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ABSTRACT

There exist well-known conundrums, such as measure theoretic paradoxes and problems of

contact, which, within the context of classical physics, can be used to argue against the existence

of points in space and space-time. I examine whether quantum mechanics provides additional

reasons for supposing that there are no points in space and space-time.
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1. Introduction

Our standard account of regions and their sizes, has some bizarre features. In the first

place one can not cut a region exactly in two halves. For if one of the two regions includes its

boundary (is closed), then the other does not include it (is open). One might reasonably think that

this difference between open and closed regions is an artifact of our mathematical representation

of regions which does not correspond to a difference in reality. Secondly, regions of finite size

are composed of points, each of which have zero size. One might think it rather strange that

when one gathers together countably many points one must have a region of size zero, while if

one gathers together uncountably many points, one can form a region of any size. Thirdly, finite

sized regions must have parts which have no well-defined size, i.e. are unmeasurable. One might

swallow parts that have zero size, but parts that can not have any well-defined size, this could

lead to gagging. Fourthly, Banach and Tarski have shown that one can break any finite sized

region into finitely many parts which can then be re-assembled, without stretching or squeezing,

to form a larger (or smaller) region. And then there are also problems about contact: physical

objects which occupy closed regions can never touch, indeed they must always be a finite

distance apart. Now, I do not say that problems such as these are a decisive argument against the

standard account. But I do say that they form a good reason to devise a geometry that does not

have these problems, and to see whether modern physics can plausible be set in such a geometry.

Caratheodory, and others following him, have devised such “pointless geometries”. (See

Caratheodory 1963, Skyrms 1993). Let me give an example of such a pointless geometry. Start
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by designating the collection of all open intervals on the real line as regions. Then declare that

the union of any countable set of regions is a region, declare that the intersection of any two

regions is a region, declare that the complement of any region is a region, and declare that these

are all the regions that there are. This is collection of regions is the so-called “Borel algebra” of

regions. Now this collection of regions includes point-sized regions, regions that differ only in

being open or closed, and more generally distinct regions whose differences have size 0. Let us

get rid of all such differences by regarding as equivalent any regions such that the differences

between those regions have size 0. I.e. let us declare Regions to be equivalence classes of

regions that differ at most by (Lebesque) measure 0. This collection of Regions, and their sizes,

comprises an example of a pointless geometry. Since any distinct points differ by measure 0, all

points will correspond to one and the same Region, namely the “Null Region”, which is the

complement of the Region consisting of the entire space. Any other Region has well-defined

finite size (measure). Breaking up and re-assembling never changes the size of a Region.

Regions can always be cut exactly in half. And there are no problems about contact between

objects since there are no differences between open and closed Regions.

This seems very pleasing. It therefore seems worthwhile to examine whether physics can

be done in such a setting. In this paper I will take a look at quantum mechanics. I will argue that

the formalism of quantum mechanics strongly suggests that its value spaces, including physical

space and space-time, are pointless spaces. 

2 Continuous observables in quantum mechanics.

It is will known that, strictly speaking, on the standard account of the state-space of
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quantum mechanics as a separable Hilbert space, continuous observables do not have

eigenstates. For instance, there exists no quantum mechanical state |x=5> which is an eigenstate

of the position operator X corresponding to the point x=5 in physical space. Indeed there exist no

quantum mechanical state such that a measurement of position in that state will, with probability

equal to one, yield a particular value. For if there were position eigenstates there would have to

be uncountably many mutually orthogonal states, but a separable Hilbert space has only

countably many dimensions.  

What is not often noted is that there is a more general conclusion that can be drawn from

the assumption that the quantum mechanical state-space is a separable Hilbert space, namely that

wave-functions are functions on pointless spaces. To be more precise, it is a consequence of the

fact that wave-functions are representations of states in a separable Hilbert space that each wave-

function is not simply a square integrable function, but rather an equivalence class of square

integrable functions which differ in their values at most on a set of  (Lebesque) measure 0. The

reason for this is pretty straightforward. One of the axioms of the theory of Hilbert spaces is that

there is a unique vector whose norm (inner product with itself) is zero. In the position

representation, the norm of a wave-function f(x) is I|f(x)|2dx. But there are many different

functions for which I|f(x)|2dx=0. So, in order for wave-functions to be representations of vectors

in a Hilbert space one needs to assume that wave-functions correspond to equivalence classes of

(square integrable) functions that differ at most on a set of measure 0. Now one can show

mappings (homomorphisms) on pointless spaces correspond exactly to equivalence classes of

functions that differ at most on a set of measure 0 (see Skyrms 1993). Thus wavefunctions are

functions on pointless spaces. Quantum mechanics  thus provides us with evidence that the



5

value-space for any continuous observable is a pointless space. However, let me now turn to two

ways in which point values for continuous observables can be re-introduced into quantum

mechanics.

3 Rigged Hilbert spaces

There is a standard way of re-introducing eigenstates of continuous observables in a

rigorous way, namely the “rigged Hilbert space” formalism. Let me outline this formalism. (For

more detail see Böhm 1978).

Let’s use the simplest example, the harmonic oscillator. I will assume that the reader is

familiar with the construction of the “ladder” of eigenstates Nn=(a+)nN0 /%n! of the number

operator N, which starts “at the bottom” with the state N0 which has the feature that NN0=0. Let

us now consider all and only the finite superpositions of these states, i.e. the states of form

N='cnNn , where we superpose only finitely many Nn. Let us denote this linear space of states as

Q. Using the standard scalar product (N,R) and norm |R|2=(R,R) one can then define the

standard Hilbert space topology on the space Q, and the accompanying standard notion of

convergence: Nk6N iff |Nk-N|60 as k64. Given this topology the space Q is not “complete”, i.e.

there exist Cauchy sequences (converging sequences) that have no limit point in Q. If one now

completes Q by adding all such limit points, one obtains the standard Hilbert space H of the

harmonic oscillator. It is important to note that this has as a consequence that the Hilbert space H

will contain “infinite energy” states: there will exists Cauchy sequences of states N1=c1E1,

N2=d1E1+d2E2, N3=e1E1+e2E2+e3E3, ........., such that as n64, the expectation value of

Energy=(1/3|ci|2)(3|ci|2Ei)64. (each Ei  denotes an energy eigenstate). By the completeness of the



6

Hilbert space H there must exist a limit state corresponding to each Cauchy sequence. Hence

there will exist a state that one can reasonably call an “infinite energy” state, even though this

state, strictly speaking, is not in the domain of the energy operator. 

Let us now define a different topology, a “nuclear” topology, on Q and the

accompanying different, “nuclear”, notion of convergence: Nk6N iff ((Nk-N),(N+1)p(Nk-N))60 as

k64 for any p. Roughly speaking, the factor (N+1)p is a factor designed to weigh the higher

number eigenstates heavier than the lesser number eigenstates, so that differences in the higher

number coefficients have to converge to 0 very rapidly if the norm ((Nk-N),(N+1)p(Nk-N)) is to

converge to 0 as k converges to infinity.  Thus any sequence of states in Q that is a Cauchy

sequence according to the nuclear topology is also a Cauchy sequence according to the Hilbert

space topology, but not vice versa. Now let us complete Q according to the nuclear sense of

convergence. Of course, this will add only a proper subset of the states that get added when one

completes Q according to the Hilbert space topology. We then obtain a “linear topological”

space of states M. 

It is interesting to note that M does not contain infinite energy states. The reason for this

is that the coefficients of higher number (higher energy) states have to drop to 0 very rapidly

(faster than any polynomial) in order for the sequence to be a Cauchy sequence according to the

Nuclear topology. This might seem to be a rather appealing feature of space M.

We need just a little more machinery in order to construct such point valued states. A so-

called “anti-linear functional” F on a linear space 1 is a function F(2), often denoted as <2|F>,

from elements 2 of 1 to complex numbers, such that <c121+c222|F>=c1*<21|F>+c2*<22|F>.

(Here the ci denote complex numbers, and * denotes complex conjugation.) The space 1X of



7

linear functionals on a linear space 1 is linear itself, and is called the space “conjugate to” 1. It

is easy to see that each vector f in a linear space 1 with a scalar product (2,0) defines an anti-

linear functional F as follows: <2|F>=(2,f).  It is also fairly easy to show that for a Hilbert space

H, there is a 1-1 correspondence between anti-linear functionals |0> and vectors <0|, so that H

and HX  can be taken to be the same space. This, however, is not true for the space M that we

obtained from Q by completing it according to the nuclear topology. Rather, one can show that

MdHdMX. This triplet of spaces is known as a “rigged Hilbert space”, or a “Gelfand Triplet”.

Corresponding to any continuous linear operator A on states in M there exist an adjoint operator

AX on states in MX, which is defined by the demand that <N|AX|F>=def<N|AXF>=<AN|F> for all

<N| and all |F>. Now we can define so-called “generalized” eigenvectors of an operator A on M.

A “generalized” eigenvector of A corresponding to the “generalized” eigenvalue 8 is an anti-

linear functional F,MX such that: <AN|F>=<N|AX|F>=8*<N|F> for all <N|,M, which may also

be stated as AX|F>=8*|F>. One can then show that, for our harmonic oscillator system, there are

a continuum of generalized eigenvalues and eigenvectors of both the X and P operators. And one

can show, for our harmonic oscillator system, that any state |N> in MX which corresponds to a

state <N| in M, has a unique expansion in terms of a measure over the generalized eigenvectors

|x> of the position operator X, and a unique expansion in terms of a measure over the

generalized eigenvectors |p> of the momentum operator P. This all seems great. Let us now

consider some unappealing features of rigged Hilbert spaces.  

A rigged Hilbert space, i.e. a Gelfand triple  MdHdMX, is a not as simple and natural a

state-space as a Hilbert space. Just look at the machinery that I needed above in order to explain

the basics of rigged Hilbert spaces, and compare it to the simplicity and naturalness of (the
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axioms of) the normal (separable) Hilbert space formalism. Moreover, a rigged Hilbert space is a

rather non-unified, cobbled together, state-space which consists of 3 quite distinct parts M, H and

MX, where states in the distinct parts have distinct properties. For instance, given any two states

N and R in H, one can take their scalar product <N|R>, which is a complex number. But the

scalar product <f|g> of states f and g that are in MX but not in H, is not an ordinary complex

number. The scalar product in MX exists only in a distributional sense, i.e. it is defined as the

distribution which satisfies <f|N>=Idg<f|g><g|N> for all N in M. And there is the awkward, but

essential, use of two distinct topologies, the one corresponding to the usual inner product, the

other being the “nuclear” topology. It’s all rather messy.

A more serious problem is the following.  Since can not spectrally decompose a position

eigenstate in terms of the eigenstates of such an observable, one can not make sense of

probabilities of the results of a measurement of such an observable when the object is in a

position eigenstate.  More generally, in a state f one can only make sense of the ratios of

expectation values <f|A|f>/<f|B|f>  of ‘admissable’ observables A and B, where an observable A

is said to be admissable iff A|f> belongs to the domain of <f|. (See e.g. Bogolubov, Logunov and

Todorov (1975), Chapter 4.) 

In the specific case of the observable Energy, matters are even worse. There is a

relatively clear sense in which position eigenstates are ‘infinite energy’ states. Consider any

sequence of wave-functions {Ri(x)} which is such that each Ri(x) has a well-defined finite

expectation value for its energy, and which becomes more and more concentrated around a given

point in space, i.e. suppose that in the limit as i goes to infinity the wave-functions Ri(x) become

arbitrarily well confined to arbitrarily small regions around that point in space. One can then
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1 Although this is a rather suggestive fact one has to be a bit careful as to what it means.
For instance, it is not true that this sequence of wave-functions converges to the corresponding
position eigenstate in the sense that the inproduct of this sequence with that position eigenstate
converges to 1.

show that the expectation value of energy of this sequence of states must increase without bound

as i goes to infinity.1

 It seems that we have a a bit of a dilemma. Either position eigenstates are physically

possible, in which case, in a rather clear sense, gross violations of energy conservation are

possible. This seems implausible. Or they are not physically possible, in which case it is unclear

why one would go to such lengths in order to introduce such states into the quantum mechanical

state-space. This dilemma can be brought ought a bit more sharply by considering the dynamics

of quantum states.

What is the Hamiltonian time evolution of position eigenstates? If one initially has a

probability distribution over values of observables that corresponds to a state in the ordinary

Hilbert space H, then, as long as the development is a Hamiltonian development, the state will

always be in the ordinary Hilbert space H. Thus if at any time the state is in the ordinary Hilbert

space then the rest of the rigged Hilbert space is redundant. If, on the other hand, at any time the

state is a position eigenstate, then it will always be in an eigenstate of a continuous observable,

and never return to the ordinary Hilbert space H.

On the other hand, suppose that one believes that during measurements the dynamics is

governed by the projection postulate. And suppose that exact position measurements were

possible. Then one could, with certainty, create an ‘infinite energy’ state by measuring the exact

position of a particle. While this could be a great boon, or a great disaster, to humanity, it seems
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implausible that this could ever happen. However, if position eigenstates could not possibly be

produced by such measurements, nor by a unitary dynamics, why introduce the mathematical

artifice of position eigenstates in the first place? 

In general it would seem that eigenstates of continuous observables, at best, are

redundant. Since, in addition, they complicate the mathematical formalism, it seems best to not

countenance them in the first place. 

4. Recovering point values in the algebraic approach 

Hans Halvorson (Halvorson 2001a&b) has recently proposed a different way, set within

the algebraic approach to quantum mechanics, to introduce quantum mechanical states

corresponding to point values for continuous observables. Let me sketch the basic idea behind

his re-introduction of points. 

Suppose that physical space is pointless. And suppose that in order to completely specify

the locational state of an object one has to specify for each Region whether the object is entirely

confined to that Region. It would then seem that, despite the fact that no point-sized Regions

exist, nonetheless there can be point-sized objects with point-like locational properties. For

instance, suppose that the locational state of an object is as follows: it is wholly confined to each

of the following Regions: (-1,1), (-1/2, 1/2), (-1/4,1/4), ..... . The only possible understanding of

that collection of locational properties is surely that it is a point particle which is located exactly

at point x=0. Of course there is no Region that corresponds to this point. But it seems impossible

to understand the locational properties of the object in any other way: it is smaller than any

Region, so it can not have finite size, and it is located in each of a set of Regions that “converge”
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to point x=0. Thus it appears that the fact that space is pointless does not rule out states of

objects that correspond to the occupation of a point-sized location. This, in essence, is the way in

which Halvorson re-introduces point values in the algebraic approach to quantum mechanics.

In the algebraic approach one identifies a quantum mechanical state, of a system

characterized by an operator algebra A, with a linear map from operators to complex numbers

such that any observable O (self-adjoint operator O) gets mapped onto a positive real number,

the expectation value of O. In particular, states will assign expectation values to projection

operators. The expectation value of a projection operator is just the probability that the value of

that projection operator is 1, since projection operators only have 1 and 0 as possible values.

Given a continuous observable Q one can form a Boolean algebra {Qs} of projection operators

Qs where S is a range of values on the real line R, and Qs corresponds to the claim that the value

of Q lies in range S. When one does this, regions S that differ by measure 0 will all correspond to

one and the same projection operator. Thus, e.g., all measure 0 regions correspond to one and the

same (null) operator. Indeed this algebra is isomorphic to the Borel algebra of equivalence

classes of regions on the real line R which differ at most by (Lebesque) measure 0, which I

previously called a “pointless geometry”. 

Nonetheless, as I explained with my analogy, on the algebraic account of quantum states

there can be states, so-called “singular states”, which correspond to point values for continuous

observables. For consider a state which assigns Probability 1 or 0 to every projection operator in

the algebra {Qs}. Such a singular state determines for any Region of possible values of Q

whether the value of Q is inside that Region or not. In particular there will be a set of Regions

that converge to a point value for Q such that the value of Q is, with probability 1, in each of
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2 Here is a very brief indication of why I think violations of countable additivity are
acceptable in this case. The sense in which countable additivity is violated in Halvorson’s theory
is that the probability of a countable Boolean disjunction can be 1 even though the probability of
each of the disjuncts is 0. Normally countable additivity violations imply that there exists a
countable Dutch book. However, that is not so in this case. The reason for this is that in this case
truth need not ‘distribute over countable Boolean disjunction’ , i.e. one can have it that each of
countably many disjuncts is false, while the countable disjunction is true (which is not normally
the case).

these Regions. Thus on the algebraic approach one can introduce states corresponding to point

values for continuous observables, and this is exactly what Halvorson suggests doing. Indeed,

one can even fit all of these algebraic states into a single non-separable Hilbert space. Now let

me quickly evaluate the merits of Halvorson’s proposal.

Let me begin by noting that Halvorson’s singular states will violate countable additivity,

i.e. “singular” algebraic states will correspond to probability distributions that violate countable

additivity. My own view is that violations of countable additivity are perfectly acceptable in this

case.2  However, this is a somewhat involved issue that I can not satisfactorily address in a

couple of paragraphs. Other than a brief indication of my view in footnote 2 I will therefore set

this issue aside. 

In other respects, the problems with Halvorson’s approach are very similar to the

problems with the rigged Hilbert space approach. A non-separable Hilbert space which includes

all the eigenstates of continuous observables does not appear to be as mathematically attractive

as the standard separable Hilbert space. For instance, the fact that it is a non-separable Hilbert

space means that standard forms of reasoning in terms of finite or countable superpositions do

not go through. Also, as in the case of the rigged Hilbert space, the non-separable Hilbert space

decomposes into two quite distinct parts: the part that corresponds to the standard separable
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Hilbert space (i.e. the eigenstates of discrete observables plus their countable superpositions),

and the part that corresponds to the “singular” states (the eigenstates of continuous observables).

Moreover, as before,  a unitary Hamiltonian dynamics can not take one into, or out of, the

standard separable Hilbert space. Finally, position eigenstates do not have well-defined

expectation values for momenta and energies. And one can not make sense of probabilities of

results of measurements of observables which have a complete set of eigenvectors in the

standard Hilbert space (the Schrodinger representation).  All of this suggests that we should stick

with the standard Hilbert space.

5 Pointless spaces and finite energies in quantum mechanics

Let me now suggest a modification of the standard Hilbert space approach. As I noted

before infinite energy states occur in the standard Hilbert space H. Should we not get rid of all

infinite energy states from the standard Hilbert space? A natural way in which to remove all

infinite energy states is to go back to the rigged Hilbert space construction, and to let the state-

space be the space M which is the completion, w.r.t. the nuclear topology, of the space Q of

finite superpositions of energy eigenstates. As I previously noted this space M contains only

states with finite expectation values for energy. It also has some other attractive features. One

can show that there exists a large algebra of operators such that the expectation value of every

Hermitian operator in this algebra is finite for every state, and that every operator in this algebra

is everywhere defined. In the case of the harmonic oscillator the relevant operator algebra

consists of all finite polynomials in the position and momentum operators. So in space M one

does not have the problems that one has when one has unbounded operators in a Hilbert space,



14

namely “infinite expectation values” and operators that do not have the entire Hilbert space as

their domain. At the same time it has to be admitted that M, in other ways, is not as natural as the

standard Hilbert space H:  M makes essential use of 2 different topologies, and it does not

contain all countable superpositions that have norm=1. So, as yet, it is not obvious which state-

space is the better candidate. Now let us shift the discussion from quantum mechanics to

quantum field theory.

6 Pointless space-time in quantum field theory

In quantum field theory the fundamental observables, from which all other observables

are built, are field observables, such as field strengths, rather than particle observables, such as

position, or region, occupation. It would then seem that no conclusions about the existence or

non-existence of points in space, or space-time, can be drawn from the existence or non-

existence of point values for continuous observables. In fact, one might think that since the

fundamental observables are field-strengths at points in space-time, therefore quantum field

theory actually presupposes the existence of points in space-time. However, this is not so.

In quantum field theory there are no well-defined field operators associated with points in

space-time. Rather than that there are fields operators defined at points, there are “smeared” field

operators associated with weighted Regions. Let me explain how this is done in some more

detail in order to make clear that the procedure whereby such smeared field operators are defined

does not presuppose the existence of space-time points. 

A quantum field M(f) is defined as a linear map from “test functions” f (x) to operators.

The test functions are functions on space-time, and the operators are operators on a Hilbert space
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(or on a rigged Hilbert space). If one takes, e.g. a test function f(x) which is 0 everywhere except

in some space-time region R, and is 1 everywhere in region R, then the operator M(g)

corresponds to the average value of the field in region R. However, one does not usually use

such a test function since it is not continuous. If one instead uses a function f(x) that varies

smoothly, then one obtains a field operator corresponding to the weighted average of the field

values, where the weight is given by the value of the function. Each such linear map from test

functions f to operators M(f) is usually represented as an integral M(f)=IM(x)f(x)dx, where the

integration is over all of space-time. One might think that this construction presupposes the

existence of points in space-time, since the smeared field operators are defined in terms of

integrations of  M(x) and f(x), where M(x) and f(x) are supposed to have well-defined values at

points x in space-time. If that were correct then the existence of points in space-time would be,

after all, presupposed in quantum field theory. 

In order to disarm this argument I need to explain why one can represent linear maps

from test functions to operators as integrations. Let us start by assuming that M(x) and f(x) are

ordinary functions from space-time to the real numbers, and let us take for granted that all the

functions that we are here dealing with are suitably integrable. In that case any function M(x)

will indeed induce a linear map from test functions f(x) to the real numbers via the formula

M(f)=IM(x)f(x)dx. However, even then, the formula M(f)=IM(x)f(x)dx does not generate a 1-1

correspondence between functions M(x), and functionals M(f). There are two reasons for this.

In the first place there exist linear maps M(f) that are not generated by functions M(x), but

instead are generated by sequences of functions Mn(x). For instance consider a sequence of

functions *5
n (x) such that, as n increases, the functions *5

n become more and more peaked
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around x=5, while, for each n, satisfying I*5
n (x)dx=1. Then, for any test function f(x) that is

continuous at x=5, the integral I*5
n (x)f(x)dx will approach f(5) as n goes to infinity, and thus the

sequence of integrals can be said to map f(x) to f(5). This map from f(x) to f(5) is a linear map

from functions to numbers which is generated, not by a single function, but by a sequence of

functions. The reason why this map can not be generated by a single function is that there exists

no limit function to which the functions *5
n converge as n goes to infinity. One can however

introduce the notion of a “distribution”, and define the “distribution” *(5) to be such that

I*(5)f(x)dx=f(5) for functions f that are continuous at x=5, while being careful not to use the

distribution *(5) in contexts other than such an “integration”. This will allow us to represent all

linear maps from test functions to reals as integrations. 

Secondly, note that if M(x) and M’(x) are functions, which differ at most on a set of

points of (Lebesque) measure 0, then the map M(f) and M’(f) will be the same. Similarly if test

functions f(x) and f’(x) differ at most on a set of points of (Lebesque) measure 0, they will be

mapped onto the same number by any M. So, rather than taking functions f(x) and M(x) as the

objects that we use to construct smeared fields, we should take as our objects equivalence classes

of functions [f(x)] and [M(x)] that differ at most on (Lebesque) measure 0. Indeed, we must do

so, in order to maintain that M([f])=I[M(x)][f(x)]dx generates a 1-1 correspondence between

[M(x)] and M([f]). 

To sum up, one can indeed think of smeared field operators as being generated by

integrations of two types of  underlying quantities. But the underlying quantities are equivalence

classes of functions which differ by at most (Lebesque) measure 0. Rather than that this

procedure presupposes that space-time contains points, it instead strongly suggests that space-
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time contains only extended Regions, i.e. that space-time is pointless, since that is the natural

habitat of such equivalence classes of functions. 

7 Conclusions

There are well-known conceptual oddities, such as measure theoretic paradoxes and

problems of contact, associated with the existence of points in space and space-time. In quantum

particle mechanics there are additional reasons to reject states that correspond to point values for

continuous observables, including positions. In the first place such states can not exist in the

standard separable Hilbert space formulation. They can be introduced, but only at the expense of

a prima facie less natural formulation of quantum particle mechanics. Moreover, exact value

states for one observable imply undefined expectation values many other observables. Indeed it

seems hard to make sense of the probabilities of the results of measurements of perfectly

ordinary observables when one starts out, e.g., in  a position eigenstate.

There exist (at least) two fairly natural quantum particle state-spaces that avoid such

problems: the standard (separable) Hilbert space H, and the “nuclear” space M. Whichever of

those two options one prefers, the spaces consisting of all possible values of continuous

observables, including positions, are then pointless spaces. Furthermore quantum field theory

supplies an independent argument that space, and space-time, are pointless. For in quantum field

theory there are no operators defined at points in space-time. There are only smeared operators,

and these ‘live’ in a pointless space-time.
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