blocks of
the target system or, in the simulation model, the ‘world’ of a NetLogomodel interface];

4. P is a finite set [of persons or households moving between city blocks or, in the simulation model,
of turtles moving between patches];

5. ` : P → {`1, `2} [`(p) yielding the feature of a person in question, for instance their language or, in
the simulation model, the colour of a turtle];

6. T is a finite set [of points in timewhen census records are takenor, in the simulationmodel, of ticks];

7. θ : P ×T → [0, 1] [θ(p, t) yielding a threshold value helping person or turtle p to decide whether to
stay or to move at time t];

8. b : P ×T →W [b(p, t) yielding the city block bwhere household p lives at a certain census time t or,
in the simulationmodel the patch b the turtle p occupies at a certain tick t of the simulationmodel];

9. c : W → {cxmin, ..., cxmax} × {cymin, ..., cymax} [c(b) yielding the integer coordinates of a city
block or, in the simulation model, of a patch];

10. φ : P × T → [0, 1] [φ(p, t) yielding the proportion of persons of the same colour in the Moore
neighboorhood of a certain person at a certain census time or, in the simulation model, the same];
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11. δ : P×T →W [δ(p, t) yielding the city block or, in the simulationmodel, the patch towhich person
(or turtle) p will move at time t; φ(p, t) > θ(p, t) → δ(p, t) = b(p, t), φ(p, t) ≥ θ(p, t) → δ(p, t) 6=
b(p, t), i.e. i� the proportion of persons of the same colour in theMoore neighbourhoodof p is below
the threshold θ(p, t) this person or turtle will move to the nearest free city block or patch or to a city
block or patch where the neighbourhood seems to bemore convenient];

12. ς :W → [0, 1] [ς(〈W,P 〉) yielding the segregation index for the whole collection of city blocks and
their inhabitants or, in the NetLogomodel, of the simulated world and its turtles].

3.5 The segregation indexDmentioned in item 12 is defined (Duncan & Duncan 1955) as

D =
1

2

n∑
i=1

∣∣∣xi
X
− yi
Y

∣∣∣ (1)

where xi and yi are the local numbers of persons belonging to each of the two subpopulations in n subareas
andX and Y are the overall sizes of the two subpopulations. In the current context, we have to consider that
the n subareas are overlapping as each patch counts the turtles in a square neighbourhood of 49 patches. Fur-
thermore, we use the segregation index in the range of 0 to 100 instead of 0 to 1 such that ς = 100D/49.

3.6 Somemore derived terms used later on need to bementioned here:

• the minority size ν defined as |{p∈P |`(p)=`1}||P |

• the density d defined as |P ||W |

Intended applications of STT

3.7 Some of these termsmight not be measurable in intended real-world applications of SST:

• θ is quite di�icult to measure when asking people for a real number in the interval [0, 1] to describe be-
yond which percentage of similar neighbours in their vicinity they are happy or below which threshold
they would take a certain action. Other sources of information about such propensities — census data
or data from registration o�ices, from which removal frequencies can be obtained — do not yield more
reliable information about actual individual propensities. Approaches to overcome this di�iculty have
been made for instance by da Fonseca Feitosa et al. (2011), Wong (2013) and Benenson et al. (2003)). In
most simulation models published so far based on SST implementations, θ has been a constant for all
members of both subpopulations in each simulation run, much like the device constant in HSL, but, see
below, this is, of course, not the only possible interpretation of θ.

• δ is also quite di�icult tomeasure—onewould have to ask interviewees “wherewould youwant tomove
in case you find that in your neighbourhood there are too many people speaking another language?”, as
wasdonebyXie&Zhou (2012) and in amore sophisticatedmannerbyBruch&Mare (2006) andLewis et al.
(2011). Such aquestion, however, contains twohypothetical conditions—which is usually discouragedby
textbookson surveymethodology (cf. e.g., Converse&Presser 1986, p. 23). This iswhy inmost “Schelling”
simulationmodels δ just points toanarbitrary freepatch in the vicinity of the currentplacealthough there
is a lot of empirical evidence that people choose deliberately where to move, and there exist simulation
models like the ones cited above which take this into account.

3.8 The function p can in principle be reconstructed from individual data of subsequent censuses (when individual
data are kept between census dates) or from records of resident registration o�ices (if these exist in the context
in question).

3.9 Intended applications are usually partial potential models of a theory that do not include terms which are the-
oretical with respect to the theory in question, and here is where intended applications of SST have serious
problems for several reasons:

• If, as is usually the case although not in Schelling’s original paper, the world is understood as a torus,
there is no real-world correspondence possible at all, but this restriction can easily be solved. The fact
that Schelling’s original andnearly all simulationmodelsdescribe theworld structuredasa checkerboard
is not so much of a problem as Flache & Hegselmann (2001, 5.1) showed that social dynamics “may be
widely robust against changes of the underlying standard assumption of rectangular grids”.

JASSS, 20(1) 10, 2017 http://jasss.soc.surrey.ac.uk/20/1/10.html Doi: 10.18564/jasss.3372



• Having only two more or less homogeneous subpopulations which di�er in exactly one binary feature is
a simplification — Gilbert (2002) has pointed this out and showed a number of relaxations and its con-
sequences — and it will be di�icult to find a social system which can be described in so simple terms.
However, there are modelling attempts which try to overcome this and other simplifications, too, for in-
stance Muldoon et al. (2012) and Durrett & Zhang (2014) with larger neighbourhoods, Lewis et al. (2011)
and Wong (2013) with more than two subpopulations.

• Describingneighbourhoodsonly one-dimensionallywith theproportions of inhabitants belonging todis-
tinguishable subpopulations is obviously inadequate, as there aremany othermotives tomove fromone
city district to another which were for instance taken into account by da Fonseca Feitosa et al. (2011); for
the inclusion of the housing market see (Zhang 2004).

The partial potential model of SST and its simulation implementation

3.10 Leaving the problems in the two previous paragraphs aside for a while, one can now easily map this descrip-
tion of the potential model of SST on Wilensky’s NetLogo simulation model (Wilensky 1997) and the extension
described in this paper — see Tables 1 and 4. The extension described here can be run with exactly the features
of Wilensky’s original.

SST term NetLogomodel component

W the set of all possible runs of the model
W the patches in a certain run of the model
P the turtles in a certain run of the model
` the built-in turtle variable color
T NetLogo’s ticks
θ the global variable %-similar-wanted — which shows that in original SST

the tolerance level is not an individual variable but a global constant, a re-
striction first relaxed in Gilbert (2002)

b the NetLogo built-in function patch-here
c NetLogo’s built-in turtle variables xcor and ycor
φ the value of this function is calculated in the procedure update-turtles in

Wilensky’s code (similar-nearby)
δ the function move-unhappy-turtles in Wilensky’s code
ς the value of this function is calculated in a few lines in the procedure

update-globals added to Wilensky’s code but can also be calculated as a
single function

Table 1: Correspondence between SST terms and NetLogo components

3.11 Neither Schelling’s original paper nor any of the followingwork yields a closed formula connecting the segrega-
tion index ς to the tolerance threshold θ—which so far wasmostly assumed to be constant for all agents and at
all times, with the exception of Gilbert (2002) — or to the density d = |P |/|W | < 1 (which must be strictly< 1
as otherwise unhappy agents have no chance to swerve) or to the fractions of the two groups (usually assumed
equal, but it is also — and perhaps even more — interesting to find out how segregation works with respect to
a minority; the fractions of the groups can easily be expressed in the terms of Mp(SST)). But, multiple runs of
the simulation model give an opportunity to derive at least a linear or nonlinear regression equation between
the segregation index ς (certainly a macro variable) and one or more of the other macro or micro variables. θ,
although a constant in the original version of SST, is a feature of the individuals and hence a micro variable.
In extended versions, however, building on Gilbert (2002), θ will become a function of the macro variables µθ
andσθ, and the individual θp,twill even change their individual values over timedepending on local neighbour-
hoods.

First results

3.12 Figure 1 gives a first impression of the dependence of the segregation index on the tolerance threshold: It seems
that the dependence is nonlinear — as already observed by Squazzoni (2012, p. 92)) — but obviously entirely
di�erent for tolerance thresholdsbelowandabove80per cent. Indeed, abovea level of 80per cent, segregation
cannot be achieved as it becomes extremely di�icult for the agents to become happywith so strong a demand.
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3.13 Here, it is important to note that inWilensky’s implementation unhappy agents justmove to some other empty
patcheswithout taking into accountwhether thesepatchesmeet their needsbetter than thepatches they come
from ( “keep going until we find an unoccupied patch”; the extended version stops a run when over the last 20
ticks the standard deviation of percent-unhappy was below 1). We will first analyse the results for tolerance
levels below 80 per cent in more detail to return to the problem of agents’ unintelligent search for alternative
patches.
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Figure 1: Segregation index as dependent on tolerance threshold for 45 per cent of one group and a density of
0.8; three runs per combination

3.14 To this end, aMonteCarlo simulationwith partly randomparameter combinations is run to search the complete
parameter space (reasonably leaving out tolerance thresholds above 80 per cent) and to find out howmuch of
the variance of the segregation index can be explained by tolerance threshold (uniformly distributed between
5 and 75 per cent), density (.75,. 85 and .95) and size of the minority group (10, 30, 50 per cent) with 300 runs
for each combination of the two latter factors, resulting in 2,700 individual runs. A�erwards, we will extend the
model along the lines of the ideas presented by Gilbert (2002).

3.15 This yields the scatterplots presented in Figure 2. Note that in these plots only those runs were used where the
tolerance threshold did not exceed 65 per cent. Figure 1 shows that the emergent behaviour of the system is
di�erent for these high tolerance levels. Most of these graphs show the cubic dependence between tolerance
threshold and segregation index.

3.16 A first attempt at analysing the outcome of this model is a Monte Carlo simulation with 3,000 runs varying the
tolerance threshold, the size of the minority and the density. Here, we want to find out how strong the depen-
dence of the segregation index on these three input parameters is. This analysis shows a variance reduction of
nearly 90 per cent (R2 = 0.872). The tolerance threshold is the most important input parameter with a stan-
dardised β = 0.901, the influence of theminority size is weaker with β = −0.281 (the smaller theminority, the
higher the segregation index), whereas the influence of the density is not even significant (in spite of the high
number of runs, for the relevance or irrelevance of significance in simulation analysis see Ziliak & McCloskey
(2007)) with a standardised β = −0.028.

3.17 This finding can be generalised to a cubic regression of the segregation index on tolerance threshold θ, minority
sizeν anddensityd in thisMonteCarlo simulationwith3,000 runs. Thevariance reduction is slightly higher than
in the linear case (R2 = 0.934) and the segregation index can be ‘predicted’ with a standard error of about 3.66
percentage points. The le�-hand diagram of Figure 3 shows how perfect this regression is. However, it is even
more interesting for our current concern that the segregation index, the density and the minority size can be
used tomeasure the tolerance threshold3—here the variance reduction is also above 90 per cent (R2 = 0.915)
and the standard error is about five percentage points (see the right-hand diagram of Figure 3).

3.18 Thismeans that SST yields a procedure tomeasure the value of a term that could not otherwise bemeasured in
real-world scenarios, hence the tolerance threshold is a theoretical variablewith respect toSST—much like the
case of the device constant of Hooke’s springs which can be measured with HSL. The regression equation can
be defined as the axiom of SST stating that the expected value of the tolerance threshold of two homogeneous
subpopulations is a cubic function of the three terms specified above and that the parameters of this function
are just the 16 regression coe�icients (not given here, as it is entirely unclear what the coe�icients β111 for the
product θνd or β201 for the product θdmean). So, one could conclude that a “black white segregation index”
in New York, Northern New Jersey and Long Island of 81.5, as reported by Frey (2016) and Frey & Myers (2005),
and the same index for Tucson AZ of 36.9 can be interpreted as a tolerance level (of both subpopulations the
same!) of more than 70 and less than 12, respectively.

3.19 This said, one must also ask whether this is of any use if we know that Schelling’s model is an idealisation of
what can be observed in the real world. We can, of course, extend thismodel to be at least a littlemore realistic
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Figure 2: Segregation index as dependent on tolerance threshold for three levels of minority size and three
density levels; 300 runs per combination

andmake the tolerance threshold a variable that can vary among individuals, between the two subpopulations
and, lastly, over time. This is what we will analyse in the next section.

Adding More Complexity to Schelling’s Model

4.1 As alreadydiscussed in earlier sections, the versionof themodel described in the following subsections extends
Wilensky’s implementation in several respects. While the extensions above weremerely technical (e.g., adding
a formula for calculating the segregation index, adding a stopping mechanism when the model run seemed to
have stabilised), the extensions dealt with in this section are more substantial and are as follows:

• tolerance related search of a new neighbourhood, i.e. agents do not only search for an unoccupied patch
but they look for an unoccupied patch which fits their needs better than the current patch4;

• tolerance levels can be di�erent for the two subpopulations5 and , i.e. population redmight like to live
togetherwith population greenwhich in turn prefers to live apart from red—examples are: a richminor-
ity preferring to live in gated communities and a middle class majority taking no o�ence at rich people
living in their neighbourhoodor aminority of hooliganswhodonot care for their neighbourhoodbutwho
influence majority people to move away; this leads to θ(p, t) = θi i� `(p) = i;

• tolerance thresholds may di�er within each subpopulation (i.e. they have distributions with di�erent
statistical parameters, here: means and variances)6; this means that θ is no longer a global constant as in
thedefinitionof thepotentialmodelof SST, item7, but insteada randomvariable approximately normally
distributedwithin each subpopulation iwithmeanµθ,i and standarddeviationσθ,i censored to the range
of [0.05, 0.95];

• tolerance thresholds change over time as a consequence of communication between agents; this means
that θ is no longer an individual constant but a variable changing over time (see Section 5).
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Figure 3: Le�: Segregation index as dependent on tolerance threshold for minority size and density. Right:
Tolerance threshold as dependent on segregation index, tolerance threshold, both in a Monte Carlo simulation
with 3000 runs

Sophisticated search, inhomogeneous and di�erent subpopulations

4.2 In a next bigMonte Carlo simulationwith 6,000 runs, we experimentwith the first three extensions listed above.
Wemake a twofold di�erence:

• one between the simple search of a new place (as coded by Wilensky 1997) and the tolerance related
searchwhere the agents look for anunoccupiedpatchwhich is at least populatedwith slightly less agents
of the other colour or language — if none is found the agent does not move — and

• betweenhomogeneous subpopulations (all individuals of a subpopulation have the same threshold) and
inhomogeneous subpopulations (within each subpopulation the tolerance threshold follows a censored
normal distribution with a mean — usually di�erent for the two subpopulations — and a variance of 15
percentage points; censoring makes sure that the individual tolerance threshold remains between five
and 95 per cent).

4.3 This leads to 1,500 simulation runs for each of the four subexperiments defined by search strategy and subpop-
ulation homogeneity, and in each of the four subexperiments density, minority size and the two means of the
tolerance threshold are randomly varied.

4.4 The outcome of this experiment is analysed with a linear regression which yields the variance reductions and
standardised βs collected in Table 2.

input parameters simple search tolerance related search
homogeneous inhomogeneous homogeneous inhomogeneous

all R2 0.627 0.720 0.689 0.802

minority size β -0.168 –0.340 -0.207 -0.404
density β -0.127 -0.198 -0.133 -0.182
tolerance meanminority β 0.388 0.560 0.389 0.556
tolerance meanmajority β 0.670 0.533 0.696 0.513

tolerance means cubic R2 0.757 0.649 0.748 0.647

Table 2: Variance reduction and standardised regression coe�icients for the linear dependence of the segrega-
tion index on density, minority size, search strategies and threshold distributions and for a cubic regression on
the two tolerance means (all coe�icients are significantly di�erent from 0, α < 0.0005)

4.5 Table 2 shows that the strength of the dependence of the segregation index on the four more or less contin-
uously varied input parameters decreased considerably due to the fact that the two subpopulation now have
di�erent tolerance levels — a finding that needs further analysis. On the other hand, it is interesting to see that
both internal inhomogeneity andamore sophisticated search strategy increase the strengthof thedependence.
Here, it is worth noting that at least the former (internal inhomogeneity allows for amore precise prediction or

JASSS, 20(1) 10, 2017 http://jasss.soc.surrey.ac.uk/20/1/10.html Doi: 10.18564/jasss.3372



explanation of the segregation index) comes as a surprise and also calls for further analysis. Unlike the case
with thresholds identical between the two subpopulations, density now makes a di�erence, although not a
remarkable di�erence, when thresholds di�er between and within subpopulations. Finally, the standardised
regression coe�icients of the tolerance means are now clearly below the level marked in the previous analysis
with subpopulation-independent tolerance thresholds. This is particularly true for the simple search strategy
which additionally leads to relatively low regression coe�icients of the minority’s tolerance level.
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Figure 4: Segregation index as dependent on tolerance threshold for homogeneous and inhomogeneous sub-
populations and two search strategies; 1500 runs per combination; the vertical axis is the unstandardized pre-
dicted value of the segregation index froma cubic regression in the two tolerance thresholdmeanswhereas the
coloured dots represent the approximate values of the dependent variable

4.6 Figure 4 shows how the two tolerance thresholds (or, respectively, their distributions) influence the segregation
index. Thesediagramsshowthe segregation indexvaluesaspredictedbyacubicpolynomial (itsR2 is alsogiven
in Table 2) in the two tolerance means (the coloured dots, however, show the approximate segregation index
value as they were yielded by the simulation).

4.7 Obviously, it does not matter whether the tolerance threshold distributions of the two subpopulations are dif-
ferent or similar — otherwise the colour shades of the dots in the four diagrams of Figure 4 would have been
separated by borders running top down. On the contrary, the colour shades are quite distinctly separated by
borders which run parallel to the plane spanned by the two input parameters. Hence, the fiercest segregation
occurs when the overall mean tolerance threshold is high: if both subpopulation thresholds are above 50 per
cent, a segregation index above 46 can be expected (red and dark red dots in the top far corners of the dia-
grams) whereas when both are below 30 per cent the expected segregation index will be below 30 (violet, blue
and dark green dots in the bottom foregrounds of the diagrams). The overall impression given by the four di-
agrams does not point to big di�erences caused by the choice of the two binary input parameters (tolerance
level standarddeviation 0 vs. 15, simple or tolerance related search strategy). However, perhaps theboundaries
between the di�erently coloured regions of the diagramare less sharp for the diagrams showing homogeneous
subpopulations and for the diagrams showing subpopulations applying the simple search strategy (at least this
is what one would expect from Table 2). The only remarkable di�erences between the four diagrams are per-
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haps the clearer symmetry of the surfaces with respect to the input parameter %-similar-red-mean in the
diagrams for homogeneous subpopulations (best visible at the right-hand edge of the surfaces) compared to
an asymmetric parabola at the right-hand edges of the diagrams for inhomogeneous subpopulations. Further-
more, it is interesting to see that both the lowest and the highest segregation indices are reached for the simple
search in homogeneous subpopulations — as if inhomogeneity and a more sophisticated search strategy lead
to a smaller range of the segregation index.

A Further Extension: Individually Di�erent Tolerance Thresholds Chang-
ing over Time Due to Communication

5.1 The final extension of Schelling’s original model introduces an e�ect of the experience of agents in their neigh-
bourhoods on their tolerance threshold. The idea behind this extension is that an agent surrounded by a high
proportionof agents of the same subpopulationwill increase its tolerance threshold, i.e. willwant tohave an in-
creasingproportionof similar agents around itself, whereas anagent surroundedbyahighproportionof agents
of the other subpopulationwill decrease its tolerance threshold, i.e. will accept an increasing proportion of dis-
similar agents around itself. Hence, θ is now a function which yields an agent’s individual tolerance threshold
as a function of φ defined above in the definition of the potential model of SST, item 10, as follows:

θ(p, t+ 1) = θ(p, t)(1− ε) + εφ(p, t) (2)

where ε can be viewed as a parameter describing how fast tolerance or intolerance are learned.

5.2 The typical outcome of this extended version is also segregation in most cases. This is even more pronounced
than in the time-constant versions. However, as can be seen in the two plots at the top right of Figure 4, usually
the mean of the distribution of tolerance threshold in the majority subpopulation increases while its variance
decreases; for the minority, the opposite holds — this e�ect is the more graphic the smaller the minority is —,
and the most tolerant individuals of each subpopulation can be found at the borders of the clusters.

5.3 Another interesting observation is that for the simple search this version of themodel produces a never ending
wandering of members of one or both subpopulations: Whenever a large proportion of both groups is ‘happy’,
the more tolerant population moves to places where they are not welcome from the point of view of the other
population. This leads to an oscillation of the segregation index, of the percentage of similar agents in the
neighbourhood and of the percentage of ‘unhappy’ agents. This is in line with observations made by Weidlich
& Haag (1983, p. 86–112) who analysed “the migration of two interacting populations between two parts of a
city”, which is certainly an object of analysis that is quite similar to Schelling’s problem, and observed that
under certain circumstances, namely one population wanting to live together with the other population and
the other population trying to avoid this, the expected or most likely trajectory of the system would become a
stable spiral or even a limit cycle. In the current version of the Schellingmodel, it is usually a spiral — given that
the simulation runs are partly stochastic, it is undecidable whether limit cycles really evolve.

5.4 Oscillations do not evolve in the case of the tolerance related search discussed above (see Section 4). Further-
more, they are themore frequent the higher the tolerancemeans of the two subpopulations are (with both low,
no oscillation at all evolves). On the contrary, the segregation stabilises preferably when both initial tolerance
levels are low at the same time.

5.5 Figure 5 shows the situation of such an oscillating simulation run and the oscillations which could be observed
during the run. The simulation startedwithmean tolerance levels of 63 per cent (in the 11 per centminority) and
52 per cent (in the 89 per cent majority). From the very beginning, the minority agents were mostly unhappy
whereas themajority agentsweremostly happy. In the first round, theminority concentratedwhichmademost
of themhappy. The distribution of their tolerance levelsmoveddown,whereas the distribution of the tolerance
levels of the majority moved up and became very narrow. This implies that they tried to move away from the
minority agentswho, in themeantime, had becomemore andmore friendly towards themajority and followed
themwhichmade themajority agentsmore andmore unhappy (and theminority agents aswell). Finally, when
nearly all minority agents had become unhappy the process repeated.

5.6 Realworld scenarios of the kinddiscussed in paragraphs 5.2–5.4 are di�icult to find as longitudinal data for seg-
regation indices are rarely available and usually too short to covermore than one cycle. However, gentrification
of a disadvantagedquarter and its later neglect before a newgentrification phase starts is an observationwhich
is more o�en than not, although unsystematically, made.
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Figure 5: Screenshot of the extendedmodel with oscillations; minority: di�erent shades of red,majority: di�er-
ent shades of green, the less tolerant the darker; the plots at the right-hand side show the history of the run in
terms of segregation index, percentage of similars in the neighbourhoods and percentage of unhappy agents,
the latter two separately for minority, majority and whole population, whereas the plots at the far right show
the tolerance distributions of minority andmajority as well as the history of their means and their divergences
(µθ ± 1.0σθ)

input parameters tolerance related search
homogeneous inhomogeneous

all R2 0.767 0.798

minority size β -0.294 –0.390
density β 0.141 0.121
tolerance meanminority β 0.791 0.758
tolerance meanmajority β 0.247 0.225

tolerance means cubic R2 0.716 0.683

Table 3: Variance reduction and standardised regression coe�icients for the linear dependence of the segrega-
tion index on density, minority size, search strategies and threshold distributions and for a cubic regression on
the two tolerance means (all coe�icients are significantly di�erent from 0, α < 0.0005)

5.7 In the remainder of this section, we will only deal with the version where the search for an alternative patch is
tolerance related. The linear regression of the segregation index on the same input parameters as above yields
the variance reductions and standardised βs collected in Table 3.

5.8 Table 3 shows higher variance reduction than in Table 2. Here, the e�ect of the tolerance of the majority is
considerably reduced, and it seems that the segregation index depends mainly on the initial tolerance level of
the minority (which, as in all experiments, ranges between five and 75 per cent).

5.9 Finally, the two diagrams in Figure 6 show considerable di�erences as compared to the two diagrams in the
bottomof Figure 4: high initial threshold levelsmainly in theminority but also in themajority can lead tomuch
higher segregation indices than in thenon-adaptive version. Unlike thenon-adaptive version, it is nowsu�icient
for a high segregation index that one of the two subpopulation has a tolerance level distribution with a high
mean, and the tolerance level mean of the minority is evenmore important than the one of the majority.
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Figure 6: Segregation index as dependent on adaptive tolerance threshold for homogeneous and inhomoge-
neous subpopulations and tolerance related search strategy; 1500 runs per combination; the vertical axis is the
unstandardised predicted value of the segregation index froma cubic regression in the two tolerance threshold
means whereas the coloured dots represent the approximate values of the dependent variable

Conclusions

6.1 The paper has shown that the formalism introduced by the ‘non-statement view’ is quite similar to the for-
malism introduced in simulation models. If one starts with the definition of a potential model of a theory
instead with a simulation model (as in the case of a ‘non-statement view’ reconstruction above), the former
can be used as a specification of the simulation model before it is written. This can lead to a more straight-
forward and perhaps to a more transparent simulation program. To show this we refer to another version of
the extended Schelling model7 which makes the similarity between specification and program much clearer
than in the original version of Wilensky (1997). For instance, by comparing Table 1 and Table 4, it is evident
that themodel version inspired by the ‘non-statement view’ reconstruction ismuchmore straightforward than
the usual attempts (Wilensky 1997). Only the program code for θ looks unnecessarily complicated. This is,
however, mainly due to the fact that the extended version contains additional features, which were not fore-
seen in Schelling’s original publication: in Schelling’s version and many other implementations, θ is just the
global variable %-similar-wanted which in the extended version is replaced with the three global variables
%-similar-red-mean, %-similar-green-mean and %-similar-wanted-std-dev allowing for two di�erent
inhomogeneous subpopulations.

SST term NetLogomodel component

W the set of all possible runs of the model
W the patches in a certain run of the model
P the turtles in a certain run of the model
` the built-in turtle variable color
T NetLogo’s ticks
θ the turtle variable my-%-similar-wanted which is initialised

as a random normally distributed variable with mean either
%-similar-red-mean or %-similar-green-mean and standard devia-
tion %-similar-wanted-std-dev and — in the version with adaptive
tolerance — updated every tick according to Equation 2

b the NetLogo built-in function patch-here
c NetLogo’s built-in turtle variables xcor and ycor
φ the function phi
δ the function delta
ς the function duncan

Table 4: Correspondence between SST terms and NetLogo components in the rewritten extended version

6.2 Finally, two issues need to be discussed:

• Did the ‘non-statement view’ reconstruction lead to new insights into real-world segregation processes
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as intended applications of Schelling’s original model?

• Did the various extensions systematically analysed in this paper lead to any explanations of observable
macro behaviour in real-world populations?

6.3 The first question has a positive answer: Under the (perhaps unrealistic) assumption that the tolerance thresh-
old is the same for all persons of both subpopulations, this tolerance threshold can be estimated inmore or less
the same way as the device constant of Hooke’s springs. This is perhaps not very helpful as this assumption is
indeed unrealistic — both with respect to the equality of this threshold in the two subpopulations and to the
homogeneity within each subpopulation. However, with di�erent thresholds for the two subpopulations both
Figures 4 and 6 indicate that the curvewhich is defined by the surface defined by the coloured dot representing
the individual simulation runs and a horizontal plane defined by the observed segregation index of a popula-
tion (for instance in a metropolitan area) represents a multitude of combinations of the two tolerance thresh-
olds: for instance, all yellow dots represent all combinations of the two θs of the two subpopulations which are
compatible with segregation indices of approximately 40. Hence, if we knew the distributions of individual tol-
erance thresholds in both subpopulations, we could both predict and explain the resulting segregation index.
Predicting and explaining the threshold, however, is only possible under the unrealistic assumption that the
distributions in the two subpopulations are identical (θ1 = θ2 or µθ1 = µθ2 ). In this case, the best estimate of
θ1 = θ2 or µθ1 = µθ2 is the coordinate on the θ axes of a point in the coloured curved surface in Figure 4 and 6
whose vertical (ς) coordinate is the empirical segregation index used for estimating the (mean of) the tolerance
threshold (for the case of identical means between the subpopulations).

6.4 Beside this result, the ‘non-statement view’ reconstruction of Schelling’s model led to a slightly more straight-
forward implementation, which— by theway— resembles a littlemore a declarative program such that HLogo
(Bezirgiannis et al. 2016) could be an alternative tool for modelling such a reconstructed theory.

6.5 The second question may be answered in a way that all of these extensions were developed in order to over-
come the empirical simplifications of Schelling’s original model. For instance, one of the phenomena that is
currently observed in di�erent parts of Germany — intolerance of an overwhelming majority faced with a very
smallminority, tolerance of amodestmajority facedwith a largeminority— can be explainedwith a simulation
run showing growing intolerance of an initially moderate majority (level 30 growing to 56) confronted with a
small (10 percent), less intolerant minority (level growing from 30 to 38). However, the problem remains: the
more complex (and realistic) themodel is designed, themore its falsifiability decreases, asmost of the parame-
ters added to the original selection are very di�icult tomeasure. This calls for additional theories linked to SST
(Balzer et al. 1987, pp. 57�.) defining how, for instance, individual tolerance levels can bemeasured. This would
leave only ε— the parameter which defines the learning of tolerance and intolerance in the adaptive version of
Section 5 — as a newSST-theoretical term and newSST would turn into a theory explaining how populations
learn to be tolerant or intolerant.

Notes

1Balzer, Moulines and Sneed used Je�rey’s decision theory (Je�rey 1965) as an example to “make the re-
construction procedures easy to grasp” (Balzer et al. 1987, p. 23). This theory had already been “reconstructed”
by Sneed (1982) and seems to have been one of the first theories from the social sciences at large ever having
been dealt with in terms of the ‘non-statement view’.

2When the wordmodel is used in the sense of the ‘non-statement view’ it is italicised.
3A similar experiment was done by Forsé & Parodi (2010) but only for an 8x8 checkerboard and with a dif-

ferent metric for segregation, arriving at a linear relationship between tolerance level and segregation (Forsé &
Parodi 2010, p. 459).

4A similar approachwas used by Bruch &Mare (2006), see also the discussion between themand van de Rijt
et al. (2009).

5This has also been studied by Stoica & Flache (2014).
6Empirical evidence for this can be found in Xie & Zhou (2012).
7This version is available at http://ccl.northwestern.edu/netlogo/models/community/

SegregationExtended
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