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The fourth dimension? As La Rochefoucauld ob-
served of true love, many people talk about it,
but few have seen it. H. S. M. Coxeter, whose
Regular Polytopes is the primary reference on
four-dimensional constructions, says [Cox, ix]: “we
can never fully comprehend them by direct obser-
vation.” But he goes on: “In attempting to do so,
however, we seem to peek through a chink in the
wall of our physical limitations, into a new world of
dazzling beauty.” This is how the fourth dimension
appeals to a geometer; for the popular imagination,
fired by late nineteenth and early twentieth century
science-fiction, theosophy and charlatanism, it be-
came a fad with transcendental overtones. Just as
UFOs are interpreted today as manifestations of a
superior, aliencivilization, so the fourthdimension
gave room, lots of room, for the spirit world.

Tony Robbin tells this story in Shadows of Re-
ality: The Fourth Dimension in Relativity, Cubism,
and Modern Thought, along with an analysis of the
impactof four-dimensional thoughtonmodernart,
and its importance in modern science.

An additional and more idiosyncratic theme is
sounded by the invocation, in the book’s title, of
Plato’s myth of the cave. The prisoners in the cave
can see only shadows projected on the wall before
them;andasSocratesexplains toGlaucon: “to them
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the truthwouldbe literallynothingbuttheshadows
of the images.” Thus our own truth may be only the
projection of a more meaningful four-dimensional
reality. But there is more. The concept itself of
projection has enormous importance for Robbin;
he systematically opposes, and prefers, projection
(from four dimensions to three dimensions, and
then usually to two to get things on a page) to
the dual perspective on four-dimensional reality,
three-dimensional slicing, which he characterizes
as “the Flatland model”. He is referring to Edwin
A. Abbott’s book Flatland, where four dimensions
are explained by analogy with the Flatlanders’ con-
ception of the three-dimensional space we humans
inhabit. “Consider this book a modest proposal
to rid our thinking of the slicing model of four-
dimensional figures and spacetime in favor of the
projection model.” I will come back to this point
later.

The jacket blurb for Shadows of Reality de-
scribes the work as “a revisionist math history as
well as a revisionistart history.”

“Revisionist Art History”
Chapter 3, “The Fourth Dimension in Painting”,
contains an analysis of three well-known paintings
by Picasso: Les Demoiselles d’Avignon (1907), the
Portrait of Ambroise Vollard, and the Portrait of

Henry Kahnweiler (both 1910). Robbin argues that
“at one propitious moment a more serious and
sophisticated engagement with the fourth dimen-
sion pushed [Picasso] and his collaborators into
the discovery of cubism,” and that that moment
occurred between the painting of Les Demoiselles
and that of the two portraits. The source of the ge-
ometry is pinned down: the Traité élémentaire de

géométrie à quatre dimensions by Esprit Jouffret
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(1903) [Jouf], and the bearerof thisknowledge toPi-
casso is identified as Maurice Princet, a person with
some mathematical training who was a member of
the Picassogroup.

This is indeed revisionist, because it claims a
hitherto unrecognized mathematical influence on
the most famous artist of the twentieth century.

The interaction between geometry and art at
the beginning of the twentieth century has already
been studied in encyclopedic detail by Linda Dal-
rymple Henderson [Hen]. When it comes to the
fourth dimension and Picasso, Henderson is much
more cautious: “Although Picasso has denied ever
discussing mathematics or the fourth dimension
with Princet, Princet was a member of the group
around Picasso by at least the middle of 1907, and
probably earlier. It thus seems highly unlikely that
during the several years which followed, Picasso
did not hear some talk of the fourth dimension. . . ”
But she presents eye-witness and contemporary
testimony from Jean Metzinger, an artist member
of the group, which states that the influence ran
the other way: “Cézanne showed us forms living
in the reality of light, Picasso brings us a material
account of their real life in the mind—he lays out
a free, mobile perspective, from which that inge-
nious mathematician Maurice Princet has deduced
a whole geometry.” [Metz]

Henderson gives solid documentation of the
interest in mathematical ideas among the artists
of “Picasso’s circle”, especially after they drifted
away from him in 1911. And if images like Jouf-
fret’s figures were part of the visual ambience in
the 1907–1910 period, they may well have caught
Picasso’s omnivorous eye. But for a specific math-
ematical influence on Picasso there is no evidence,
and Robbin presents no reasonable argument be-
yond his own gut feeling: “Indeed, as a painter
looking at the visual evidence I find that Picas-
so. . . clearly adopted Jouffret’s methods in 1910.”
So we have to take his statement in the preface—
“Pablo Picasso not only looked at the projections
of four-dimensional cubes in a mathematics book
when he invented cubism, he also read the text, em-
bracing not just the images but the ideas”—as pure,
unadvertised invention. Let us leave the last word
on this topic to the artist himself: “Mathematics,
trigonometry, chemistry, psychoanalysis, music
and whatnot, have been related to cubism to give
it an easier interpretation. All this has been pure
literature, not to say nonsense, which brought bad
results, blinding people with theories.” [Pic]

“Revisionist Math History”
The agenda is stated in the preface. “Contrary to
popular exposition, it is the projection model that
revolutionized thought at the beginning of the
twentieth century. The ideas developed as part of
this projection metaphor continue to be the basis

for the most advanced contemporary thought in
mathematics and physics.” The rest of the para-
graph amplifies this assertion, naming projective
geometry, Picasso (as cited above), Minkowski
(“had the projection model in the back of his head
when he used four-dimensional geometry to cod-
ify special relativity”), de Bruijn (his “projection
algorithmsforgeneratingquasicrystals revolution-
ized the way mathematicians think about patterns
and lattices”), Penrose (“showed that a light ray
is more like a projected line than a regular line
in space,” with this insight leading to “the most
provocative and profound restructuring of physics
since the discoveries of Albert Einstein”), quantum
information theory, and quantum foam. “Such new
projection models present us with an understand-
ing that cannot be reduced to a Flatland model
without introducing hopeless paradox.”

These itemsarefleshedoutinthemaintextofthe
book, roughly one per chapter. I will look in detail at
Chapter 4 (“The Truth”), which covers the geometry
of relativity, and at Chapter 6, “Patterns, Crystals
and Projections”.

Relativity, and Time as the Fourth Dimen-
sion
For mathematicians, dimension is often just one of
the parameters of the object under investigation.
Theirworkmaybeset inarbitrarydimension(“indi-
mensionn”) or, say, in dimension 24, as in the work
of Henry Cohn and Abhinav Kumar, who caused
a stir in 2004 [Cohn] when they nailed down the
closest regular packing of 24-dimensional balls in
24-dimensional space. So we really should be talk-
ing about “a fourth dimension”, and not “the fourth
dimension”. For the general public, on the other
hand, four dimensions are esoteric enough. They
are usually thought of as the familiar three plus one
more; hence “the fourth dimension”. So where is
this fourth dimension? Nineteenth-century work
on 4-dimensional polytopes (reviewed in [Cox])
clearly posited an extra spatial dimension. But at
the same time a tradition, going back to Laplace,
considered time as “the fourth dimension”. In fact
partial differential equations relating space deriva-
tives to time derivatives leave us no choice: their
natural domain of definition is four-dimensional
space-time.

Here there is some point to Robbin’s anti-slicing
strictures. Special relativity implies thatspace-time
cannotbedescribedasastackofthree-dimensional
constant-time slices. More precisely, the most
general Lorentz transformation, relating two over-
lapping (x, y, z, t) coordinate systems of which one
may be traveling at constant speed with respect to
the other, mixes the (x, y, z)s and the ts in such a
waythatthe{t = constant}slicesarenotpreserved.
But projections do not help. Here is Minkowski as
quoted by Robbin: “We are compelled to admit that
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it is only in four dimensions that the relations here
taken under consideration reveal their inner being
in full simplicity, and that on a three-dimensional
space forced on us a priori they cast only a very
complicated projection.” Minkowski is saying that
projections from four dimensions to three are not

very useful in understanding relativistic reality.
Robbin gets the word “projection” back into play
by describing Lorentz transformations as being
“revealed when one geometric description of space
is projected onto another.” But the projections here
are isomorphisms from one four-dimensional co-
ordinate system to another; they are not the kind of
projections, onto lower-dimensional spaces, that
Robbin is contrasting to slicing.

Patterns, Crystals and Projections

Chapter 6 begins with a description of nonperiodic
tilings and how they may be generated by “match-
ing rules” and by repeated dissection and inflation.
It then goes on to discuss the fascinating and il-
luminating relationship, discovered by Nicolaas
de Bruijn [de B], between nonperiodic tilings in
dimensionn and projections of approximations of
irrational slices of periodic tilings: cubical lattices
in dimension 2n or 2n + 1. The simplest example
involves dimensions 1 and 2: take the (x, y)-plane
with its usual tiling by unit squares; the vertices
are at points (n,m)with integer coordinates. Draw
the straight line y = ϕx with irrational slope
ϕ = 1.6180339 . . . (the “golden mean” number).
Starting at (0,0), cover the line with the smallest
possible subset of the tiling. The squares are shown
here shaded.

Because the slope is irrational, the line does not
pass through any lattice vertex other than (0,0), so
the choice of covering tile is always unambiguous.
Now project the center of each covering tile per-
pendicularly onto the irrational line. The projected
points will define a tiling of the line by intervals: a
long interval (L) if the two consecutive tiles were
adjacent vertically, and a short one (S) if they were
adjacent horizontally. A trigonometric calculation
shows that the length ratio of S to L isϕ. Our tiling
by intervals is non-periodic becauseϕ is irrational,
but it has other amazing properties because ϕ is
such a special number. For example, if we represent
the short tile by S, and the long one by L, the tiling
of the positive x-axis corresponds to a sequence of
Ls and Ss. It turns out (the argument requires some
linear algebra; see [web]) that the sequence may
also be generated as follows: start with S, and copy
the string over and over, each time rewriting every S

asL, and everyL asLS:

Figure 1.
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...

Figure 2.

The sequence may also be generated like the Fi-
bonacci numbers, starting with S and L and making
each succeeding line the concatenation of its two
predecessors.And there is more.

Instead of drawing a line with golden slope
through the 2-dimensional lattice of unit squares,
let us slice a plane (a golden plane—see below)
through the analogous 5-dimensional lattice, cov-
er the plane with the smallest possible subset of
the 5-cubes of that lattice, and project the center
points of those cubes orthogonally onto the plane.
The projected points turn out to be the vertices of
Penrose’s non-periodic tiling [de B]. In this tiling,
the plane is covered by copies of two rhombs (equi-
lateral parallelograms), a fat one, with lesser angle
2π/5, and a skinny oneπ/5, whose areas, just like
the lengths of L and S, are in the golden ratio.
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(We use the plane in 5-space spanned by the
vectors

(1,− cos(π/5), cos(2π/5),

− cos(3π/5), cos(4π/5))

and

(0,− sin(π/5), sin(2π/5),

− sin(3π/5), sin(4π/5))

[web2]; equivalently, in terms of the golden mean,
we may scale those vectors to

(2,−ϕ,ϕ − 1,ϕ − 1,−ϕ)
and

(0,−1,ϕ,−ϕ,1).
A straightforward linear algebra computation
shows that the 10 different unit squares in the
5-dimensional lattice project to the 10 possible
orientations (5 each) of the 2 rhombs in the Penrose
tiling. )

De Bruijn’s construction of the Penrose tiling is
intellectually satisfying. Instead of the arbitrary-
sounding matching rules, which add one tile at a
time, or the stepwise generation of tilings of finite
portionsof the plane bydissectionand inflation,we
have a single, intelligible definition tiling the entire
plane. Furthermore the magical-seeming recur-
rence properties of the tiling are anchored back to
the well-understood behavior of the fractional part
of consecutive integral multiples of an irrational
number, which has been studied since Kronecker.
Asanadditionalbonus, theconstructionalsoyields
a new insight into the psychological phenomenon
noted by Martin Kemp [Kem] in describing how a
rhombic Penrose tiling affects the eye: “We can,
for instance, play Necker cube-type games with
apparent octagons, and facet the surface into a
kind of cubist medley of receding and advancing
planes.” The surface in 5-space, which projects
to the tiling, is made up of square facets lined up
with the coordinate planes. Three by three these
facets determine a cube, which projects correctly;
but these cubes live in 5 dimensions, and they fit
together in a manner inconceivable in 3-space.

Robbin puts the impact of de Bruijn’s discover-
ies eloquently but inaccurately: “Once one accepts
the counterintuitive notion that quasicrystals are
projections of regular, periodic, cubic lattices from
higher-dimensional space, all the other counter-
intuitive properties soon become clear in a wave
of lucid understanding.” The inaccuracy, which
is fundamental, stems from Robbin’s failure to
recognize that these tilings are projections of sec-
tions of cubic lattices. At the end of the chapter the
language becomes even more vivid, but the thesis is
still fundamentally wrong-headed: “Quasicrystals
show us that objects and systems described by pro-
jectivegeometrycannotbemadeEuclideanwithout

introducing the most mystical and anthropomor-

phic properties into the system. Making what is

generated or accurately modeled by projective

geometry into a traditional Euclidean static model

takes us away from science and moves us towards

fetishism.”

There are smaller-scale problems also, in Rob-

bin’s portrayal of Penrose’s tilings and de Bruijn’s

construction.The main ideasare there,withcorrect

references, but a naïve and attentive reader can

only be bewildered by the presentation. We read

things that are obviously just plain wrong (“The

mechanics of the loom enforce a periodic repeat”),

things that turn out to be wrong (“Originally, the

Ammanbarswere equidistant”), and things thatare

misleading (“Itwas longthoughttobe impossible to

have a tilingmade upofpentagons”) orunnecessar-

ily obscure (“The dual net is a mathematical device
that is often used to analyze pattern”—no further

description). The figures only add to the confusion.

Figure 6.7 is mislabelled, and here is Figure 6.8:

Figure 3. Robbin’s Figure 6.8.
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Figure 4. “Necker” cube: the eye imposes one
of two three-dimensional interpretations of

this figure as a cube, and oscillates between
them.

Figure 5. Jouffret’s Figure 41, perspective

cavalière of the 16 fundamental octahedra.

The caption (“The de Bruijn projection method
is applied to a grid of hypercubes to produce a
Penrose tiling. Only one hypercube is shown here.”)
does not mention the slicing plane, and the “projec-
tion method” is represented by a four-dimensional

hypercube floating in the upper left-hand corner,
along with vertical lines attached to the vertices of
the Penrose tiling drawn in perspective in the cen-
ter. I do not believe this figure is meant to be judged
as a work of art; but I know that as a mathematical
diagram, while it contains some suggestive truth, it
is too impressionistic to be useful.

Conclusion
In sum, this is an attractive but very disappointing
book. The topic has great potential, and Robbin’s
earlier work [Rob], both entertaining and enlight-
ening, promised an idiosyncratic, artist’s-eye look,
withperhapsnewinsights,at these fascinatingphe-
nomena. Infact IamgratefultoRobbinfor introduc-
ing me to de Bruijn’s work and for bringing to my
attention Esprit Jouffret, a charming mathematical
representative of the Belle Époque. But the book is
seriously marred by the inadequacy and inaccura-
cy of its mathematical component: the author has
been allowed to venture, alone, too far above the
plane of his expertise. In his acknowledgments he
singles out several “readersof the manuscript” and
several Yale University Press staffers. He alone of
course is responsible for the text and illustrations,
but I am sure that some of those individuals wish
now that they had done more to give this beautiful
idea a more accurate and intelligible realization.

Appendix: Section, Projection, and Per-
spective Cavalière
Section and projection are mathematically du-
al operations. Any finite n-dimensional object
can be completely reconstructed either from a
1-dimensional set of parallel (n − 1)-dimensional
slices or from a 1-dimensional set of (n − 1)-
dimensional projections, by stacking in one case
or by a tomographic-style calculation in the oth-
er. The total information is the same, although
packaged quite differently. When it comes to geo-
metric objects, like regular polyhedra, the (innate
or trained) ability of the human eye, which can re-
solve perspective problems almost automatically,
means that a 2-dimensional projection can often
be counted on to be “read” to give a mental image
of its 3-dimensional antecedent. The “Necker cube”
phenomenon referred to by Kemp is a familiar
example of this human propensity.

But in fact neither of the natural interpretations
is evenplausible unlesswe assume thatwe are look-
ingattheprojectionofaconnectedpolyhedron.The
configuration we see might be like one of the con-
stellations inthenightsky:ourmindjoiningseveral
completely unrelated objects.

Projection of more general objects is usually
less informative. Knot theorists work comfort-
ably with two-dimensional “projections” of three-
dimensional knots, but these projections have
been enhanced with clues: at each intersection a
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graphical convention gives information (from “the
third dimension”) telling which strand goes over
and which goes under.

To explore the limitations of projection as a
means for studying four-dimensional polyhedra,
let us look at an image from Jouffret, reproduced
both in Henderson’s book and in Robbin’s (Figure
5).

Jouffret’s Figure 41 is part of his effort to ex-
plain the structure of the polytope C24, which is a
3-dimensional object, without boundary (as such
it can only exist in 4-dimensional space), made up
of 24 octahedra. This polytope has 24 vertices,
96 edges, and 96 triangular faces. It is the most
interesting of the 3-dimensional regular polytopes
because it is the only one of the 6 that has no
analogue among our familiar 2-dimensional poly-
hedra (in fact its group of symmetries is the Weyl
group of the exceptional Lie group F4 [Cox]).
Jouffret works rigorously, in the style of the
descriptive geometry épures required of every
French candidate to the École Polytechnique
or the École Normale Supérieure between 1858
and 1960 [Asa]: he constructs a C24 of edge-length
a in 4-dimensional space as a polytope with ver-
tices at the 24 points (±α,±α,0,0), (±α,0,±α,0),
(±α,0,0,±α), (0,±α,±α,0), (0,±α,0,±α, ),
(0,0,±α,±α), where α = a

√
3

2 . Since each ver-
tex is connected to eight others, when you put
inall the edgesandproject the polytope ontoa page
of the book you get something like one of the two
pictures in Figure 6.

Whichoneyougetdependsontheprojectionyou
choose from 4-space to 2-space. These pictures are
attractive, but they do not convey much informa-
tion about how 24 octahedra fit together to form an
object with no boundary. Putting in any indication
of where the 96 2-dimensional faces fit in would
certainly not improve legibility. Jouffret credits
Schoute with the idea of a perspective cavalière: a
cavalier bending of the rules in the interest of intel-
ligibility. In this case there are two violations. First,
sixteen of the octahedra are selected to represent
the surface.The sixteenare geometricallyprojected

as before. That projected image is dissected into
four pieces, with common edges and faces drawn
twice, and common vertices two or four times. The
shading, which, as Henderson notes, gives the im-
age a “shimmering quality of iridescence”, marks
the faces that are duplicated. (Note here two small
errors: the face <9, 18, 21> in quadrant h8 should
be shifted to become <10, 18, 21>, and the face <17,
13, 14> in quadrant h6 should be moved to <17, 22,
14>).

Before trying to understand how these pieces
all fit together, and then where the missing eight
octahedra should be inserted, we should note how
far this picture is, even when restricted to one of
the quadrants, from a straightforward projection.

When two lines meet in this figure, a heavy dot
tells us whether their intersection is essential (they
actually meet in four dimensions) or contingent
(two of their points happen to project to the same
place). The lines themselves come with two differ-
entvalues: fullanddotted,accordingtoasomewhat
arbitrary convention of Jouffret’s regarding which
lines are “seen” and which are “hidden”.

Finally, even with all the extra information, and
despite the accuracy of the épure, the picture is
hard to read. There is a clue for modern readers:
the rectangular parallelipipeds in each quadrant
become a torus when the quadrants are slid back
together. The inside and the outside of this torus
are partitioned into 24 half-octahedra each by
coning the boundary of each inside parallelipiped
from an “interior” vertex (one of 2, 4, 6, or 8) and by
coning the boundary of each outside block from its
appropriate middle vertex (one of 17, 19, 21, 23).
Each solid torus contains a necklace of 4 complete
octahedra. The remaining seize octaèdres fonda-

mentaux are formed when the two solid tori are
glued along their boundaries to give a topological
3-sphere. I write “modern readers” because I do
not believe that in 1903 this decomposition of the
3-sphere, even though it is almost unavoidable
when S3 is written as {|z1|2 + |z2|2 = 1} in complex
coordinates, was anywhere nearly as well known as
it is today.

Jouffret remarks that the 16 vertices that span
our torus are the vertices of a hypercube (octaé-

droïde), but he does not use this information to
clarify the combinatorial structure of C24. He also
remarks that the other 8 vertices define a 16-cell
(hexadécadroïde) of side a

√
2, and that this parti-

tion into 16 + 8 can be done in three symmetric
ways.

References
[Asa] Boris Asancheyev, Épures de géométrie de-

scriptive, Concours d’entrée à l’Ecole Normale

Supérieure, Hermann, Paris, 2002,
[Cohn] Henry Cohn and Abhinav Kumar, The dens-

est lattice in twenty-four dimensions, Electronic

Research Announcements of the AMS, 10 (2004),
58–67, arXiv:math.MG/0408174.

[Cox] H. S. M. Coxeter, Regular Polytopes, second
edition, McMillan, New York, 1963.

[de B] Nikolaas G. de Bruijn, Algebraic theory of Pen-
rose’s non-periodic tilings of the plane, i, ii,
Nederl. Akad. Wetensch. Proc. Ser. A, 84, 38–52,
53–66, 1981.

[Hen] Linda Dalrymple Henderson, The Fourth Di-

mension and Non-Euclidean Geometry in Modern

Art, Princeton, 1983.
[Jouf] Esprit Jouffret, Traité élémentaire de

géométrie à quatre dimensions, Hermann,
Paris, 1903.

[Kem] Martin Kemp, A trick of the tiles, Nature 436

(2005), 332–332.

April 2007 Notices of the AMS 509



Figure 6. From Jouffret’s Figure 36, two projections of the 24-cell.

Figure 7. The two solid tori implicit in Jouffret’s diagram, with their interior vertices. The extra
edges for two of the “necklace” octahedra are shown in green; those for one of the seize

octaèdres fondamentaux are shown in orange.

[Metz] Jean Metzinger, Notes sur la peinture, Pan,
Oct.-Nov. 1910, translated and partially reprint-
ed in Edward Fry, Cubism, McGraw-Hill, New
York 1966. Quoted in [Hen] page 64. Here is the
whole paragraph: “Picasso ne nie pas l’objet, il
l’illumine avec son intelligence et son sentiment.
Aux perceptions visuelles, il joint les percep-
tions tactiles. Il éprouve, comprend, organise: le
tableau ne sera transposition ni schema, nous
y contemplerons l’équivalent sensible et vivant
d’une idée, l’image totale. Thèse, antithèse, syn-
thèse, la vieille formule subit une énergique
interversion dans la substance des deux pre-
miers termes: Picasso s’avoue réaliste. Cézanne
nous montra les formes vivre dans la réalité
de la lumière, Picasso nous apporte un compte-
rendu matériel de leur vie réelle dans l’esprit, il
fonde une perspective libre, mobile, telle que le

sagace mathématicien Maurice Princet en déduit
toute une géométrie.”

[Pic] Picasso speaks, The Arts, New York, May 1923.
Reproduced in Alfred H. Barr Jr., Picasso: Fifty

Years of his Art, Museum of Modern Art, New
York 1946, reprint edition published for the mu-
seum by Arno Press, 1966. Also reprinted in
Edward Fry, Cubism, McGraw-Hill, New York
1966.

[Rob] Tony Robbin, Fourfield: Computers, Art & the

4th Dimension, Little, Brown & Co., Boston, 1992.
[web] http://www.math.okstate.edu/mathdept/

dynamics/lecnotes/node29.html, David J.
Wright, Oklahoma State University.

[web2] http://gregegan.customer.netspace.net.au/
APPLETS/12/12.html, Greg Egan—refers to
Quasitiler documentation.

510 Notices of the AMS Volume 54, Number 4

http://www.math.okstate.edu/mathdept/dynamics/lecnotes/node29.html
http://www.math.okstate.edu/mathdept/dynamics/lecnotes/node29.html
http://gregegan.customer.netspace.net.au/APPLETS/12/12.html
http://gregegan.customer.netspace.net.au/APPLETS/12/12.html

